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Abstract. Current processors include instruction set extensions espe-
cially designed for improving the performance of media, imaging, and 3D
workloads. These instructions are rarely considered when implementing
practical solutions for algorithms and compressed data structures, mostly
because they are not directly generated by the compiler. In this paper,
we proclaim their benefits and encourage their use, as they are an un-
used asset included in almost all general-purpose computers. As a proof
of concept, we perform an experimental evaluation by straightforwardly
including some of these complex instructions in basic string algorithms
used for indexing and search, obtaining significant speedups. This opens
a new interesting line of research: designing new algorithms and data
structures by taking into account the existence of these sets of instruc-
tions, in order to achieve significant speedups at no extra cost.

1 Introduction

The amount of digitally available information has grown at an exponential rate
during the last years, both on the Internet as within particular organizations.
Efficient information processing has attracted great research effort from differ-
ent areas. Algorithms and data structures that obtain efficient representations
and analysis of large databases can be combined with different approaches from
computer architecture, as, among others, hardware-aware implementations that
exploit particular features of the hardware. For example, many algorithms have
been adapted to exploit the architecture of GPUs [21], FPGAs [22], or general-
purpose CPUs that provide instructions included towards improving the perfor-
mance of particular application domains.

In this paper we explore how the recent SIMD (Single Instruction Multiple
Data) included in general-purpose Intel/AMD processors can be used to improve
the performance of applications of text indexing and searching.

* This work was supported by the Spanish MICINN, Plan E funds, under Grant
TIN2009-14475-C04-01 (third author) and TIN2009-14560-C03-02, CDTI CEN-
20091048, and Xunta de Galicia grants 2010/17 and 10SINO28E (first, second and
fourth authors).



The instruction set of most general-purpose processors includes SIMD (Sin-
gle Instruction Multiple Data) instructions thought to improve performance and
power consumption in particular application areas, such as multimedia or graph-
ics processing. Although these SIMD instructions work at a small scale when
compared with special-purpose SIMD processors, the performance of algorithm
implementations using them can be significantly improved. The SIMD support
has evolved as processors did, considering new application areas under its scope,
such as text/string processing and complex search algorithms.

Despite the benefits these facilities can bring to data management, they have
been rarely used or evaluated in the existing literature [23,19,2,18,17]. The
situation is similar to what happened 30 years ago in the RISC vs. CISC debate,
in which complex instructions that were not used by compilers/programmers
were finally removed from the instruction set of processors. However, there is
a difference in the case of the SIMD instructions included in general-purpose
processors. Although compilers are not able to directly use most of them by
themselves, programmers can easily invoke them from high-level languages by
using built-in libraries included with the compilers.

In this work we address the improvement of algorithms for text/string pro-
cessing using the SIMD instructions included in the Intel SSE4.2 (Streaming
SIMD Eaxtensions) specification. We present case studies and experimental re-
sults that show how much text/string algorithms can benefit from the SIMD
extensions.

MMX was the first Intel SIMD extension for general-purpose processors.
The instructions included in the MMX specification were specially designed for
improving the performance of multimedia and 3D workloads. Following MMX,
new extensions appeared with the names of SSE, SSE2, SSE3, and SSE4, which
include new promising instructions for text search and processing [15]. These
extensions have been supported by the new generations of Intel and AMD pro-
cessors, and kept in each new generation for compatibility reasons.

A first advantage of the use of SIMD instructions is that it does not imply
significant additional programming cost, since the use of instructions is easy
from high-level languages with the use of high-level libraries. In addition, this
approach does not introduce any overhead, unlike other hardware-aware opti-
mizations, such as GPU processing (data have to be moved to/from the device)
or thread processing (threads have to be created and maintained). Moreover,
this optimization does not prevent other improvements such as parallel process-
ing, since the task can be distributed into several machines without changing
the original algorithm and the sequential part processed in each node can make
use of SIMD instructions. The use of this type of instructions not only improves
performance but also power consumption, an important factor nowadays for
companies with intensive data processing.

Portability can be seen as a drawback of this approach. However, these in-
structions are supposed to be kept in future processors, as it happened with
previous SSE extensions, which were included in every new generation of pro-
cessors [15].



As a proof of concept, in this paper we present three case studies that show
how SIMD instructions can be used to improve the performance of compact data
structures and algorithms for indexing and searching in strings. Particularly,
we show how the rank and select operations can be implemented using these
instructions, both in sequences of bits and bytes. The performance of many
algorithms and data structures for text indexing and searching directly depends
on the efficient implementation of rank and select, since these operations are the
main component of the computational cost. We also apply this approach to the
classical Horspool search algorithm [8]. We present some experiments showing
that the use of this set of instructions is simple and that the results obtained
are extremely competitive.

The rest of the paper is structured as follows: the next section introduces
the Intel SSE4.2 instruction set and the most important instructions for the
scope of this paper. Section 3 presents three case studies we have developed
with the corresponding experimental evaluations. Finally, Section 4 presents the
conclusions of our work.

2 Streaming SIMD Extensions 4 (SSE4)

As we have introduced in the previous section, SSE4.2 [15, 1] is the latest SIMD
instruction set extension from the SSE (Streaming SIMD Extensions) family. It
was introduced in general-purpose processors by Intel, extending the previous
SSE extensions, namely SSE, SSE2, and SSE3. The original SSE included a set
of new instructions that operated mainly on floating point data, with the target
of increasing performance of digital signal and graphics processing. Following
extensions SSE2 and SSE3 included new instructions that also considered cache-
control instructions and instructions targeting efficient 3D processing. These
instructions were introduced in Intel processors and in parallel supported in
AMD processors, so they are present in the vast majority of general-purpose
Processors.

SSE4 introduced 54 new instructions, divided in the SSE4.1 (47 instructions)
and SSE4.2 (7 instructions) subsets. The instructions in SSE4.2 provide string
and text processing capabilities that can be used to enhance the performance
of text-based applications as searching, indexing, or compression. In this section
we briefly describe the instructions that we use in the rest of the paper:

— POPCOUNT: it counts the number of bits set to 1 in a word of 16, 32, or 64 bits.
It is an important addition since most data structures and algorithms for
text searching and indexing rely on the use of binary sequences and counting
bits is a very common and intensively used operation (counting the number
of bits set to 1 up to a given position in a bitmap is called a rank operation).

— PCMPESTRI: the name of the instruction stands for Packed Compare Explicit
Length Strings, Return Index, and it compares two strings of at most 16
bytes. The instruction returns the position of the first different character of
the two strings being compared. Several variants of this instruction exist,



depending on whether the length of the strings is specified by the user and
whether the result is an index or a bit mask indicating in which positions the
bytes are equal (1) and in which are not (0). The instructions PCMPISTRI,
PCMPESTRM, and PCMPISTRM correspond to these variants of PCMPESTRI. The
comparison to run or the format of the return value can be configured with
a 7-bit mode.

In this paper we used these instructions through gcc. The use of SSE4.1 and
SSEA4.2 is supported in the gce compiler (version 4.3) through built-in functions
and code generation by specifying the options -msse4.1 and -msse4.2 when
compiling. The programmer can invoke a high-level function with the name of
the instruction.

3 Experimental evaluation

In this section, we will show the performance of basic string algorithms when
using instructions included in the SSE4.2 extension. We first describe the ma-
chines used in the experiments, and then we present three different case studies
to demonstrate the efficiency of the use of this set of instructions.

For the experiments in this paper we used is an Intel® Core™ i5 CPU 750
@ 2.67GHz (4 cores) with 16 GB RAM. It ran Ubuntu GNU/Linux with kernel
version 2.6.38-11-generic (64 bits). We compiled with gcc version 4.5.2 and the
option -03 and -msse4.2 to enable SSE4.2 extensions. In some experiments we
also used an Intel®Xeon® -E5520@2.26GHz with 72 GB DDR3@800MHz RAM.
It ran Ubuntu 9.10 (kernel 2.6.31-19-server), using gcc version 4.4.1. If no further
specifications are made, the machine used in the experiments is the Intel i5.

3.1 Rank and select over bit strings

Bit strings are frequently used in numerous scenarios, including succinct data
structures, which represent data, such as sets, trees, hash tables, graphs or texts,
using as little space as possible while retaining its original functionality.

Given a sequence of bits By ,, we define three basic operations:

— ranky(B, 1) counts the number of times the bit b appears in B up to position
1. If no specification is made, rank stands for rank; from now on.

— selecty(B, j) returns the position of the j — th appearance of bit b in B.
Analogously to rank, select stands for select; if no bit specification is made.

— access(B, i) returns whether position ¢ of sequence B contains 0 or 1.

Several strategies have been developed to efficiently compute rank and select
when dealing with binary sequences. They are usually based on building auxiliary
structures that lead to a more efficient management of the sequence, such as a
two-level directory proposed by Jacobson [9]. One practical solution, we denote
by GGMN, was proposed by Gonzdlez et al. [6], where precomputed popcount tables
are used [11]. Popcounting consists of counting how many bits are set in a bit



array. By using tables where this counting is already computed for small arrays of
8 bits, rank and select operations can be efficiently solved with a parameterizable
space overhead. GGMN builds a one-level directory structure over the bit sequence
consisting of blocks of size k that store rank; (B, p) for every p multiple of k. To
compute ranki (B, 1) it first obtains the stored number of times the bit 1 appears
before the block containing the position ¢ and then it requires a sequential scan
to count all the set bits in the block up to position i. This sequential scan uses
a popcount procedure over each 32-bit sequence, which computes the number of
bits set to 1 in a 32-bit integer « by performing:

tab[(z>>0)&0xf£] +tab[(x>>8)&0xff] +tab[(x>>16)&0xff]+tab[(x>>24)&0xf ],

where tab is the precomputed popcount table that contains the number of 1s in
each different byte value. The space overhead is 1/k, thus this solution offers an
interesting space/time tradeoff. We will use this solution with k& = 20 such that
just 5% of extra space is needed, while still computing rank and select efficiently.

For the experimental evaluation of this case study, we just replace the pop-
count procedure of the practical solution with the POPCOUNT SSE4.2 instruction.
To call POPCOUNT SSE4.2 instruction we just need to use the built-in function
__builtin_popcount or use _-mm_popent_u32 and -mm_popcnt_u64 included in nm-
mintrin.h library.

We evaluate the original implementation of GGMN with a straightforward re-
placement of the popcount procedure, GGMN with SSE4.2 in three different sce-
narios that require rank operations over bit strings:

1. Scenario 1: We evaluate the performance of rank operation by computing the
number of bits up to all the positions of a bitmap of length 1,000,000,000
in random order. The bitmap was generated by setting up bits at random
positions. We compute the average time to compute a rank operation over
the bit string.

2. Scenario 2: We use GGMN with SSE4.2 in the original implementation of a
web graph compression method, RPGraph [5], which represents a Web graph
based on the Re-Pair compression method. We compute the time to rebuild
a graph from its compressed representation and measure average CPU user
time per neighbor retrieved.3

3. Scenario 3: We use GGMN with SSE4.2 in an implementation [20] of the
compressed suffix tree proposed by Sadakane [16]. We measure the average
time to compute the longest common substring for each pair of sequences
from a set of 100 DNA sequences, whose average read length is 470.29.4

Table 1 shows the results obtained for the three scenarios. The second and
third column indicate the time per operation (which is scenario-dependant, as

3 We use the source code at http://webgraphs.recoded.cl/index.php?section=rpgraph
to represent the graph EU with the parameters indicated in the example of use.

* We use the source code at http://www.cs.helsinki.fi/group/suds/cst. The sets of
DNA sequences were generated by a 454 Sequencing System from one individual
Melitaea cinxia (a butterfly).



Table 1: Experimental evaluation of popcount SSE4.2 instruction

GGMN |GGMN with SSE4.2| Speedup| % time |SSE4.2 instruction
Scenario| Time Time ratio |rank oper. used
1 0.133 ns 0.068 ns 1.95 100.00% | -mm_popcnt_u32
2 0.150 ps 0.129 ps 1.16 37.60% | _mm_popcnt_u32
3 2.893 ms 2.299 ms 1.26 31.30% | _mm_popcnt_ub/

we explained above). The fourth column shows the speedup ratio obtained (we
divide the second column by the third column). The fourth column of the table
indicates the percentage of time consumed by the rank operation when no SSE4.2
instructions are used. This value was computed with gprof profiler. The last
column shows the SSE4.2 instruction used.

As we can observe, we can easily accelerate the practical implementation
of algorithms that require rank operations by directly using popcount SSE4.2
instruction. Depending on the percentage of rank operations required by the
algorithms that operate over the data structure, the speedup obtained can vary
up to 2, if the popcount procedure is intensively used. We also obtain a greater
speedup when replacing a 64-bit popcount procedure with the 64-bit SSE4.2
instruction, as in Scenario 3.

Notice that GGMN solution is parameterizable, k being the size of the blocks
in the data structure. If we vary k, the block size of the auxiliary data structure
for rank and select, we obtain a space/time tradeoff. Hence, we can not only
accelerate GGMN by using SSE4.2 instructions. We can instead improve the space
required. For example, in Scenario 1, by using SSE4.2 instructions we can achieve
the same time performance as with the original implementation while reducing
the extra space required from 5% (k = 20) to 1.25% (k = 80). In addition, when
we use a higher k value, the speedup obtained is greater. Effectively, since blocks
are larger, the number of calls to the popcount procedure is also higher. Hence,
the speedup obtained with the replacement of the procedure by the popcount
SSE4.2 instruction is greater (we can obtain speedups greater than 3).

3.2 Rank, select and access over byte strings

Rank, select and access operations can be extended to arbitrary sequences S
with an alphabet X of size ¢. In this case, given a sequence of symbols S =
5153 ...5, and a symbol s € X, rank,(S,i) returns the number of times the
symbol s appears in the sequence up to position ¢, that is, in S[1,4]; selects(.S, j)
returns the position of S containing the j-th occurrence of the symbol s; and
access(S, 1) returns the i-th symbol of sequence S, that is, S;. It may be a
necessary operation, since S is commonly represented in a compact way.

For some scenarios, the strategies used with binary sequences can be effi-
ciently adapted to the general case. A simple generalization of Jacobson’s idea
has been proven successfully for byte strings [4]. We will use this solution, which
we call “Sequential+Blocks”, to prove the performance of SSE4.2 instructions in



this scenario. It consists of representing the original byte sequence in plain form
and using an auxiliary data structure to support byte-wise rank/select opera-
tions. Given a sequence of bytes B[1,n], it builds a two-level directory structure,
dividing the sequence into sb superblocks and each superblock into b blocks of
size n/(sb-b). The first level stores the number of occurrences of each byte from
the beginning of the sequence to the start of each superblock. The second level
stores the number of occurrences of each byte up to the start of each block from
the beginning of the superblock it belongs to. The second-level values cannot be
larger than sb-b, and hence can be represented with fewer bits. Thus, ranks, (B, )
is obtained by counting the number of occurrences of b; from the beginning of
the last block before j up to the position j, and adding to that the values stored
in the corresponding block and superblock for byte b;. To compute selecty, (B, j)
we binary search for the first stored value x such that ranky,(B,z) = j. We
first binary search the values stored in the superblocks, then those in the blocks
inside the right superblock, and finally complete the search with a sequential
scanning in the right block. This structure answers rank in time O(n/(sb - b))
and select in time O(log sb + logb + n/(sb - b)).

In this section we slightly modify the algorithm of the sequential solution to
incorporate SSE4.2 instructions, since we can count the number of occurrences
of a byte value inside a block in a more efficient way with the instructions
PCMPESTRM and POPCOUNT. The complete source code of this sequential scan for
rank operation is described in Code 1.1. The modification of the sequential scan
of a block for select operation is analogous. As it can be observed in the included
pseudocode, we process the sequence in blocks of 16 bytes, which produces a
significative speedup as we report in the experimental evaluation of this section.

Code 1.1: Sequential rank in a block using SSE4.2 instructions

#include <nmmintrin.h>
#include <emmintrin.h>

const int mode = _SIDD_UBYTE_OPS | _SIDD_CMP_EQUAL_EACH | _SIDD_BIT_MASK;

uint seqRank (uint* vector, byte searchedByte, uint position){
register uint i, cont = 0;
__m128i patt, window, returnValue;
byte *cl, patt_codel[16];
uint d = position>>4, r = position & Oxf;
for(i=0;i<16;i++)
patt_code[i]=searchedByte;
long long * pat_array = (long long *)patt_code;

patt = _mm_set_epi64x(pat_arrayl[1],pat_arrayl[0]);
long long * text_array = (long long *)vector;
for(i=0;i<d;i++){
window = _mm_set_epi64x(text_array[1],text_arrayl[0]);
returnValue = _mm_cmpestrm(patt, 16 ,window, 16, mode);

cont+=_mm_popcnt_u32(_mm_extract_epi32(returnValue ,0));
text_array += 2;

}
window = _mm_set_epi64x(text_array([1],text_array[0]);
returnValue = _mm_cmpestrm(patt, r,window, r, mode);

cont+=_mm_popcnt_u32(_mm_extract_epi32(returnValue ,0))+r-16;
return cont;



Impact of the SSE4.2 alternative on rank and select over byte strings. In order
to test the efficiency of this new practical implementation of the sequential solu-
tion, which we call “Sequential+Blocks with SSE4.2” | we ran some experiments
to compute rank and select operations over 3 byte sequences®. We denote them
Bytemap 1, Bytemap 2, and Bytemap 3. Figure la shows the frequency distri-
bution of all the byte values on those byte sequences, whose sizes (in bytes) are
228,707,250; 834,670; and 65,536 respectively.

In addition to the sequential solution (without SSE4.2 instructions and with
SSE4.2 instructions), we include in the comparison three different approaches
using wavelet trees, which are some of the most competitive solutions to solve
rank/select operations over arbitrary sequences and transform the problem to
solve binary rank/select operations. We include a balanced binary wavelet tree
with no bitmap compression [7], denoted by “binary WT”, a Huffman-shaped
wavelet tree [12], denoted by “huff-shaped WT” and a balanced binary wavelet
tree using Raman et al. solution for the rank/select operation over the binary
sequences at each level [14], denoted by “binary WT + RRR”.5

We used several configuration of parameters to obtain a space/time tradeoff.
The space usage is shown as the space required by the whole representation of
the byte sequence and extra structures in main memory as a percentage of the
size of the original byte sequence. We computed the average time to perform
rank, select and access operations over the byte sequences. More precisely, the
rank time was measured by computing rank operations of random byte values
over all the positions of the sequence in random order; select time was measured
by searching random occurrences of random byte values, then computing the
average time; and access time was computed by obtaining the byte value at
all the positions of the sequence in random order. Times are shown in us per
operation.

Subfigures 1b to 2b illustrate the behavior of the different techniques to an-
swer rank, select and access operations. As it can observed from the figures, we
can significantly improve the sequential implementation by including SSE4.2 in-
structions in the sequential scan of the blocks, where the times obtained with
“Sequential+Blocks with SSE4.2” are around three times faster than the times
obtained with “Sequential+Blocks”. This improvement makes the sequential so-
lution a more attractive solution when we require to compute rank and select,
also considering that this solution can directly solve access operation, which is
not trivially solved with the wavelet-tree-based alternative techniques, as illus-
trated in Subfigure 2b. Notice that this may not be a completely fair comparison,
since “binary WT + RRR”, “huff-shaped WT” and “binary WT” methods could
also be accelerated by using SSE4.2 instructions. However, it just makes evident

® The byte strings correspond to three byte sequence from a tree-shaped indexing data
structure, Wavelet Trees on Bytecodes (WTBC) using Plain Huffman encoding over
the ALL corpus, as described in [4]. More precisely, we extracted the byte sequence
from the leftmost node at each level of the WTBC.

5 We use the implementations of the Compact Data Structures Library (libeds) avail-
able at http://libcds.recoded.cl/
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Fig. 1: Experimental results for rank operation over different byte strings
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Fig. 3: Influence of SSE4.2 instructions on the WTBC data structure.

that an a priori sequential solution can be more efficient than a theoretically
better one if we accelerate its practical implementation with some algorithm
engineering.

Impact of the SSE/.2 alternative on a compressed data structure. We compare
now the performance of the new practical implementation of “Sequential+Blocks
with SSE4.2” on the WIBC data structure [4], which is a word-oriented self-
index for natural language text. It is based on a byte-wise wavelet tree, thus it
requires to compute rank, select and access operations over byte strings in an
efficient way. Its original implementation uses the sequential solution to support
rank and select. We ran these experiments on the Intel Xeon, and we computed
locate and display operations searching for a set of 429 queries over the INEX
2009 Wikipedia Dataset” without XML tags. It consists of 8.76GiB of plain text
(1.8 x 109 words), and a vocabulary of 14.88 million words.

As we can see in Figure 3, the speedup obtained in rank and select operations
for the isolated byte strings is practically the same when evaluating the overall
performance of the whole data structure. Thus, using SSE4.2 instructions makes
WTBC almost three times faster. This is due to the intensive use of rank and
select operations during the overall navigation of the WTBC data structure.

3.3 Searches over character strings

In this section, we will show how SIMD instructions can also improve the effi-
ciency of classical pattern matching search algorithms in strings. Particularly,
we focus on the well-known Horspool string search algorithm [8], which is a sim-
plified version of the Boyer-Moore algorithm [3]. This algorithm is frequently
found in indexing structures such as block-addressing inverted indexes for natu-
ral language texts [13,10].

The idea of these algorithms is to traverse the string skipping some bytes
during the search, so it is not necessary to compare the whole string against the

" http://www.mpi-inf.mpg.de/departments/d5/software/inex.
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search pattern. The Horspool algorithm uses a search window with the size of
the search pattern that will be moved along the text during the search from left
to right (see Figure 4). For each position of the search window, the algorithm
carries out two steps. The first one is comparison, that is, the search window is
compared with the pattern from right to left until an occurrence of the pattern
is found or the comparison fails at a given character.

The next step is the shift of the window to its next position. The shift should
be as large as possible but safe, that is, without missing a potential occurrence of
the pattern in the string. If 3 is the last character of the search window, the shift
distance is given by the distance from the last occurrence of 8 in the pattern
to the end of the pattern. If the last character of the search window does not
occur in the search pattern, the shift distance is the size of the pattern. The shift
distance is not computed in each step, but it is precomputed for each character
present in the search pattern before starting the traversal of the text.

The application of SIMD instructions in the Horspool algorithm is straight-
forward. The comparison of the search window with the pattern can be carried
out with the PCMPESTRI instruction, so the comparison is not done one character
at a time, but up to sixteen characters at a time. The fact that the comparison
is performed from right to left does not affect the use of this instruction®. Note
that if the search pattern has less than sixteen characters, each comparison of
the search window is carried with one CPU instruction.

Table 2 shows the results we obtained when comparing a sequential imple-
mentation and a SIMD-based implementation of Horspool algorithm. In order
to compare the two implementations we used the first 1 GB of the INEX corpus
used in the previous section. We searched for 200 patterns with both imple-
mentations and computed the average time per pattern. The average number of
characters per pattern is 9.125. We ran the same experiments in two different
machines, the Intel i5 and the Intel Xeon described at the beginning of this sec-
tion, using in both machines the executable file built with gcc version 4.5.2 in
the Intel i5. We observe that we can accelerate Horspool algorithm by including
SSE4.2 instructions, and the speedup obtained is practically the same for both
machines, which shows that the use of SSE4.2 is portable to different machines.

8 We use PCMPESTRI instruction with mode: _SIDD_UBYTE_OPS | _SIDD_CMP_EQUAL_EACH
| _SIDD_MOST_SIGNIFICANT | _SIDD_NEGATIVE POLARITY.



Table 2: Experimental evaluation of SSE4.2-based Horspool search
Setting [Sequential Time (s)|SSE4.2 Time (s)|speedup ratio
Intel i5 0.879 0.772 1.139

Intel Xeon 1.236 1.086 1.138

4 Conclusions

The case studies and experimental evaluations we have presented in this paper
reveal how algorithms for text/string processing can benefit from hardware-
aware implementations that exploit the SSE4.2 SIMD instructions included in
recent general-purpose processors. This is a remarkable result because the use
of these basic string algorithms is ubiquitous in many sorts of applications, spe-
cially for indexing and searching. In the paper we just prove that we can obtain
significant speedups by the straightforward use of SSE4.2 instructions in our
practical implementations. We plan as future work to propose new algorithms
and data structures taking into account the existence of these sets of instruction
extensions during the design process.

The use of the SSE4.2 does not imply any additional computational cost
when compared with other optimizations based on particular hardware features,
such as GPU programming or using threads. In addition, its use is orthogonal
to the use of other optimization techniques, such as parallelism or GPUs, since
SSE4 extensions focus on improving the efficiency of the sequential part of the
algorithm. Future work includes analyzing under which conditions the usage of
each approach, or even their combination, is more convenient.

Portability can be seen as a potential drawback of this approach, although
the instructions included under the SSE4.2 extension are supposed to be kept
in future generations of processors by various vendors, as it has happened with
previous instruction set extensions of the SSE family.

References

1. Intel SSE4 Programming Reference, July 2007. Reference Number: D91561-003.

2. O. Ben-Kiki, P. Bille, D. Breslauer, L. Gasieniec, R. Grossi, and O. Weiman. Op-
timal packed string matching. In Procs. FSTTCS, pages 423-432, 2011.

3. R. S. Boyer and J. S. Moore. A fast string searching algorithm. Communications
of the ACM (CACM), 20(10):762-772, 1977.

4. N. R. Brisaboa, A. Farifia, S. Ladra, and G. Navarro. Reorganizing compressed
text. In Procs. SIGIR, pages 139-146, 2008.

5. F. Claude and G. Navarro. Fast and compact web graph representations. ACM
TWEB, 4:16:1-16:31, September 2010.

6. R. Gonzélez, Sz. Grabowski, V. Makinen, and G. Navarro. Practical implementa-
tion of rank and select queries. In Procs. WEA, pages 27-38, 2005.

7. R. Grossi, A. Gupta, and J.S. Vitter. High-order entropy-compressed text indexes.
In Procs. SODA, pages 841-850, 2003.



10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

R. N. Horspool. Practical fast searching in strings. Software: Practice and FExperi-
ence (SPE), 10(6):501-506, 1980.

G. Jacobson. Succinct static data structures. PhD thesis, Carnegie Mellon Univer-
sity, 1989.

U. Manber and S. Wu. Glimpse: a tool to search through entire file systems. In
Procs. of USENIX Winter Technical Conf., pages 4—4, 1994.

I. Munro. Tables. In Procs. FSTTCS, LNCS 1180, pages 3742, 1996.

G. Navarro and V. Makinen. Compressed full-text indexes. ACM Computing
Surveys, 39(1):article 2, 2007.

G. Navarro, E. Moura, M. Neubert, N. Ziviani, and R. Baeza-Yates. Adding com-
pression to block addressing inverted indexes. Inf. Retr., 3(1):49-77, 2000.

R. Raman, V. Raman, and S. Rao. Succinct indexable dictionaries with appli-
cations to encoding k-ary trees and multisets. In Procs. SODA, pages 233-242,
2002.

Ramanathan R.M. Extending the world’s most popular processor architecture.
Technical report, Intel Corporation, 2006.

K. Sadakane. Compressed suffix trees with full functionality. Theor. Comp. Sys.,
41:589-607, 2007.

B. Schlegel, T. Willhalm, and W. Lehner. Fast sorted-set intersection using simd
instructions. In Procs. of ADMS, 2011.

G. Shi, M. Li, and M. Lipasti. Accelerating search and recognition workloads with
sse 4.2 string and text processing instructions. In Procs. ISPASS, ISPASS ’11,
pages 145-153, 2011.

A. Stepanov, A. Gangolli, D. Rose, R. Ernst, and P. Oberoi. Simd-based decoding
of posting lists. In Procs. CIKM, pages 317-326, New York, NY, USA, 2011. ACM.
N. Vialimaki, V. Méakinen, W. Gerlach, and K. Dixit. Engineering a compressed
suffix tree implementation. ACM JEA, 14:2:4.2-2:4.23, 2010.

L. Wang, M. Huang, V. K. Narayana, and T. El-Ghazawi. Scaling scientific appli-
cations on clusters of hybrid multicore/gpu nodes. In Procs. of ACM CF, pages
6:1-6:10. ACM Press, 2011.

L. Woods. Fast data analytics with fpgas. In Procs. of ICDE Workshops, pages
296-299. IEEE Press, 2011.

J. Zhou and K. A. Ross. Implementing database operations using simd instructions.
In Procs. of SIGMOD, SIGMOD ’02, pages 145-156. ACM, 2002.



