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ABSTRACT
In contrast to the enormous development of database man-
agement systems to support spatial databases, very little
work has been done in evaluating the quality of spatial data
in terms of how much they satisfy a set of topo-semantic in-
tegrity constraints, in particular, a set of topological depen-
dency constraints. In the same way, mechanisms for enforc-
ing the satisfaction of those constraints are not necessarily
available or even feasible. In this paper we propose measures
to evaluate the degree of violation of a topological depen-
dency constraint by geometries stored in a spatial database
instance. We also propose how these measures can be aggre-
gated to globally evaluate the data quality of a database in-
stance such that they enable to compare database instances
in terms of their constraint satisfaction. We provide an
experimental evaluation of those measures using synthetic
and real data. We validate our measures by i) analyzing
their correlation with the semantic distance of topological
relations and ii) checking that the more we randomly mod-
ify geometries to make database instances inconsistent, the
more our global data quality measure decreases, showing its
sensibility to the introduced constraint violations.

Categories and Subject Descriptors
H.2.8 [Database Management ]: Database Applications—
Spatial databases and GIS
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Theory
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1. INTRODUCTION AND MOTIVATION
Inconsistency is an undesirable state of database systems.

It rises when data in the database violate a set of integrity
constraints (ICs). Although many would argue that systems
should be completely free of inconsistency, inconsistency is
a reality in many real-world cases and, as such, it should be
formalized and used, rather than rejected [10].

Different reasons may lead to an inconsistent state of a
database instance with respect to a set of integrity con-
straints. There are cases where enforcing integrity con-
straints as the database is updated is impossible or imprac-
tical. In such cases, spatial inconsistency may arise easily
since spatial data is inherently vague. The intrinsic vague-
ness of spatial features produces different observations of the
same spatial phenomenon and, therefore, generates conflict-
ing representations [2]. In addition, spatial databases may
need to treat different levels of detail in the spatial repre-
sentation. These different levels of detail can be handled by
using more than one geometric representation of the same
object, which leads us to potential inconsistency problems.
Moreover, in the case of integrated systems that consolidate
data from different sources, the global database instance
may become inconsistent with respect to global ICs, even
if the sources are locally consistent.

Inconsistency in spatial database occurs most likely when
integrity constraints are not embedded in the database man-
agement systems, and therefore, they are left to the expertise
of the database designer. This is the case of topo-semantic
integrity constraints, which are equivalent to the semantic
constraints in the relational context. A topo-semantic in-
tegrity constraint imposes topological considerations onto
the semantics of geographic objects. The following sentences
are typical examples of this type of ICs: two parcels must
not overlap, a house must be inside a parcel, two roads must
not be equal, a river and a road cannot cross except in the
geographic object bridge, and so on.

Assuming that inconsistency may occur, data quality of a
database instance becomes relevant, which in turn calls for
determining the satisfaction degree of the database instance
with respect to its set of ICs. This enables not only to decide
whether or not a database is useful for an application, but



also to compare database instances from where one wishes
to extract information. This comparison could lead us to
choose the most reliable source of information.
This paper presents first results in quantifying the incon-

sistency of a database instance with respect to a particular
type of topo-semantic integrity constraints, namely, topo-
logical dependency constraints [4], which establish a depen-
dency of entities with respect to topological relations. For
example, two land parcels must be internally disconnected.
The work proposes quantitive measures about the degree of
satisfaction of two geometries with respect to an expected
topological relation as expressed by a topological depen-
dency constraint. We define measures for each expected
topological relation and apply them to synthetic and real
data. We compare the results to two other different mea-
sures: (1) the semantic distance in a conceptual neighboring
graph of topological relations [6][8], and (2) the distance
between boundary points of geometries in an inconsistent
versus consistent database.
The organization of the paper is as follows. After pre-

senting some related work and preliminaries in Section 2, in
Section 3 we provide the considerations and strategies we
followed to evaluate the satisfaction of each type of topo-
logical relation. In Section 4, we present the method to
evaluate the data quality of a database instance. Finally,
Section 5 is devoted to a preliminary empirical evaluation of
our proposal and Section 6 provides our conclusions.

2. PRELIMINARIES
This section introduces related work concerning spatial

integrity constraints and treatment of consistency in spa-
tial databases. It also presents an abstract model of spatial
databases and the set of integrity constraints treated in this
work.

2.1 Related Work
A classification of integrity constraints in relational database

systems distinguishes three types: domain constraints, key
or relational constraints, and general semantic constraints
[9]. Spatial integrity constraints relate to two of these types
of constraints: (a) domain constraints (also known as topo-
logical constraints) that specify admissible values of the ge-
ometric representation, and (b) semantic constraints (also
known as topo-semantic integrity constraints) that associate
the semantics of the modeled entities with spatial properties,
in particular, with topological relations between spatial ob-
jects [5]. A more general categorization of semantic integrity
constraints distinguishes thematic, temporal, spatial, com-
plex semantics, and change constraints [15]. Then, spatial
constraints can be subclassified by the spatial aspects they
consider, namely, topology, orientation, shape, and distance.
In terms of the specification of spatial integrity constraints,

related work addresses the specification of topological con-
straints [3] and spatial semantic constraints [14, 12]. Later in
[24], there is a proposal to specify constraints with spatial
semantics, which introduces explicitly four types of cardi-
nalities: forbidden, at least n times, at most n times, and
exactly n times. Within this proposal, one could express, for
example, that a sluice joins a waterpipe exactly two times.
More recently, types of semantic integrity constraints and an
analysis of the database consistency problem with these con-
straints were presented in [4]. These types of integrity con-
straints combine classical functional and referential integrity

constraints with topological relations and check constraints
(e.g., the numeric area of a geometric).

In the context of spatial databases, some studies also deal
with detection and cleaning of inconsistent databases. A
methodology for the consistency improvement of geographic
databases is presented in [24]. This methodology proposes
alternatives of improvements under different types of in-
tegrity constraints. However, it does not analyze data com-
plexity nor the interaction of different inconsistencies and,
therefore, interaction under modification of the data.

Similarity measures between topological relations are in
theory applicable to define the degree of inconsistency in
terms of the difference between an existing topological rela-
tion and the expected topological relation as expressed by
topological dependency constraints. We distinguish qualita-
tive from quantitative approaches to compare topological re-
lations. A qualitative representation of topological relations
uses a symbolic representation of spatial relations, such as
the topological relations defined by Egenhofer and Franzosa
[7] or by Randell et al. [21]. Under this representation, a
similarity measure compares topological relations by the se-
mantic distance between relations defined in a conceptual
neighborhood graph [19, 6] (Figure 1). The disadvantage of
comparing topological relations from a qualitative perspec-
tive is that it does not make distinction between particular
geometries. For example, it does not distinguish between
two pairs of geometries, both disjoint, but where in one case
two close geometries are disjoint and in the other case two
geometries are far apart. Even more, all edges in the con-
ceptual graph will usually have the same weight in the de-
termination of the semantic distance.

Figure 1: Conceptual neighborhood of topological
relations

A quantitative representation of topological relations is
given by the distance and angle between centroid of objects
[1]. Using this representation, similarity between topological
relations is defined as the inverse of the difference between
representations. A more recent work uses the Minimum
Bounding Rectangle (MBR) of objects for their quantitative
representation [11]. Using this representation, a topological
relation is characterized by quantitative measures that com-
bine overlapping areas with distance between objects. The
problem of using the previous measures for evaluating the
degree of inconsistency is that although database instances
handle geometries of objects, topological dependency con-
straints are expressed by qualitative topological relations,
and therefore, only a symbolic representation of the expected
topological relations exists.

A repair semantics was defined and used as an instru-
mental concept to define consistent query answers to range



queries over inconsistent spatial databases with respect to
constraints expressed by denial logical formulas [23]. In this
work, a repair is any database instance that satisfies the
set of constraints and that results from admissible transfor-
mations that shrink, or even, make empty geometries. The
work defines a distance measure to determine repairs that
minimally differ with the original database instance (i.e.,
minimal repairs). In principle, one could use the concept
of repair semantics and the inverse of the distance between
an inconsistent database and its minimal repairs to define
a measure of the data quality of an inconsistent database
instance. This work, however, does not use the repair se-
mantics as defined in [23] for the following reasons: (1) the
repair semantics in [23] solves conflicts with respect to de-
nials, that is, it solves conflicts when geometries must not
hold a particular topological relation. In this work, in con-
trast, we want to make geometries to hold a specific topolog-
ical relation. (2) There is a potentially exponential number
of repairs and the decision problem of deciding if a database
instance is a minimum repair is intractable. (3) We do not
limit the type of transformations to shrinking geometries,
and we quantify data quality at both an individual conflict
level and a global database instance level.
To the best of our knowledge, related work addressing

inconsistency measures in databases exists only in the re-
lational context. The work in [13] presents an approach to
measuring inconsistency through the minimal set of incon-
sistent objects of a knowledgebase. This work addresses the
inconsistency treatment of a set of logic formulas. It also
describes the use of Shapley inconsistency values to define
a weight of each formula within a general measure applied
to the knowledgebase. A strategy to measuring consistency
with respect to referential integrity constraints in distributed
databases is in [18]. It defines both local and global measures
to consistency and completeness of data, from consistency
of tables to consistency of the database.

2.2 Abstract Model and Integrity Constraints
We specify integrity constraints on an extended relational

database model. A spatio-relational database schema is of
the form Σ = (U ,A,S,R, T ,O), where: (a) U is the possibly
infinite database domain of atomic thematic values that in-
cludes R. (b) A = {A1, . . . , An} where each Ai is a thematic
attribute which takes values in U . (c) S = {S1, . . . ,Sn}
where each Si takes admissible values in P(R2), the power
set of R2. (d) R is a finite set of spatio-relational predicates
each of them with a finite and ordered set of attributes be-
longing to A or S. (e) T is a fixed set of binary topological
predicates. (f) O is a fixed set of geometric operators that
take spatial and thematic arguments and return a geometry
or a value in U .
A database instance D of a spatio-relational schema Σ is

a finite collection of ground atoms (or tuples) of the form
R(c1, . . . , ci, . . . , cn), where (a) R(A1, . . . , Ai, . . . , An) ∈ R,
(b) if Ai ∈ A, then ci ∈ U (c) if Ai ∈ S, then ci ∈
Ad ⊆ P(R2) where Ad is the class of geometries as speci-
fied by the standard of the OGC [17]. For this work, we
will concentrate on geometries that are lines or regions on a
plane.
The elements of T are binary topological relations with

a fixed semantics. There are eight pairwise disjoint topo-
logical relations that were formalized between regions [20,
7], thirty three between lines, and twenty between a region

and a line [16]. Current database management systems rep-
resent geometries in terms of spatial data types (i.e., poly-
gons, polylines, points) and distinguish a subset of topolog-
ical relations in terms of the type of intersection between
geometries. Table 1 provides the definitions of topological
relations, which where extracted from the OpenGIS Simple
Feature Specification [17] and used in the subsequent spec-
ification of topological dependency constraints, where I(x)
indicates the interior, E(x) the exterior and dim the dimen-
sion of a geometry x.

Relation Definition
Disjoint(x, y) True if x ∩ y = ∅.
Touches(x, y) True if I (x) ∩ I (y) = ∅ and x ∩ y ̸= ∅.
Equal(x, y) True if x ⊆ y and y ⊆ x.
Within(x, y) True if x ∩ y = x and I(x) ∩ E(y) = ∅.
Contains(x, y) True if Within(y, x).
Overlaps(x, y) True if dim(I(x)) = dim(I(y)) = dim(I(x) and

x ∩ y ̸= x, x ∩ y ̸= y.
Crosses(x, y) True if I(x)∩I(y) ̸= ∅ and x∩y ̸= x and x∩y ̸= y,

where x and y are both lines or one a line and the
other one a region.

Table 1: Definition of topological relations (x and y
are lines or regions)

A schema Σ determines a first-order (FO) language L(Σ)
of predicate logic. It can be used to syntactically charac-
terize and express topo-semantic constraints (SICs). In this
paper we concentrate on Topological Dependency (TD) con-
straints [4], which are sentences of the form:
∀ūȳ1ȳ2ḡ1ḡ2(P (ū, ȳ1, g1) ∧R(ū, ȳ2, g2)

n∧
i=0

xi ̸= zi →

T (g1, g2)), (1)
where ȳ1 ∩ ȳ2 = ∅ and for every i, variable xi ∈ ū ∪ ȳ1 and
variable zi ∈ ū ∪ ȳ2.
For all purposes, we will consider that a set Ψ of TDs of a
database schema is consistent, i.e., there exists a non-empty
database instance that can satisfy Ψ. A database instance D
violates a topological dependency constraints of the form (1)
when there are data values ūȳ1ȳ2ḡ1ḡ2 for the variables in the
constraint for which ((P (ū, ȳ1, g1) ∧ R(ū, ȳ2, g2) ∧ x ̸= z →
T (g1, g2)) becomes false in the database under those values.
When this is the case, we consider that T (g1, g2) is false.

3. DEGREE OF CONSTRAINT SATISFAC-
TION

Let td be a TD with topological relation T ∈ T , and
g1 and g2 be geometries stored in tuples of a database in-
stance. The satisfaction degree of g1 and g2 with respect to
td is defined by the complement of the violation degree of
the topological relation between g1 and g2 with respect to T .
Consequently, we define measures that compare the topolog-
ical relation between geometries and an expected topological
relation. We call these measures constraint-violation mea-
sures. Before giving definitions of these measures, we will
introduce their basic components.

3.1 Components of constraint-violation mea-
sures

To define the degree of violation of topological dependency
constraints, we systematically consider two aspects: A) the
degree of the violation itself and B) the weight or relevance
of objects in the database instance.

A) Violation degree. We consider that a constraint
violation has a degree that depends on how different is the



actual relationship between objects from the expected rela-
tion. For example, if two objects must Touches and they are
Disjoint the violation is larger as they are farther from each
other (Figure 2). If they must not Overlaps, the violation is
larger as larger the overlapping region is. If an object must
be Within another object, but they are Disjoint, the violation
gets larger as they are farther apart.

(c) (b)

Figure 2: Distance consideration in the constraint-
violation measure with respect to relation Touches:
(a) smaller violation (b) larger violation

We argue that this difference will be proportional to the ef-
fort or cost of making consistent a pair of geometries in con-
flict. Consequently, for each expected topological relation
T we define modifications on geometries that hold T ′ ̸= T
so that they will hold T after transformation. This resem-
bles the concept of semantic repairs for spatial databases
defined in [23], however, we do not limit ourselves to trans-
formations that shrink geometries and we are not expected
to repair the database instance. In Table 2 we summarize
the basic transformations that change the topological rela-
tion between geometries. For space limitations, we describe
only the transformations for topological relations between
regions.

From To: Disjoint

Touches Insert a minimum separation
Overlaps Eliminate ovelapping area and
Within insert a minimum separation
Equal

From To: Touches

Disjoint Eliminate separation
Overlaps Eliminate ovelapping area
Within
Equal

From To: Overlaps

Disjoint Eliminate separation and create a minimum over-
lapping area

Touches Create a minimum overlapping area
Within Eliminate internal distance and create a minimum

overlapping area
Equal Create a minimum overlapping area

From To: Within

Disjoint Eliminate separation, make sizes of geometries
compatible, and move one into the other one

Touches Make sizes of geometries compatible, and move
one into the other one

Overlaps Make sizes of geometries compatible, and move
one into the other one

Contains Make sizes of geometries compatible

From To: Equal

Disjoint Eliminate separation, make geometries of the
same size and move one over the other one

Touches Make geometries of the same size and move one
over the other one

Overlaps Make geometries of the same size and move one
over the other one

Table 2: Basic transformations that change topolog-
ical relations

Then, the constraint-violation measures will quantify the
cost or effort to carry out the transformation for each par-
ticular case.

B)Relevance of objects. Since we do not have in ad-
vance any information about the relevance of objects, we
study the use of their size to define a relative weight of ob-
jects in conflict. Thus, the larger the objects that participate
in a constraint violation, the larger the degree of violation;
that is, if two objects must Touches and they Overlaps 25%
of their sizes, their conflict degree is smaller than the conflict
degree of other two larger objects that also overlap 25% of
their sizes (Figure 3). Notice, however, that there may be
other options of relevance that could be application depen-
dent. To have a measure to compare all objects, we decide
to use the largest geometry in the database to establish a
relative weight of a geometry in conflict with respect to the
other geometries in the database.

(c) (b)

Figure 3: Size consideration in the conflict measure
with respect to relation Touches: (a) smaller conflict
(b) larger conflict

3.2 Basic spatial concepts and notation
A basic characterization of a geometry is its size. This

helps to establish the relevance of a geometry with respect
to any other geometry in the database, and in particular,
to the largest geometry in the database. In order to use a
single magnitude to characterize the size of geometries of
different dimensions, we use the perimeter for areas and the
length for lines as basic concepts for describing the size of
geometries. Table 3 shows the first concepts we will use in
the definition of conflict measures.

Symbol Description Example

ci Perimeter of a region gi
gip ci = 4p

li Length of a line gi li = p

lc Length of the short-
est segment of crossing
lines

lc = p/4

Table 3: Basic measures for the size of geometries

There is a basic conceptual difference between topologi-
cal relations. On the one hand, for all topological relations
other than Disjoint, geometries intersect. The intersection
between geometries results in a geometry of the same or
lower dimension than the highest dimension of geometries
that participate in the conflict. In particular, the intersec-
tion of two polygons can be polygons, lines, or points. The
intersection of two lines results in lines or points. On the
other hand, for geometries that are Disjoint do not intersect,
but there exists a distance between them.

Our approach will distinguish degrees of conflicts by mea-
suring the intersection of geometries or the distance between
geometries. Due to the fact that there are cases where both
the intersection and distance must be combined in a single
measure, and that we want to avoid to deal with different
types of magnitudes, we again characterize polygons and



lines by their perimeters and lengths, respectively, which
is in agreement with the linear magnitude of the distance
between geometries. Table 4 shows the concepts that dis-
tinguish overlapping areas, crossing segments, and distances
between geometries.

Description Example

cs Perimeter of g1 ∩ g2 cs = 1.5p

cg1 Perimeter of g1\g2 cg1 = 4p

cmg Minimum(cg1 , cg2 ) cmg = 1.5p

dme Minimum external dis-
tance between disjoint
geometries. It applies
to regions and lines

dme = 1/2p

dme = 1/2p

dmi Minimum internal dis-
tance between a geom-
etry within another re-
gion

dmi = 1/4p

dmi = 0

ls Length of g1 ∩ g2 ls = 1/2p

lg1 Length of g1\g2 lg1 = 1/2p

lmg Minimum(lg1 , lg2 ) lmg = 0

Table 4: Basic measures for the degree of overlap-
ping and distance between geometries

In some cases, a constraint may establish a type of relation
between objects that implies that they must be separated
by a distance or must overlap, but the separation or the
overlapping area is unknown. In those cases, we assume a
minimum value of the area (perimeter) or distance that is
unknown, assuming that the minimum distance or area is
a value that depends of the size of the objects in conflict
or the size of all objects in the database. Table 5 gives the
different parameters used for the definition of constraint-
violation measures.
Finally, table 6 introduces some concepts that simplify the

notation in the definition of measures.

3.3 Constraint-violation Measures
Constraint-violation measures are defined by the multi-

plication of (1) the conflict degree that compares the actual
versus the expected topological relations and (2) the relative
size (weight) of objects that participate in the conflict. Both
components of the measure are normalized so that their val-
ues range in [0..1].
The normalization of the degree of violation is done by

dividing the cost of changing a topological relation between
two geometries by the size of the geometries plus the cost of
transformations. Consequently, the denominator is always
the numerator plus the total area of both geometries. Other
alternatives for normalization could be explored in order to
make the value of the measure larger. We use this type
of normalization so that we could guarantee that conflict

Symbol Description Example

Cmo Perimeter representing
the minimum overlap-
ping area− equivalent
to 10% of the small-
est perimeter of regions
under consideration

Cmo = 0.2p

Lmc Crossing-segment
minimum
length−equivalent
to 10% of the shortest
of the two lines under
consideration

Lmc = 0.1p

Lmo Length of the mini-
mum overlapping line−
equivalent to 10% of
the shortest of the two
lines under considera-
tion

Lmo = 0.1p

Dm Minimum distance be-
tween disjoint geome-
tries

Table 5: Basic parameters for the minimum length
of lines, perimeter of areas, and distance between
geometries.

Symbol Description Example

cm Minimum(c1, c2) cm = 2p

cd c1− c2 cd = 2p

cx Maximum(cd, 0) cx = 0

lm Minimum(l1, l2) lm = p/2

ld l1 − l2 ld = p/2

lx Maximum(ld, 0) lx = 0

P Maximum perime-
ters of regions in the
database

D Maximum length of
lines in the database

R R = c1+c2
2P

L L = l1+l2
2D

Table 6: Predefined parameters and functions.

measures will not be higher than 1 and that they can be used
in the same for all topological relations under evaluation.
The normalization of the relative size of objects divides the
total size of both objects by the double of the size of the
largest object in the database. This ensures that this factor
ranges between (0 . . . 1], even when the objects in conflict
are of the largest in the database.

As a result, the measure of any constraint violation will
always be a very small value, but it gives us a measure to
compare and rank different conflicts. In Table 7 we show the
different measures we propose to evaluate the degree of vi-



olation for each expected relations and possible topological
relation between geometries. In this work we concentrate
on defining conflict measures with respect to topological re-
lations between geometries of the same dimension, that is,
between lines or between regions. We have left for feature
work relations between lines and regions.

Region × Region Line × Line

Disjoint (expected topological relation)

Touches Dm
c1+c2+Dm

× R Dm
l1+l2+Dm

× L

Overlaps cs+Dm
c1+c2+cs+Dm

× R ls+Dm
l1+l2+ls+Dm

× L

Crosses lc+Dm
l1+l2+lc+Dm

× L

Within
c1+dmi+Dm

2c1+c2+dmi+Dm
× R

l1+dmi+Dm
2l1+l2+dmi+Dm

× L

Equal
c1+Dm
3c1+Dm

× R
l1+Dm
3l1+Dm

× L

Touch

Disjoint dme
c1+c2+dme

× R dme
l1+l2+dme

× L

Overlaps cs
c1+c2+cs

× R ls
l1+l2+ls

× L

Crosses lc
l1+l2+lc

× L

Within
c1+dmi

2c1+c2+dmi
× R

l1+dmi
2l1+l2+dmi

× L

Equal
c1
3c1

× R
l1
3l1

× L

Overlap

Disjoint
dme+Cmo

c1+c2+dme+Cmo
× R dme+Lmo

l1+l2+dme+Lmo
× L

Touches Cmo
c1+c2+Cmo

× R Lmo
l1+l2+Lmo

× L

Crosses Lmo
l1+l2+Lmo

× L

Within
dmi+Cmo

c1+c2+dmi+Cmo
× R

dmi+Lmo
l1+l2+dmi+Lmo

× L

Equal Cmo
2c1+2Cmo

× R Lmo
2l1+2Lmo

× L

Equal

Disjoint
dme+cd+cm

c1+c2+dme+cd+cm
× R

dme+ld+lm
l1+l2+dme+ld+lm

× L

Touches
cd+cm

c1+c2+cd+cm
× R

ld+lm
l1+l2+ld+lm

× L

Overlaps
cd+cmg

c1+c2+cd+cmg
× R

ld+lg
l1+l2+ld+lg

× L

Crosses
ld

c1+c2+ld
× R

Within

Disjoint
dme+cx+c1

2c1+c2+dme+cx
× R

dme+lx+l1
2l1+l2+dme+lx

× L

Touches
cx+c1

2c1+c2+cx
× R

lx+l1
2l1+l2+lx

× L

Overlaps
cx+cg

c1+c2+cx+cg
× R

lx+lg
l1+l2+lx+lg

× L

Contains cx
c1+c2+cx

× R lx
l1+l2+lx

× L

Crosses
lx+l1

2l1+l2+lx
× L

Cross

Disjoint dme+Lmc
l1+l2+dme+Lmc

× L

Touches Lmc
l1+l2+Lmc

× L

Overlaps Lmc+ls
l1+l2+Lmc+ls

× L

Within Lmc+ls
l1+l2+Lmc+ls

× L

Equal Lmc
2l1+Lmc

× L

Table 7: Constraint-violation measures for each
topological relation

4. GLOBAL DATA QUALITY
The first question that arises when defining a global eval-

uation of the data quality of a spatial database instance is
How many tuples are necessary to check ? In classical re-
lational integrity constraints this question may not make
any sense, but in the geographic domain it is very relevant
because, in theory, between any two objects, there always
exists a spatial relation. For example, if we want to check
the constraint “land-parcels must not overlap”, Does it make
sense to check the n2 relationships among the n land-parcels
in the database instance? Probably not. It may only be nec-
essary to check for each land-parcel its topological relation

with its immediate neighbors. Therefore, to check the qual-
ity of the database we need the concept of checked topological
relationships(CTR). That is, we assume that for each topo-
logical dependency constraint there is an algorithm to decide
the subset of topological relationships that is necessary to
check. The different strategies that can be used to define
this algorithm are out of the scope of this paper. We will
assume that, in checking for constraint violations, it is clear
that a strategy to select the pairs of objects to be analyzed
can be implemented. This strategy will produce a number
of comparisons, some of them will show that the constraint
is satisfied and others will reveal a constraint violation. In
any case, the number of comparisons is the CTR that we
will use to create a global measure of the data quality of a
database instance.

A second question is What kind of measure characterizes
the global quality of a database instance? We consider that
this question has two different aspects. On the one hand, it
is interesting to know how many geometries violate a topo-
logical dependency constraint over the total number of CTR,
that is, we are interested in knowing the spread of the in-
consistencies. But, on the other hand, we also need to know
how bad the inconsistencies are, that is, the global violation
degree of the different constrains.

We call the first measure violations spread (VS), which
is computed as the proportion of violations over the total
number of checked topological relationships. That is:

V S = #violations
CTR

,
where CTR = #non violations + #violations.
To capture the global quality of the database we consider

not only the number of violations but also their importance.
We call this second measure Global Fulfillment (GF). To
evaluate each violation, we use the constraint-violation mea-
sures of the previous section. Obviously, each checked topo-
logical relation that does not violate any constraint has a
value of 0. If we checked CTR topological relationships, the
quality of the database will be

GF =
∑CTR

1 1−measured violation value

CTR
.

This measure lies in the range [0 . . . 1], where 0 indicates
that the inconsistency is maximum and 1 means that the
database instance is totally consistent.

5. EXPERIMENTAL EVALUATION

5.1 Data sets
To validate empirically the proposed measures, we created

synthetic database instances and we used a real data set with
political administrative boundaries.

For the synthetic database instances, we created a single
table R with a geometric attribute whose value is taken from
a random distribution of geometries over a grid of n×n cells,
where each cell is of dimension 100×100. Each cell contains
a rectangular geometry, but the size and position of the ge-
ometry in the cells was given at random. We started by
creating a consistent database with respect to a topological
dependency constraints of the form1:
∀̄(R(x1, y, g1) ∧R(x2, y, g2) ∧ x1 ̸= x2 → T (g1, g2)), (2)
where T ∈ T . We consider tables with geometries of type

lines and of type regions. Notice that this constraint includes

1∀̄ means the universal quantification of all variables in the
formula



a variable y that is the same in both predicates R. This
limits the evaluation of topological relations to a subset of
tuples. In these experiments we consider proximity as a
strategy to define the potential geometries that may be in
conflict (CTR), which means that we check each geometry
with the corresponding geometries in neighboring cells.
Once consistent instances were created, we applied trans-

formation to a percentage of geometries to produce inconsis-
tencies. For example, for a database instance whose topo-
logical dependency constraint is defined with respect to a
Disjoint relation, we created a table with all geometries be-
ing disjoint. Then we selected at random a percentage of
geometries and one of their neighboring geometries, and we
applied transformations to the neighboring geometries such
that geometries now touch, overlap, and so on. When possi-
ble, we translated geometries without changing their actual
size. This was possible when the expected topological re-
lation was in {Disjoint,Touches,Overlaps,Crosses}. For the
other expected topological relations (Equal or Within), it was
necessary to change the size of geometries to make them of
compatible size. At the end, we have a set of inconsistent
database instances with respect to a topological dependency
constraint. Recall that Within is the converse of Contains so
that we just need one set of inconsistent database instances
to evaluate both relations. We use different percentages of
changes (from 5% to 30%) and sizes of the database (5000
and 10000 tuples). Based on the dimension of the space,
we estimate the minimum distance that separates any two
geometries (Dm) equal to 10.
For the real database instance, we have used the 2009

TIGER/Line Shapefiles from the U.S. Census Bureau [25],
because it is known that there are no inconsistencies in the
data. We created a spatial database using the shapefiles for
the states (tl 2009 us state) and the counties of the state
of New York (tl 2009 36 county). Then, we applied a sim-
plification algorithm to geographic objects in the layer of
counties of New York. The algorithm was applied to three
different percentages of the total objects in the layer (5%,
25% and 50%), and three different tolerance values were
used in the simplification (0.0001, 0.001 and 0.01 degrees).
At the end, we created nine different simplified versions of
the original consistent data. For these datasets, we checked
two topological dependency constraints. The first one is of
the form ( 5.1) with T = Touches and where R is replaced
by county . We define the tuples to check (CTR) by tuples
whose geometries intersect. The second topological depen-
dency constraint is of the form:
∀̄(county(x1, x2, g1) ∧ state(x2, g2) → Within(g1, g2)). (3)
In this case, the checked topological relationships were

determined using a foreign key in each county referring to
the state it belongs.

5.2 Evaluation approach
We evaluate our proposal at two level: at the individ-

ual constraint-violation level and at the global fulfillment
level (GF). When using synthetic data, we compare the pro-
posed measures to two other approaches that quantify the
difference between the expected and the actual topological
relation between geometries in a database instance.

• Semantic-distance approach. This approach quantifies
the conflict of a couple of geometries as the normalized
semantic distance in a conceptual graph of topological
relations [19]. We apply this semantic distance in the

same way that our individual constraint-conflict mea-

sures. Then, we define GFsd =
∑CTR

i=1 (1−SDi)

CTR
, where

SDi is the normalized semantic distance between two
topological relations. Figure 4 shows the two neighbor-
ing graphs for regions and lines, which were extracted
by graphs found in the literature [6, 22] and making
the aggregation needed to fit the set of topological re-
lations used in this work.

(a) (b)

Figure 4: Neighboring graph for topological rela-
tions in T between: (a) regions and (b) lines

• Boundary-point distance approach. This approach quan-
tifies the conflict of a couple of geometries as the sum
of distances between corresponding boundary points of
geometries when geometries violate versus when they
satisfy a topological relation. This distance is normal-
ized by the distance of the maximum possible transla-
tion of the boundary points, which in our case is de-
fined by the maximum distance between adjacent cells.
As an example consider the distribution of geometries
in Figure 5(a). Assume that these geometries must
touch, so that a translation of geometries that solves
this conflict is shown in Figure 5(b). Then, a degree
of violation in this case is equivalent to the normalized
distance of the five boundary points that define the
closed polygons in Figures 5(a) and (b), where only
one geometry has changed. In this case, this is equiv-
alent to 0.11.

(a) (b)

Figure 5: Example of translation-based measure: (a)
Original instance and (b) Instance after modification

We define GFpd =
∑CTR

i=1 (1−PDi)

CTR
as the complement

of the normalized distance (PDi) of each checked pair
of tuples. Notice that this alternative measure is only
used as a reference, since it requires to have a cor-
responding consistent database instance to compare
with, which, is most likely not available or is costly
to compute. Even more, different corresponding con-



sistent databases exist with respect to an inconsistent
database, which leads us to the problem of finding a
consistent instance that differs minimally from the in-
consistent database instance.

5.3 Comparison at the constraint level
A comparison at the constraint level illustrates the main

differences among the three basic conflict measures. In the
following we give representative cases taken from the syn-
thetic database instance to illustrate main differences be-
tween the conflict measures. For each expected topologi-
cal relation, we selected three different cases with the same
topological relations but different geometries and provide
with the different conflict measures (CD: proposed constraint-
violation measure2, SD: normalized semantic distance, PD:
measure based on boundary-point distance). For space lim-
itations, we only show partial results in Figures 6− 8.

Touches
CD 0.248 0.141 0.1094
SD 0.33 0.33 0.33
TM 108 8 8

Figure 6: Comparison between measures with re-
spect to expected relation Disjoint between regions

Overlaps
CM 0.33978 0.0601 0.0631
SD 0.667 0.667 0.677
TM 30.4 20 24

Figure 7: Comparison between conflict measures
with respect to expected relation Overlaps between
regions

Crosses
CM 0.164 0.3287 0.1533
SD 0.333 0.333 0.333
TM 22.15 40.47 35.24

Figure 8: Comparison between conflict measures
with respect to expected relation Crosses between
lines

5.4 Comparison at the database level
In the following we show a subset of results obtained for

the whole experimental evaluation, which reflect differences
in the definition of the global fulfillment measure. Figure 9
shows the results obtained with the synthetic database in-
stances for the three different measures (i.e, Metrics: GF ,
GFsd, and GFpd) when the expected topological relation

2CD represents the degree of violation without considering
the relative relevance of objects

was Disjoint and geometries hold another topological rela-
tion. Recall that for this relation, our constraint-violation
measures include a minimum expected distance between ge-
ometries. In this graph, x-axis represents the percentage of
tuples that were modified in the original consistent database
instance and the y-axis represents the degree of consistency
of different database instances. Notice that we only show
results for the Within and not its converse relation Contains,
which gives equivalent results. Similar results were obtained
for larger sizes of database instances.
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Figure 9: Global data quality with respect to rela-
tion Touches between regions

In similar way to the relation Touches, Figure 10 shows
the results when the expected relation between regions is
Overlaps. In this case, we estimated the overlapping area be-
tween geometries as the 10% of the perimeter of the smallest
region under consideration.
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Figure 10: Global data quality with respect to rela-
tion Within between regions

Figure 11 shows the results when the expected relation
between lines is Crosses. For this expected relation and a
conflicting relation Touches, the constraint-violation mea-
sure adds the minimum length that must cross a line. In this
case, we also consider the 10% of the length of the shortest
line under consideration.

For the real data set, Table 8 shows the result of the
test with respect to the first TD and for the nine modi-
fied datasets grouped in three rows of values. The top row
shows the results when the tolerance used for the simplifi-
cation is small, the middle row shows the results when the
tolerance is medium and the bottom row shows the results
when the tolerance is high. It must be noticed that the
value of CTR can change in the different datasets because
the modifications of the geometries may cause that coun-
ties that intersect in a test do not intersect in another one,
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Figure 11: Global data quality with respect to rela-
tion Crosses between lines

and therefore they are no longer part of the CTR. More-
over, using different tolerances for the simplification of the
geometries causes that the number and the importance of
the violations between the geometries may vary. For each
of the rows it can be seen that both measures (VS and GF)
correlate with the common sense, because VS (spread of vi-
olation) increases and GF (global fulfillment) decreases as
the number of modifications to the original data is larger. If
the Table is read vertically, that is, if we consider a single
column and therefore we fix the number of geometries modi-
fied, the values of VS and GF look less sensible because they
do not always increase and decrease, respectively, when the
tolerance used for the simplification is larger. This is caused
by the fact that the number of violations does not always
increase either. Even more, the degree of violation may dif-
fer in different conflicts, affecting in different ways GF, but
different conflicts weight the same in VS.

Geometries modified
Tolerance Measure 5% 25% 50%

Small

CTR 294 294 294
Violation 28 100 200

VS 0,09524 0,34014 0,68027
GF 0,99582 0,98640 0,97437

Medium

CTR 294 294 290
Violation 22 122 186

VS 0,07483 0,41497 0,64138
GF 0,99723 0,97932 0,97546

High

CTR 294 286 286
Violation 18 116 196

VS 0,06122 0,40559 0,68531
GF 0,99626 0,98144 0,97131

Table 8: Results of the test county Touches county

Table 9 shows the result with respect to the second TD
for the nine modified datasets. In this test, the value of
CTR does not change because the algorithm uses a foreign
key that does not change when the geometry is modified.
The results of this test do not show a clear tendency as the
previous test. The cause is that the geometries that are in-
volved in the topological relationship are larger (a state and
a county instead of two counties), and therefore the values
of GF are closer to 1 than in the previous test. However, the
measures can be used as indicators of the quality of the data
because the larger the number and degree of the violations,
the larger the values of VS and the smaller the values of GF.

Geometries modified
Tolerance Measure 5% 25% 50%

Small

CTR 62 62 62
Violation 2 9 18

VS 0,03226 0,14516 0,29032
GF 0,99998 0,99971 0,99972

Medium

CTR 62 62 62
Violation 2 8 19

VS 0,03226 0,12903 0,30645
GF 0,99998 0,99983 0,99962

High

CTR 62 62 62
Violation 2 6 16

VS 0,03226 0,09677 0,25806
GF 0,99987 0,99990 0,99957

Table 9: Results of the test county Within state

6. CONCLUSIONS AND FUTURE WORK
This work has presented different measures that compare

topological relations between geometric attributes stored in
a database with respect to expected topological relations.
This is used to given a global evaluation of the database data
quality with respect to topological dependency constraints.
We evaluate the proposed measures with respect to two
other two independent approaches: semantic distance and
boundary-point distance. The results indicate that while
our measures are correlated to other measures, it provides
metric details about the degree in which two geometries are
in conflict. The proposed measures refine the comparison of
topological relations done by semantic distance approaches
since it enables to distinguish among cases with the same
topological relation but different spatial realization.

As an extension of the current work, we will explore mea-
sures that combine geometries of different dimensions, in
particular, between lines and regions. We have here con-
centrated on 2D geometries, but we would like to extend
our work to deal with geometries of higher dimension. We
will also analyze the global evaluation of an inconsistent
database under other types of topo-semantic integrity con-
straints, such as for example, referential constraints of the
type “a building must be inside of a land parcel”. Another
interesting analysis left for future work is to consider the
interaction of integrity constraints, where the global fulfill-
ment measure may not be simply the sum of isolated and
independent constraint-violation measures.
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