
A Web-based Version of a Trivial Game to
Promote Galician Culture ?

Miguel R. Luaces, Oscar Pedreira Ángeles S. Places, and Diego Seco

Databases Laboratory. University of A Coruña. 15071 A Coruña, Spain
{luaces,opedreira,asplaces,dseco}@udc.es

Abstract. We present in this paper the architecture and some
implementation details of a web-based version of a Trivial game. Our
implementation achieves such a high degree of interactivity between
the players that they perceive the game as being played in real-time.
More importantly, no plug-in or applet is used in the architecture of
the system. These properties are achieved by means of a carefully
designed architecture that uses AJAX (Asynchronous JavaScript and
XML) for data exchange. Using this approach, it is possible to develop
any type of web-based collaborative software with few load on the web
server. In the paper, we analyze traditional architectures for web-based
applications and we show how our approach overcomes their limitations.
Furthermore, we proof the efficiency of our approach by means of an
empirical comparison.

Key words: web application, user interface, AJAX, collaborative
software, e-learning

1 Introduction

The maturity of Internet users and the quality of connections and services
available are increasing the demand of interactivity in web applications,
not only between the user and the system, but also between the users
themselves. However, the characteristics of traditional web applications prevent
developers from building collaborative applications or games that require real-
time interaction between the users [1]. This is due to two main reasons:

– Clients cannot exchange information. Connections in web applications are
always established between a client and the server, but never between two
clients. Hence, all data exchange must be done through the server.

– A web server cannot start data transfers. Web servers can never communicate
the information received from one client to the others unless the clients
explicitly request it, thus restricting the interaction possibilities between the
clients.

? This work has been partially supported by “Ministerio de Educación y Ciencia”
(PGE y FEDER) ref. TIN2006-16071-C03-03, by“Agencia Española de Cooperación
Internacional (AECI)” ref. A/8065/07, and by “Xunta de Galicia” ref. 2006/4 and
ref. 08SIN009CT.



2 Miguel R. Luaces et al.

As a consequence, applications where users collaborate or interact which each
other in real-time to perform a task have to be implemented using plug-ins or
a similar type of software for the web browser that controls the exchange of
messages between the users. The only alternative without this type of software
is that each client requests frequent and periodic updates from the server to
retrieve the data that has changed in any other client. However, if data change
frequently in the clients or the change has to be perceived as real-time, the load in
the web server will be very high because many new pages will have to be created
and sent constantly. This results in a limitation in the maximum number of users
that can interact. Nevertheless, this approach is better than the previous one in
the sense that users do not have to install any plug-in, which is an insuperable
restriction in application domains where users do not have the required expertise
level.

We have developed a software architecture specifically designed to simulate
interactivity between users of a collaborative web application. Users perceive
their interaction as real-time, just like if they had a direct connection between
them. This architecture has been used to implement a virtual version of the
classic board game Trivial Pursuit with two important advantages over other
applications of this type: it does not require players to download and install any
software for the web browser, and a large number of games with many players
in each can be played simultaneously in an ordinary web server.

The rest of the paper is organized as follows. In Sect. 2 the rules of Trivial.gz
are described in order to show the level of interactivity that can be reached
with this new approach of web application development. Then, in Sect. 3, we
present the differences between the architecture of traditional web applications
and the architecture we propose, and we describe AJAX in more detail, showing
its advantages for the systematic development of interactive web applications.
After that, we present a detailed description of the application architecture in
Sect. 4. This development allowed us to evaluate and compare our approach
with respect to traditional approaches to web application development, which is
presented in in Sect. 5. Finally, Sect. 6 presents our conclusions and some ideas
for future work.

2 Trivial.gz

Trivial.gz is an initiative of the Galician Socio-Pedagogic Association (AS-PG,
from the Galician name Asociación Socio-Pedagóxica Galega [2]) to increase
the usage of Galician language on the Internet and among the young people,
and it was sponsored by the Galician government. The game was presented
during the computer party XuventudeGaliza.Net, which took place in Santiago
de Compostela in April 2006. The game can currently be played at the web server
of the Galician Socio-Pedagogic Association (http://www.as-pg.com/trivial.
gz). Figure 1 shows a screenshot of a game being played.

The main objective when the development started was to create a web-based
game similar to the Trivial Pursuit board game which could be played on any



Trivial.gz 3

Fig. 1. Screenshot of the game

web browser without having to download any plug-in or applet. Our version of
the game has some differences with respect to the original board game in order
to get the most out of the virtual environment and to minimize the effects caused
by the players not sharing the same physical space during the game. Moreover,
a big effort was devoted to simulate in a web page the interaction between the
players and the actions like rolling the die, moving the tokens, watching the
positions and movements of the other players, etc.

In a rough description, the goal of Trivial.gz is answering correctly questions
of three different difficulty levels and six different subjects: Culture and Show
Business, Geography, History, Language and Literature, Science and Our World.
All questions have three possible answers of which only one is correct. The board
is an hexagon divided into squares of different colors, each representing one of
the subjects of the questions. When the game starts, all players start from the
central square. The player who has the turn throws the die (by clicking on an
animation of the die rolling) and moves on the board in any direction as many
squares as the number in the die. When a square is chosen, the same question is
showed to all players who can try to answer the question before the time ends.
If the question is answered right points are awarded to the player independently
of whether the player had the turn or not. If the player with the turn fails the
question, the turn passes to the next player. To win the match, the player first
has to collect the six wedges that are awarded when the question on a vertex
of the board is answered right. Then, the player has to proceed to the center
square and answer correctly a question from a random subject.

A detailed description of the game rules is outside the scope of this paper.
However, we think it is interesting to discuss the modifications that were done to
the original rules of the game in order to improve the experience of the players:



4 Miguel R. Luaces et al.

– The game board is updated in real time. A player can see all the tokens, the
die value, who has the turn, and the points of each player. This creates the
sensation that the players share the same virtual space.

– Players can talk. A chat was added to the game page so that players can
communicate. It simulates the verbal interaction between players.

– Wedges can be lost. If a player fails the question in one of the squares where
wedges are awarded, the player looses the wedge. This makes the game more
dynamic and enables players that are losing to recover.

– It is easier to win wedges. There is a special square in each side of the board
that moves the token to one of the special squares. This makes games faster.

– Everybody plays. When the player with the turn chooses a square, the question
is presented to all players. Everybody can try to answer the question and points
are awarded to everybody that gives the right answer. Furthermore, it can be
seen who has already answered the question right or wrong in order to increase
the perception of playing with more people.

– Limited time. There is a time limit of 30 seconds to answer for the player that
has the turn. The time for all the other players is limited to the time required
by the player with the turn. This avoids long waits.

– Player history. The server keeps track of all the games played, the points
achieved by each player, and the statistic of questions answered right for each
subject. This gives the game an additional dimension because players can
compete not only to win one game, but also to be the one with more games
won, with more points, or with better statistics.

– Solitaire game. The game can be played by a single player.

The usage statistics of the game are very encouraging. It currently has
more than 4400 registered users and more than 6000 questions. The average
number of visits is around 50 visits a day. Furthermore, new functionalities
are being developed to increase these statistics. The Trivial.gz championships
are an example of these functionalities. An administrative tool to configure the
championships (i.e. subjects, number of matches that each contestant can play,
difficulty, etc.) has been developed and the game engine has been extended. Four
championships have been carried out since May 2008 (when this functionality
was released) and the average number of contestants is around 36.

3 Differences with Traditional Web Applications

The architecture of traditional web applications follows one of these two
philosophies:

– Server-side applications. All processing is performed on the web server. Each
client request implies a processing time in the server and sending a complete
web page to the client. This architecture is not very scalable because the
number of pages that the server has to process and send to the clients grows
with the interactivity of the application and the number of simultaneous
clients.



Trivial.gz 5

– Client-side applications. In this type of architecture as much processing as
possible is performed in the client, thus minimizing the information exchange
with the server. This type of applications are usually implemented by means
of web browser plug-ins that have to be downloaded, installed and configured.
Another approaches use Java applets that require the Java Virtual Machine
to be installed and configured. In any case, this philosophy requires some level
of expertise from the users, which limits its general use.

An intermediate approach uses scripts in the web pages so that the client-side
of the application has a certain amount of processing capabilities without having
to install a plug-in or the Java Virtual Machine. AJAX (Asynchronous JavaScript
and XML [3]) is the name of a new philosophy in the field of web application
development. In fact, AJAX is not a new technology but rather a combination
of a number of already existing different technologies. The central element is the
asynchronous usage of the XMLHttpRequest API present in all web browsers
of the current generation. This allows a web page that is being visualized at
the client-side to use a script language function to request some information
from a web server without blocking the user activity. The web server returns
the information requested using short XML [4] messages and the web browser
invokes a specific script function that can process the response and modify the
web page accordingly. Google has been a pioneer in the use of AJAX, as can be
seen in Google Suggest, Google Maps or GMail [5].

Figure 2 shows a sequence diagram represented with UML that describes this
behaviour. In both figures a user invokes three actions in the user interface of
the web application. Figure 2(a) shows the behaviour in the case of traditional
web applications. In this case, the user has to wait until the action ends before
invoking the following one. Furthermore, the processing time in the server
and the amount of information exchanged between the client and the server
is usually quite high. Figure 2(b) shows the behaviour in the case of using
AJAX. In this case users perceive a higher response speed. They do not have
to wait for an action to end before invoking another action because the data
exchange is performed asynchronously and long operations do not block the user
interface. Moreover, in traditional web applications each content update requires
a complete reload of the web page, whereas in a web application using AJAX the
information in the XML message is used to redraw the appropriate section of the
user interface. Additionally, the processing time in the server and the amount of
information exchanged is smaller because the server does not have to create and
trasfer complete web pages, but only short XML messages. Furthermore, given
that the processing time in the server and the amount of information exchanged
between the server and the clients is reduced, AJAX-based web applications can
include more interactivity than traditional applications because the remaining
processing time and bandwidth can be used to handle a higher number of
simultaneous requests.

A number of development tools have appeared around AJAX to make its
usage more easy. One of them is Direct Web Remoting (DWR) [6]. This open
source library has two advantages over the direct use of AJAX. First, it enables



6 Miguel R. Luaces et al.

(a) Traditional web application (b) AJAX web application

Fig. 2. Client-server interaction in different application models

the JavaScript code in the client-side to use transparently Java classes in the
server-side. That is, it enables the developer to use AJAX in a similar way to
CORBA or RPC. This is achieved by dynamically generating JavaScript code
that encapsulates AJAX-based calls to the Java classes in the server. The second
advantage is that DWR provides the developer with a number of tools to make
easier the update of the web page contents in the client-side.

These two technologies are the center of the architecture of our application.
However, they do not solve the problem of creating web applications that allow
users to interact in real time. Even though it speeds up data exchange between
the server and the clients, it does not change the architecture of web applications.
That is, data exchange is still performed between the clients and the server and
never between clients, and the server still cannot take the initiative of sending
the data it has just received from a client to the other ones.

In order to achieve a high degree of interactivity between the users, in our
architecture each client issues frecuent periodical requests to the server and
receives the relevant information regarding the state of the game and the other
players, which is used to change the user interface accordingly. To keep track
of the current state of the game, the server implements a state-machine that is
controlled with the information sent by the player that has the turn. Requests
to the server can be issued more in response to some actions of the player (such
as throwing the dice or answering a question).

This approach cannot be implemented with the traditional architecture of
web applications because the amount of information that had to be exchanged
between the server and the clients is too high. In order to minimize the processing
time in the server and the traffic between the clients and the server, we use
AJAX for the communication between the clients and the server. By exchanging
information by means of short XML messages, AJAX frees the web server from
the creation of complete web pages when the clients requests arrive. Furthermore,
the logic of the application is split between the client and the server in such a



Trivial.gz 7

way that the processing time in the server and the traffic between the server
and the clients is minimized. Finally, the functionality in the client-side can
be implemented using only JavaScript, thus no special software has to be
downloaded or installed.

4 Detailed System Architecture

Figure 3 presents a general view on the architecture of the application. Just like
in any web application, one can find two different parts: the server-side module
of the application that runs in a web server and it is implemented using Java
Server Pages (JSP), and the client-side module that runs in the web browser of
the client and it is implemented using JavaScript and dynamic HTML. There is
a part of the application that deals with functionality such as user registration,
configuration of lists of friends, or querying and browsing statistics of the players,
which is implemented as an ordinary web application whose description is out
of the scope of this paper. Instead, we will focus on the description of the game
control and the simulation of real-time interactivity.

Fig. 3. Application architecture

There are two different types of players in the game: the one that currently
has the turn, and all the others. The first one has the control of the game and
generates events that produce the update of the game state (e.g., rolling the die,
choosing the square, or answering the question). The other players only generate
an event when they answer the question. The server controls each game being
played by means of a state-machine. During the game, the server goes through
the states according to the actions invoked by the player that has the turn. The
other players do not have any effect on the state-machine, they just query the
server periodically to retrieve the current state of the game in order to update
their user interface.



8 Miguel R. Luaces et al.

The states in the state-machine of the server are the following:

– Initial state. Just before the player that has the turn rolls the die. There is no
information to be sent to the other players.

– Dice thrown. The player with the turn rolls the die and gets a number. The
other players receive this number when they request the game state in order
to update their user interface.

– Square chosen. The player with the turn chooses a square to move and receives
a query for that square that is selected randomly by the server. The rest of
the players receive the square selected and the question when they request the
game state.

– Answering a question. Whenever a player without the turn answers a question,
the server updates the points of that player and informs the other players of
the result. Therefore, all the other players can now whether one player has
answered the question right or wrong. When the player with the turn answers
the question, the time for answering ends. If the player gave a wrong answer,
the turn passes to the following player.

Internally, the server-side module keeps a list of the games that are being
played at any given time. Each game consists of a list of players and a list
of questions ready to be sent to the players. For each player, the server keeps
in memory the points achieved, the wedges won, and the statistic of questions
answered right for each subject. The list of questions acts like a memory cache
to reduce the frequency of database accesses. Hence, instead of issuing a query
to the database each time a question is needed, there is only one database access
to retrieve a set of questions that are used during the game. Only when all the
questions are used a new database access is performed.

The client-side modules consists of a Dynamic HTML page with JavaScript
code. Its operation is based on a JavaScript timer that requests the game state
every four seconds and updates the user interface accordingly. When the user
invokes actions on the user interface, the JavaScript code informs the server of
the event and modifies the user interface with the information retrieved. The time
between updates can be easily configured. A longer time reduces the real-time
perception of the game but allows for a longer number of simultaneous games in
the server. On the other hand, a shorter time improves the real-time perception
but requires more computing power on the server side. The time that is currently
being used has been empirically chosen to achieve a real-time perception of the
game while using an average computer as the web server.

Figure 4 shows the development of a game turn. The numbers in the figure
match the following enumeration and represent a temporal ordering of the
event sequence. First, the JavaScript timer determines the moment to request
information from the server (1). After that, a JavaScript function in the client-
side module that requests the current game state from the server is invoked
(2). The server receives the request and delegates its fulfillment in the business
model (3). The business model implements the state-machine that controls the
game and computes the information to be answered according to the current
state and the current event (4). Then, the server response is encapsulated and



Trivial.gz 9

Fig. 4. Communication protocol

sent to the client. An object is built with the information retrieved from the
business model and sent to the client (5). The client receives the response,
extracts the information from the object, and uses the information to update the
user interface content (6). Finally, a new turn starts by showing the animated
picture that represents the die (7).

The state-machine that controls the game solves one of the most important
drawbacks in applications where clients perform some processing: to make sure
that the messages received in the server are according with the state of the
application. This drawback is especially important in web applications where
client-side processing is implemented using JavaScript code. Several applications
(e.g. Firebug [7]) can be used to analyze the script code in web applications.
Moreover, messages sent to the server can be modified using applications or
plug-ins such as Tamper Data [8]. Thus, a user with the required expertise level
could cheat easily. For example, a user with the turn could send a message with
his favourite chosen square without sending the message throw the dice if the
state-machine had not checked the state of the matches. Therefore, the state-
machine must verify all the messages and parameters received by the server.

5 Experimental Evaluation

The Trivial.gz is installed in a 3.2 Ghz Pentium IV with one gigabyte RAM.
During its presentation at the XuventudeGaliza.Net party, the web server
received almost a million hits (web server requests) and more than 600 visits
(defined as a set of consecutive hits originating from the same computer). Most
of the requests were concentrated in the hour when a Trivial.gz competition
took place. More than 200 players competed to achieve more points than the
rest. During this hour, more than 800 games were played with an average of



10 Miguel R. Luaces et al.

three players per game. Exactly 776 games were played completely. The games
that did not end because all the players left the board were not registered.

Table 1 shows some figures regarding the amount of information transferred
by the web server executing Trivial.gz and a comparison to the amount of
information transferred if the application were built using a traditional web
architecture.

Traditional Application Trivial.gz

1 message, 1 game, 1 player 35 KBytes 0.31 KBytes

1 game, 1 minute, 3 players 1575 KBytes 14.1 KBytes

100 games, 10 minutes, 3 players 1538.09 MBytes 13.77 MBytes

Network traffic during these 10 minutes 2.56 MBytes/s 23.50 KBytes/s

Table 1. Empirical data

The HTML code of the web page occupies 35 kilobytes without taking into
account neither the images nor the JavaScript code that sends the messages to
the server using DWR. On the other hand, the DWR object that the web server
sends to each client occupies 313 bytes, i.e. 0.31 kilobytes. As it was explained in
Sect. 4, the game information must be updated by each client frequently in order
to achieve a real time perception of the game. If we consider an update time of 4
seconds, just like it is currently configured in the application, a traditional web
application would require the web server to send the 35 KB of the web page 15
times per minute. This means a total of 525 KB per minute and player, whereas
with Trivial.gz this amount of information is reduced to 4.7 KB per minute and
player.

We can suppose that 100 games with an average of three players were played
during 10 minutes in the party where the Trivial.gz was presented. In fact, more
than 800 games were played in an hour, so our supposition is quite conservative.
Considering this activity, 1.5 Gigabytes of information would be transferred
through the network in a traditional web application, whereas only 14 Megabytes
were sent in Trivial.gz. This represents that a traditional web application requires
107 times more space for the same information. As a consequence of this amount
of information, a traditional web application would require a bandwidth of 2.56
MBytes/s in the best case (assuming that the traffic distribution is uniform).
However, Trivial.gz only needed a bandwidth of 23.50 KBytes/s.

6 Conclusions and Future Work

We have presented in this paper the architecture of a web application that
implements a trivial-like game where players can follow the game in real time.
This was achieved without using any plug-in or applet, which means that the
game can be played in almost any computer without the common problems
associated to the instalation of these components.



Trivial.gz 11

We have described how the AJAX philosophy is used in the implementation
for the data exchange between the server and the clients. Moreover, the
message exchange protocol designed for Trivial.gz and a general architecture
for collaborative web applications are also described. These three improvements
over traditional web applications minimize the amount of information that has to
be transferred between the clients and the server. We believe that this approach
can be used to develop any type of collaborative software using a web application
with a small load on the web server.

Finally, we have performed an empirical comparison between Trivial.gz and
a web application based on a traditional web application architecture. This
comparison shows the advantages of using our architecture in terms of network
bandwith and processing capabilities of the web server.

The application has been a success. The game has a solid player base and it
is being used to promote the use of the Galician language among young people.
New questions are submitted by player regularly and a board version of the
game is being developed. As lines of future work, we are currently working on
the improvement of Trivial.gz to allow games with a larger number of players.
Another improvement that is currently being implemented is the adaptation of
the application to make it completely configurable by the final users. When this
is achieved, any user will be able to install the application, decide the subjects,
and define the questions. A possible field where this application can be used is in
education with teachers configuring Trivial.gz games with the questions of the
lessons they teach in the classroom.

A different line of future work is the study of the requirements of other types
of collaborative web applications, such as distance education or collaborative
work, and the adaptations that the architecture requires. In this sense, a web-
based version of the popular game Scrabble [9] is being developed with the same
goals in mind.

References

1. Paulson, L.D.: Building rich web applications with ajax. IEEE Computer 38(10)
(2005) 14–17

2. Galician Socio-Pedagogic Association: Web Site. Retrieved from http://www.

as-pg.com/ in October 2007 (2007)
3. Garrett, J.J.: Ajax: A New Approach to Web Applications. Retrieved from http://

www.adaptivepath.com/publications/essays/archives/000385.php in October
2007 (2005)

4. World Wide Web Consortium: Extensible Markup Language (XML). Retrieved
from http://www.w3.org/XML/ in October 2007 (2006)

5. Google: Google Tools Web Site. Retrieved from http://www.google.com/intl/en/

options/ in October 2007 (2007)
6. Direct Web Remoting (DWR): Web Site. Retrieved from http://getahead.org/dwr

in October 2007 (2007)
7. Firebug: Web Site. Retrieved November 2007 from http://getfirebug.com (2007)



12 Miguel R. Luaces et al.

8. Tamper Data: Web Site. Retrieved November 2007 from http://tamperdata.

mozdev.org/ (2007)
9. de Bernardo, G., Cerdeira-Pena, A., Pedreira, O., Places, A.S., Seco, D.: Scrabble.gz:

A web-based collaborative game to promote the galician language [to appear], IEEE
Computer Society Press (2008)


