
Space Efficient Wavelet Tree Construction?

Francisco Claude1, Patrick K. Nicholson1, and Diego Seco2

1 David R. Cheriton School of Computer Science, University of Waterloo, Canada
2 University of A Coruña, A Coruña, Spain

{fclaude,p3nichol}@cs.uwaterloo.ca, dseco@udc.es

Abstract. Wavelet trees are one of the main building blocks in many
space efficient data structures. In this paper, we present new algorithms
for constructing wavelet trees, based on in-place sorting, that use virtu-
ally no extra space. Furthermore, we implement and confirm that these
algorithms are practical by comparing them to a known construction al-
gorithm. This represents a step forward for practical space-efficient data
structures, by allowing their construction on more massive data sets.

1 Introduction

Succinct data structures supporting rank, select and access operations represent
the core of most space efficient data structures [24, 21, 4]. For example, struc-
tures supporting rank and select over binary sequences allow for space efficient
representation of trees [6, 7, 23, 12, 2].

One of the most elegant generalizations of such structures for binary rank,
select and access is the wavelet tree [17]. Wavelet trees have not only proven
to be a crisp theoretical solution, but also perform well in practice [13, 8]. As
such, they are used by many practical compressed text indexes, such as the
SSA [24], LZ77-Index [20] and SLP-Index [9, 10]. Another fact that makes wavelet
trees interesting as a structure is that they support richer queries than initially
expected. For example, they have been used for representing binary relations [4,
11], discrete set of points [5] and permutations [3], among others. In all of these
domains, wavelet trees support a rich set of operations efficiently.

There has been a great deal of study on the performance of different variants
of wavelet trees [8], considering the shape and internal representation of the
bitmaps [18, 7, 25]. However, not much effort has been put into space efficient
construction algorithms for wavelet trees.

We present several new algorithms for constructing wavelet trees, using virtu-
ally no extra space. This is a significant improvement over the näıve construction
algorithm, as well as a previously known technique [22]. We discuss our results
in detail at the end of this section, but first we elaborate on the problem.

Given a sequence A of length n, denoted A[0..n−1], drawn from an alphabet
Σ of size σ. A wavelet tree is a data structure that supports the following opera-
tions: (1) access(A, i): retrieve the symbol at position i in A. (2) ranka(A, i):
? This work was supported in part by the David R. Cheriton scholarships program

(first author) and an NSERC of Canada PGS-D Scholarship (second author).

count how many times the symbol a appears in A[0..i]. (3) selecta(A, j): re-
trieve the position of the j-th occurrence of a in A.

Supporting these operations in constant time, using nH0(A) + o(n) bits of
space3, was first solved for binary alphabets (i.e., Σ = {0, 1}) by Raman et
al. [25]. Wavelet trees extend this result to arbitrary alphabets in the following
way. Every node in a wavelet tree has two children, and we identify them as left
and right. Each node represents a range R ⊆ [1, σ] of the alphabet Σ, and its
left child represents a subset R` ⊂ R and the right child a subset Rr = R \ R`.
Every node virtually represents a subsequence A′ of A composed of elements
whose value is in R. This subsequence is stored as a bitmap B of length |A′|,
and, for each position i in the bitmap, a 0 bit means that position i belongs to
R` and a 1 bit means that it belongs to Rr.

One can access a position in A by following the path from the root to a leaf
guided by the bit representing the position at each level. When moving to the
left child the position i is mapped to rank0(B, i) and when moving to the right
child the position is mapped to rank1(B, i). By similar observations, it is an
easy exercise to show that a wavelet tree can support rank, select and access
operations in O(lg σ) time4, assuming that rank and select are supported in
constant time on the bitmaps in each level. Furthermore, the wavelet tree uses
n lg σ + o(n lg σ) bits because the bitmaps representing the nodes use n lg σ bits
in total and the little-oh term covers the cost of the rank and select structures.

Wavelet trees were later extended to generalized wavelet trees, where the fan
out of each node is increased from 2 to O(polylog(n)), increasing the speed of
the three operations to O(lg σ/ lg lg n) time [14]. In favour of clarity, we focus on
binary wavelet trees, though our results also extend to the generalized version.

A simple construction algorithm works in the following way. First, we build
the root of the wavelet tree. To do this, we partition the alphabet Σ into Σ`
and Σr according to some balancing rule, and then create a bitmap of length n
that stores a 0 in position i if A[i] ∈ Σ` and a 1 in position i otherwise. Then,
we generate a copy of the subsequence of elements whose bit at position i is a 0
and recurse on this subsequence to build the left subtree. Finally, we recurse on
the 1 bits to construct the right subtree.

It is easy to see that this method is inefficient and requires O(n lg2 σ) bits,
since we copy the array A at each of the lg σ levels. This can be improved by
realizing that, at each level in the recursion, we can reuse the space from the
previous level and avoid recopying the sequence. The only exception to this is
the root, since our application might require us to leave A unmodified after the
construction process. Thus, we can construct the wavelet tree in O(n lg σ) extra
bits, since we must copy A. An example of such an application is a library for
succinct data structures, such as Libcds5, where the user might want to further
process the sequence used to build the wavelet tree.

3 H0(A) denotes the 0th-order empirical entropy of the string A.
4 Throughout this paper we denote dlog2 ne as lgn.
5 http://libcds.recoded.cl

Our Results: In this paper we present several new algorithms for constructing
wavelet trees space efficiently. All of our results hold in the word-RAM model
with word size Ω(lg n). Throughout this section, we denote the input array as A
and the wavelet tree as T . All of our results are for uncompressed wavelet trees,
that is, the case where the bitmaps of the wavelet tree occupy n lg σ bits. Thus
T occupies n lg σ + S(n lg σ) bits, where S(m) denotes the extra space required
by auxiliary rank and select structures on a bitmap of length m. Extending our
results to compressed wavelet trees, e.g., Huffman shaped wavelet trees, is left as
an open problem. Before discussing the results, we need the following definitions.

We refer to a construction algorithm as non-destructive if A is unmodified
after T has been constructed. If A is modified, rendering it unusable, we say the
construction algorithm is destructive.

Since there are many choices of rank and select data structures for bitmaps,
we will attempt to state our results as generally as possible. We do, however,
assume that the auxiliary structures used for bitmaps support rank and select
in constant time. Let C(m) denote the construction time for auxiliary rank
and select structures on a bitmap of length m, and E(m) denote the extra bits
required to construct these structures. We note that in many existing algorithms,
E(n) = O(lg n) extra bits. Given a bitmap B[0..n − 1], suppose we construct
auxiliary rank and select structures in time C(p) on a prefix of B, B[0..p] where
0 ≤ p < n, such that we can answer rank and select queries on B[0..p]. If
we can extend our rank and select structures to support queries on B[0..q] for
p < q < n in C(q − p) time, we say these rank and select structures can be
constructed incrementally.

In Section 2 we present a non-destructive algorithm for constructing the
wavelet tree T in O(n lg σ + C(n lg σ)) time, using O(lg n lg σ) + E(n lg σ) bits
beyond the space occupied by A and T . This section serves as a warm-up, in-
troducing many of the concepts used later in the paper.

In Section 3 we present a destructive algorithm for constructing the wavelet
tree T in O(n lg n lg2 σ+C(n lg σ)) time using O(lg n lg σ)+E(n lg σ) bits beyond
the space required for T . In other words, this algorithm replaces A with the
bitmaps for each node in T . We also present a more practical algorithm that runs
in O(n lg σ + C(n lg σ)) time and uses n + O(lg n lg σ) + E(n lg σ) bits beyond
the space required for T . In all of the previous results, we show how to replace
the O(lg n lg σ) bit term in the space bound with O(lg n) bits, if the rank and
select structures for T can be constructed incrementally.

Finally, in Section 4 we provide experimental results for the algorithms dis-
cussed in Section 3. These results show that our algorithms are practical.

2 Encoding Scheme

In this section, we show how to reorder the elements of an array A[0..n − 1]
according to the bitmap B[0..n − 1] representing the root of the wavelet tree.
This allows us to construct T without copying the subsequences of A into sep-
arate arrays at each level. We refer to this process as partitioning, and it is the

bottleneck in any space efficient wavelet tree construction algorithm. After de-
scribing partitioning, we show how to reverse a partitioning step. That is, given
the subsequence of elements from the left subtree, A`, the elements from the
right subtree, Ar, and the bitmap representing the root of the wavelet tree, B,
we show how to rebuild A. We refer to this process as merging. In other words,
denote string concatenation by · and let A′ = A` ·Ar. Partitioning is the process
of constructing A′ from A and B, and merging is the process of reconstructing
A from A′ and B.

2.1 Partitioning

We describe the method implemented in Libcds that shows a simple way of
partitioning the array A given that we can support constant time rank and
select queries on the bitmap B [22]. Let n` denote rank0(B,n − 1). It is easy
to see that the bitmap B defines a permutation π on the elements of array A as
follows:

π(i) =

{
rank0(B, i)− 1 if B[i] = 0,
rank1(B, i)− 1 + nl otherwise.

(1)

One way of partitioning A is to create an auxiliary bitmap Aux of length n,
where initially all of the bits are set to 0. We then do a scan of the array A and,
for each position p = 0..n − 1, if Aux[p] = 0, we move the element at position
p to its corresponding place, position q = π(p), and set Aux[p] = 1. We repeat
this process with the element that was at position q in A until returning to a
position q′ where Aux[q′] = 1 [22]. It is not hard to see that q′ = p: following
standard terminology [15], we call position p a cycle leader of π, since it has
the smallest index in the cycle of element swaps. Furthermore, we say that the
elements in a cycle are rotated according to π. Thus, the auxiliary array is used
to identify cycle leaders.

The procedure just described requires n+O(lg n) extra bits to identify cycle
leaders and perform the partitioning in O(n) time, assuming we can support rank
operations on B in constant time. The O(lg n) term comes from the constant
number of pointers needed to scan the array and rotate the elements.

Let πk(i) = π(πk−1(i)), for k > 1 and π1(i) = π(i). If π(i) = i then we say
position i is a self-cycle. Let A′ denote the array A after it has been partitioned.
In order to improve the space requirements, we prove the following property of
the permutation π:

Lemma 1. If π(i) 6= i (i.e., position i is not a self-cycle), then πk(i) ≥ n` for
some k ≥ 1. Similarly, if j ≥ n` and π(j) 6= j, then πk(j) < n` for some k ≥ 1.

Proof. The relative ordering of the elements that are symbols inΣ` inA′[0..n`−1]
is the same as the relative ordering of these elements in A[0..n − 1]. Thus, if a
rotation begins at an element in Σ` in position i, it will be moved to a position
0 ≤ j < i. Since the rotation will end at position i, at some point we must

encounter an element in Σr. By the definition of π, this element will be moved
to a position j′ ≥ n`. The second part of the lemma follows by symmetry. ut

Based on the previous lemma, we make the following observation:

Observation 1 Rotating only the cycle leaders in positions where B[i] = 0 is
sufficient to complete the partitioning of A into A′, since every cycle that is not
a self-cycle involves elements from both Σ` and Σr.

We now show how to perform the partitioning without access to Aux. We
continue assuming that |Σ`| ≤ |Σr|. If this condition does not hold, we can apply
Observation 1 symmetrically, considering only positions where B[i] = 1.

The idea that allows us to discard Aux is to encode it inside A as we perform
the partitioning. We do this by defining an invertible function f : Σ` → Σr. This
function exists since |Σ`| ≤ |Σr|. We run exactly the same partitioning algorithm
described in the beginning of this section, except that, during a rotation, every
time we move a symbol s ∈ Σ` at position i to position π(i), we write f(s) in
position π(i) instead. Since we do not have to rotate cycle leaders from Σr by
Observation 1, this encoding step is functionally equivalent to having access to
Aux. Every time we encounter an element in Σ`, that element would have had
a 0 in its corresponding position in Aux, and we can ignore elements that either
would have a 1 in Aux or were originally in Σr.

After finishing this process, we need one extra pass to decode the values that
are supposed to be in Σ`. We do this by traversing A′ and replacing position
i by f−1(A[i]) if i < n`. Recall our assumption that T is an uncompressed
wavelet tree, i.e., each partitioning step moves the elements with a 0 as their
most significant bit to the left child and each element with a 1 as their most
significant bit to the right child. Since the ranges of Σ spanned by Σ` and Σr
are contiguous and adjacent, computing f() and f−1() boils down to a simple
addition and subtraction, respectively.

Lemma 2. Given an array A over an alphabet Σ and support for constant time
rank and select operations on the bitmap B, we can partition A in-place to gen-
erate A′ in O(n) time using O(lg n) extra bits of space.

2.2 Merging

The merging process is just the partitioning process in reverse. We describe this
problem in a similar way, using the inverse permutation π−1:

π−1(i) =

{
select0(B, i+ 1) if i < nl,
select1(B, i+ 1− nl) otherwise.

(2)

It is easy to see that Lemma 1 and Observation 1 also hold in the merging
case. The only difference is that now elements in Σ` are rotated to the right and
elements from Σr are rotated to the left. Thus, there is at least one element in Σ`
and one in Σr for each cycle of length greater than 1. These observations allow
us to apply the same method as in Lemma 2, obtaining the following lemma.

Lemma 3. Given the array A′ and support for constant time rank and select
operations on the bitmap B, we can reconstruct A in-place in O(n) time using
O(lg n) extra bits of space.

Using a stack of size O(lg σ) pointers to keep track of the node in T that we
are currently processing, we can recursively apply partitioning to A, to construct
T . After T is constructed, we can reverse the process by merging to recover A.
We can compute B in linear time for each node.

Theorem 2. There exists a non-destructive algorithm for constructing a wavelet
tree T that uses O(n lg σ+C(n lg σ)) time, and O(lg n lg σ)+E(n lg σ) bits beyond
the space required for T and the input array A.

2.3 Extension to Generalized Wavelet Trees

The encoding scheme for generalized wavelet trees works in a similar way to that
of the binary case. We begin by stating the generalized partitioning problem:
given an array A[0, n − 1] with values in Σ = [0, σ − 1] and a sequence S with
values in D = [0, k − 1] that partitions Σ into k disjoint sets Σ0, . . . , Σk−1,
we want to generate an array A′ where elements of A are stable-sorted by their
corresponding value in D. We can describe the re-ordering in A as a permutation:
πk(i) = rankj(S, i) + (

∑
v<j rankv(S, n− 1))− 1, where j = S[i].

Lemma 4. The permutation πk is strictly increasing for positions containing
the same value in D.

Proof. We can write πk(i) as rankj(S, i) + g(j), where j = S[i] and g(j) =∑
v<j rankv(S, n− 1), and rankj(S, i) is strictly increasing in i. ut

Lemma 5. Any cycle C in πk such that |C| > 1, contains at least two positions
i, j such that S[i] 6= S[j].

Proof. By contradiction, assume |C| > 1 and all positions pi ∈ C satisfy S[pi] = s
for a fixed s. Let p = min C. Since all positions in C point to elements in S whose
value is the same, then πk is strictly increasing in C, thus, there is no pj such
that πk(pj) = p, therefore, C is not a cycle. ut

Now we can present the encoding method. Let m ∈ [0, k − 1] be the index
such that |Σm| ≥ |Σj |. We then generate fj : Σj → Σm such that fj−1 exists.
Then, the algorithm for partitioning works in the following way: for each cycle
leader, we start rotating the elements if the position is not in Σm. Every time
we rotate an element e in Σj , we replace it with fj(e).

Once we finish the process, we do a final pass through A′ fixing the val-
ues at position p using fj

−1, where j is determined by the position, i.e., j =
min{r|

∑
v<r rankv(S, n− 1) > p}.

There is one detail remaining, and this is how to compute g(j) =∑
v<j rankv(S, n − 1). We can do this by pre-computing all possible answers

in linear time. This option requires O(σ lg n) bits of extra space. Another option

is to use compressed bitmaps to represent this in σ lg(n/σ) + o(n) bits, while
supporting queries in constant time [25]. We now state the partitioning theorem
for the generalized wavelet tree:

Theorem 3. We can solve the partitioning problem for the generalized wavelet
tree in O(nτ) time using min(σ lg(n/σ) + o(n), O(σ lg n)) bits of extra space,
where τ represents the maximum between the time to answer rank and access in
a sequence over an alphabet of size k.

The generalized merging process is similar, and the permutation π−1
k is

defined as follows: π−1
k (i) = selectj(S, i + 1 − g(j)), where j = S[i] and

g(j) =
∑
v<j rankv(S, n− 1).

Lemmas 4 and 5 also apply to π−1
k , since select is strictly increasing for posi-

tions that contain the same element. This allows us to apply the same encoding
technique as before; the only difference is the transformation at the end. Instead
of examining the range we are in, we examine the character in S associated with
our position.

Theorem 4. We can solve the merging problem for the generalized wavelet tree
in O(nτ) time using min(σ lg(n/σ) + o(n), O(σ lg n)) bits of extra space, where
τ represents the maximum between the time to answer access and select in a
sequence over an alphabet of size k.

Regarding the rank, select and access times in Theorems 3 and 4, there are
many alternatives [17, 14, 16], in particular, it is possible to adapt the solution
by [14] to compute the function g() in constant time, achieving the following
Corollary.

Corollary 1. We can solve the partitioning and merging problems for the gen-
eralized wavelet tree in O(n) time using min(n lg(n/σ) + o(n), O(σ lg n)) ex-
tra bits of space, if the branching factor of the generalized wavelet tree is k =
O(polylog(n)).

3 Construction by Permuting Bits

In this section we show how to destructively permute the bits of an input array
A, converting them into the bit vectors of a binary wavelet tree T .

Let Bv represent the bitmap stored at the root v of T , and vl and vr represent
the left and right children of v. Define B(v) = Bv · B(vl) · B(vr). Thus, B(v) is
the concatenation of the bitmaps stored at the nodes of T , in depth first order
from the root, v. We describe an algorithm for computing B(v) that works by
permuting the bits of A in place. For our purposes in this section, we consider
A to be a bitmap of length n lg σ. Let φ be the permutation that maps A to
B(v); we abuse notation and denote this as φ(A) = B(v). We show that φ is the
composition of 2σ permutations: two permutations, χ and ψ, corresponding to
each node in T .

3.1 Overview of Permutations

In the next section we describe the two permutations χ and ψ that correspond
to the root v of T . Before specifying the technical details of these permutations,
we first briefly outline what they do to the array A.

The first permutation χ shifts the most significant bit of each character in
A to a prefix of the bitmap, preserving relative order. More precisely, χ(A)
consists of an n bit prefix Bv[0..n− 1], representing the most significant bits of
each element in A (which is the bitmap stored at the root of T), followed by
n truncated characters of length lg σ − 1; the i-th truncated character is A[i]
without its most significant bit, for 0 ≤ i < n.

Let At[0..n − 1] represent the n truncated characters. The second permuta-
tion, ψ, partitions At[0..n− 1] according to the bits Bv[0..n− 1]. Thus, applying
ψ is equivalent to the partitioning step in a standard wavelet tree construction
algorithm: if Bv[i] is a 0, then At[i] is partitioned to the left and, if Bv[i] is a 1,
then At[i] is partitioned to the right.

After applying χ and ψ to A, ψ(χ(A)) consists of Bv[0..n− 1], which are the
first n bits of B(v), followed by the partitioned truncated characters, which can
then be recursively converted into the remaining bits of B(v) in a depth first
manner. In the sequel, we rely heavily on the following result of Fich et al.:

Theorem 5 (Theorem 2.2 [15]). In the worst case, permuting an array of
length n, given the permutation and its inverse, can be done in O(n lg n) time
and O(lg n) additional bits of storage.

The next two sections define the permutations χ and ψ, and their respective
inverses.

3.2 Chopping the Most Significant Bits

Since A is a bitmap of length n lg σ, we refer to individual bits in A. Let A =
b0, . . . , bn lg σ−1, where bj lg σ, ..., b(j+1) lg σ−1 are the bits in A[j] for 0 ≤ j < n,
in decreasing order of significance6. Using this notation, we can now describe
χ(A, i), the i-th bit of χ(A) in terms of the bits in A, for 0 ≤ i < n lg σ. If
χ(A, i) = j, then the i-th bit of χ(A) is the j-th bit of A, or bj ; in the equations
we write j instead of bj for readability.

χ(A, i) =

{
i

lg σ if lg σ divides i,

i+ n−
⌊

i
lg σ

⌋
− 1 otherwise.

Similarly, we can describe the permutation χ−1(A, i) as follows:

χ−1(A, i) =

{
i lg σ if i < n,

i− n+
⌊

i−n
lg σ−1

⌋
+ 1 otherwise.

6 If the characters are stored in increasing order of significance, then we can easily
reverse their bits in O(n lg σ) time and O(lgn) extra bits.

Running Time: Using χ and χ−1 we can apply Theorem 5 to A. This allows us
to compute χ(A) in place using O(n lg σ lg(n lg σ)) = O(n lg σ lg n) time.

3.3 Partitioning the Truncated Letters

We now describe how to compute ψ(χ(A)) from χ(A). Note that χ(A) = Bv[0..n−
1] ·At[0..n− 1], and suppose we build a rank and select data structure over Bv.
We discuss the space issues associated with this in the next section. The permu-
tations ψ and ψ−1 make use of rank and select queries in order to determine how
to partition At[0..n− 1]. Not surprisingly, ψ and ψ−1 are almost identical to the
permutations described in Equations 1 and 2, respectively. The only difference
is that we need to account for the fact that the truncated characters At begin
at an offset of n from the beginning of A and consist of lg σ − 1 bits. We omit
the exact details since they are not difficult, but tedious.

Running Time: As before, using ψ and ψ−1 we can apply Theorem 5 to χ(A).
Observe that we can easily swap lg σ−1 bit elements in constant time, assuming
the word size is Ω(lg n) and n ≥ σ. This allows us to compute ψ(χ(A)) in place
using O(n lg n) time.

3.4 Overall Requirements

Running Time: We must apply χ and ψ appropriately at each node in T in
order to compute φ(A). This means that our overall running time is T (n, lg σ) =
T (nl, lg σ− 1) + T (n− nl, lg σ− 1) +O(n lg n lg σ), where T (n, 1) = O(1). Since
the height of the tree is bounded in terms of lg σ rather than n, T (n, lg σ) =
O(n lg n lg2 σ).

Extra Space: As discussed in Section 3.3, at each node v in T we construct
auxiliary rank and select structures for the bitmap of length m ≤ n, associated
with v. Let S(m) denote the number of bits required for the auxiliary structures.
The auxiliary structures for T require S(n lg σ) extra bits, since B(v) is a bitmap
of length n lg σ. Furthermore, we can release the memory used by the auxiliary
structures for each v ∈ T after we have applied the permutations to v. Thus, we
can avoid using extra space for the auxiliary structures associated with v, with
careful memory management.

In addition to the O(1) extra pointers required by Theorem 5, we need a
stack of size O(lg σ) pointers in order to remember our current location within
T . However, we can get rid of the stack at the cost of some complexity. Suppose
w1, ..., wσ are the nodes of T in depth-first order. Then by storing only n and
the bits representing the path to wi, we can compute the offset and length of the
bitmap representing wi+1 in O(lg σ) time using the rank and select structures
constructed for w1, ..., wi. Note that w1, ..., wi represent a contiguous prefix of
the bitmap B(v). Thus, if we can construct rank and select structures for B(v)
incrementally, we can discard the stack.

Trade Off: If we have an extra n bits available to us, then we can apply χ and
ψ to each node in T in O(n) time per level of T , using a strategy similar to
Arroyuelo and Navarro [1]. To apply χ, we copy the most significant bits in A
into the auxiliary bitmap, then shift the remaining bits to the end of A, and
finally, overwrite the first n bits of A with those stored in the auxiliary bitmap.
This requires O(n) time if we make use of word-level parallelism during the
shifting stage, or O(n lg σ) time if we shift the bits one at a time. To apply ψ
we use the auxiliary bitmap to store the cycle leaders, as described in Section 2.
Thus, with the n extra bits, we can compute φ(A) in O(n lg σ) time, or O(n lg2 σ)
time without word-level parallelism during the shifting stage.

Theorem 6. Suppose we are given an array A of n symbols drawn from an
alphabet of size σ. Let C(m) denote the construction time for the auxiliary rank
and select structures on a bitmap of length m, E(m) denote the extra bits required
during the construction of these structures, and S(m) denote the total number of
bits occupied by these structures. Furthermore, assume these structures support
rank and select in constant time. We can permute the n lg σ bits of A, replacing
A with the bitmaps of a wavelet tree T occupying n lg σ + S(n lg σ) bits in:

1. O(n lg n lg2 σ+C(n lg σ)) time using O(lg σ lg n)+E(n lg σ) extra bits beyond
the space occupied by T .

2. O(n lg σ + C(n lg σ)) time, and using n + O(lg n lg σ) + E(n lg σ) extra bits
beyond the space occupied by T .

In both of the previous results, we can replace the O(lg n lg σ) bit term in the
space bound with O(lg n) bits, if we can construct the rank and select structures
for T incrementally.

The same idea can be extended to the generalized setting, though we defer
the details to a later version of this paper.

4 Experiments

As a proof of concept we implemented two of the algorithms described in The-
orem 6. We refer to the algorithm that uses O(lg σ lg n) extra bits and runs in
O(n lg n lg2 σ) time as Permute, and the algorithm that uses n + O(lg σ lg n)
extra bits and runs in O(n lg2 σ) time (not making use of word-level parallelism)
as Permute2. For a base line comparison, we used the space efficient destruc-
tive construction algorithm found in Libcds, which is similar to the algorithm
described in Section 2. The code for Permute is an adaptation of the code
from [15, Figure 5], modified to use a simple heuristic speed-up called Fast-
Break [19]. The code for Permute2 is even more straightforward since it uses
an auxiliary bitmap.

The machine used for the experiments has an AMD AthlonTM 64 X2 Dual
Core Processor 5600+, core speed 2900MHz, L1 Cache size 256KB and L2 Cache

 0

 10

 20

 30

 40

 50

 60

 70

0 524288 1048576 1572864 2097152 2621440 3145728 3670016 4194304

C
on

st
ru

ct
io

n
T

im
e

(s
ec

on
ds

)

Input size (bytes)

Wavelet tree construction time as a function of input size

PERMUTE
PERMUTE2

LIBCDS

Fig. 1. A comparison of the space efficient construction algorithms Permute and Per-
mute2 with the standard Libcds construction algorithm. In this experiment lg σ = 8.

size 1024KB. It has 4GB of 800MHz main memory. The operating system in-
stalled is GNU/Linux (Ubuntu 10.04 LTS) and the code was compiled using
GNU/g++ version 4.4.3, with optimization flags -O9.

We ran experiments for the case when lg σ = 8, i.e., the array A consists of
8-bit characters. For n = 8, 16, 32, ..., 4194304, we generated 10 strings of length
n, where each string consists of n 8-bit integers drawn uniformly at random.
For each n we kept track of the best, worst and average running time of the
three construction algorithms. Since the best and worst times were very close
to the average, we report only on the average time. A graph comparing the
average construction times of the algorithms can be found in Figure 1. We ob-
tained similar results when testing on prefixes of English and DNA text from
http://pizzachili.dcc.uchile.cl.

As expected, Permute is slower than Libcds for all tested values of n, by
a factor that increases with n. For all values tested this factor was less than 11.
Although this is a significant slow down, this experiment demonstrates that the
space efficient algorithm we describe is implementable and that its performance
is not impractical.

On the other hand, Permute2 ran only slightly slower than Libcds, which
has complexity O(n lg σ). This suggests that Permute2 is highly competitive
as a construction algorithm, due to low constant factors. Furthermore, since it
only uses n+O(lg n lg σ) extra bits on top of the space required for the wavelet
tree, it provides a nice compromise between the slower Permute algorithm and
the construction algorithm currently used by Libcds.

References

1. Arroyuelo, D., Navarro, G.: Space-efficient construction of lempel-ziv compressed
text indexes. Information and Computation 209(7), 1070–1102 (2011)

2. Arroyuelo, D., Cánovas, R., Navarro, G., Sadakane, K.: Succinct trees in practice.
In: Proc. ALENEX. pp. 84–97 (2010)

3. Barbay, J., Navarro, G.: Compressed representations of permutations, and appli-
cations. In: Proc. STACS. pp. 111–122 (2009)

4. Barbay, J., Claude, F., Navarro, G.: Compact rich-functional binary relation rep-
resentations. In: Proc. LATIN. pp. 170–183. LNCS (2010)

5. Bose, P., He, M., Maheshwari, A., Morin, P.: Succinct orthogonal range search
structures on a grid with applications to text indexing. In: Proc. WADS. vol. 5664,
pp. 98–109 (2009)

6. Clark, D.: Compact Pat Trees. Ph.D. thesis, University of Waterloo (1996)
7. Clark, D.R., Munro, J.I.: Efficient suffix trees on secondary storage. In: Proc.

SODA. pp. 383–391 (1996)
8. Claude, F., Navarro, G.: Practical rank/select queries over arbitrary sequences. In:

Proc. SPIRE. pp. 176–187. LNCS 5280 (2008)
9. Claude, F., Navarro, G.: Self-indexed text compression using straight-line pro-

grams. In: Proc. MFCS. pp. 235–246. LNCS 5734 (2009)
10. Claude, F., Fariña, A., Mart́ınez-Prieto, M., Navarro, G.: Compressed q-gram in-

dexing for highly repetitive biological sequences. In: Proc. BIBE. pp. 86–91 (2010)
11. Farzan, A., Gagie, T., Navarro, G.: Entropy-bounded representation of point grids.

In: Proc. ISAAC. pp. 327–338 (2010), part II
12. Farzan, A.: Succinct Representation of Trees and Graphs. Ph.D. thesis, University

of Waterloo (2009)
13. Ferragina, P., González, R., Navarro, G., Venturini, R.: Compressed text indexes:

From theory to practice. ACM JEA 13 (2009), 30 pages
14. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed representations

of sequences and full-text indexes. ACM Trans. on Alg. 3(2), article 20 (2007)
15. Fich, F., Munro, J., Poblete, P.: Permuting in place. SIAM J. on Comp. 24, 266

(1995)
16. Golynski, A., Munro, J.I., Rao, S.S.: Rank/select operations on large alphabets: a

tool for text indexing. In: Proc. SODA. pp. 368–373 (2006)
17. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes.

In: Proc. SODA. pp. 841–850 (2003)
18. Jacobson, G.: Space-efficient static trees and graphs. In: Proc. FOCS. pp. 549–554

(1989)
19. Keller, J.: A heuristic to accelerate in-situ permutation algorithms. Inf. Proc. Lett.

81(3), 119–125 (2002)
20. Kreft, S., Navarro, G.: Self-indexing based on LZ77. In: Proc. CPM. pp. 41–54

(2011)
21. Mäkinen, V., Navarro, G.: Rank and select revisited and extended. Theo. Comp.

Sci. 387, 332–347 (2007)
22. Mäkinen, V., Välimäki, N.: Personal communication
23. Munro, J.I.: Tables. In: Proc. FSTTCS. pp. 37–42 (1996)
24. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Comp. Surv. 39(1),

article 2 (2007)
25. Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applications

to encoding k-ary trees and multisets. In: Proc. SODA. pp. 233–242 (2002)

