
Efficient Similarity Search in Metric Spaces with
Cluster Reduction⋆

Luis G. Ares, Nieves R. Brisaboa, Alberto Ordoñez, Oscar Pedreira

Database Laboratory, Universidade da Coruña
Campus de Elviña s/n, 15071, A Coruña, Spain

{lgares,brisaboa,alberto.ordonez,opedreira}@udc.es

Abstract. Clustering-based methods for searching in metric spaces par-
tition the space into a set of disjoint clusters. When solving a query, some
clusters are discarded without comparing them with the query object,
and clusters that can not be discarded are searched exhaustively. In this
paper we propose a new strategy and algorithms for clustering-based
methods that avoid the exhaustive search within clusters that can not
be discarded, at the cost of some extra information in the index. This
new strategy is based on progressively reducing the cluster until it can be
discarded from the result. We refer to this approach as cluster reduction.
We present the algorithms for range and kNN search. The results ob-
tained in an experimental evaluation with synthetic and real collections
show that the search cost can be reduced by a 13% - 25% approximately
with respect to existing methods.

Keywords: similarity search, metric spaces, cluster reduction.

1 Introduction

Similarity search is a typical operation in many areas of computer science, such
as pattern recognition, computational biology, multimedia information retrieval,
or recommender systems, to name a few. Given a collection of objects and a
function measuring the distance or dissimilarity between any two of them, sim-
ilarity search finds the most similar objects to another one given as a query.
The comparison of two objects is supposed to be computationally costly, so the
goal of metric access methods (MAMs) is to solve the queries with the minimum
number of distance evaluations.

Similarity search can be formalized through the mathematical concept of
metric space. A metric space is composed by an universe of objects and a metric
that determines the distance or dissimilarity between any two objects of that
universe. Methods for searching in metric spaces preprocess the collection and
build indexes that store precomputed information about the objects in collection.

⋆ This work has been partially funded by “Ministerio de Ciencia y Innovación”
(PGE and FEDER) refs. TIN2009-14560-C03-02 and TIN2010-21246-C02-01, and
by “Xunta de Galicia” refs. 2010/17 (Fondos FEDER), and 10SIN028E.

This information is used during the search together with the properties of metric
spaces to prune the search space and thus compare the query with a small portion
of the objects in the collection [1–3].

The most studied types of query in metric spaces are range search and kNN
search. Range search, R(q, r), obtains all the objects up to a distance r from
the query object q. Near neighbor search, kNN(q), retrieves the k most similar
objects to the query.

Methods for searching in metric spaces can be classified in pivot-based meth-
ods and clustering-based methods [1]. Pivot-based methods select a subset of
objects from the collection to be used as pivots, and the index stores the dis-
tances from the pivots to the rest of objects. Given a query, the query object
is compared with the pivots, and these distances are used to discard as many
objects as possible without comparing them with the query.

Clustering-based methods partition the space into a set of disjoint clusters.
Each cluster is represented by an object used as the cluster center. Each object in
the collection belongs to the cluster corresponding to its closest center. The index
maintains the information of each cluster, typically its center and its covering
radius, that is, the distance from the cluster center to its furthest object in the
cluster. Given a query, the query object is compared with the center of each
cluster, and complete clusters are discarded if the information provided by the
index determines that they can not contain objects in the result set. If a cluster
can not be discarded, it is searched exhaustively, that is, the query object is
compared with all the objects that belong to that cluster.

In this paper we present a new strategy and algorithms for precise metric-
based search that avoid the exhaustive search within a cluster that can not
be discarded by the index. Our proposal is based on the idea of defining re-
gions within each cluster with respect to its center, in such a way that when
we search within the cluster, it can be progressively reduced by discarding some
of its regions, until the rest of the cluster is completely discarded. We refer to
this strategy as cluster reduction, and it can be applied in any method using
the covering-radius pruning criteria for discarding objects. Although we need to
store more information in the index to maintain the regions within each cluster,
we show that the space complexity of the index remains O(n). We present the al-
gorithms for range search and kNN search, and an experimental evaluation with
real and synthetic collections of different nature that shows that this approach
can improve the search performance by a 13% - 25% approximately with respect
to existing methods. The results presented in the experimental evaluation also
consider the effect of cluster reduction on the size of the index, and the trade-off
between search cost improvement and space requirements.

The rest of the paper is structured as follows. Next Section briefly reviews
related work on clustering-based methods for metric spaces. Section 3 presents
cluster reduction and the algorithms for range and kNN search. In Section 4
we present the results we obtained from the experimental evaluation. Finally,
Section 5 summarizes the conclusions of the paper and lines for future work.

2 Related Work

A metric space is a pair (X, d), where X is an universe of objects, and the
function d : X × X −→ R+ is a metric measuring the dissimilarity d(x, y)
between any two objects x, y ∈ X. The metric holds the properties of positiveness
(d(x, y) ≥ 0), symmetry (d(x, y) = d(y, x)), and the triangle inequality (d(x, y) ≤
d(x, z) + d(z, y)). The database or collection of objects is a finite subset S ⊆ X
of size |S| = n.

Clustering-based methods partition the space into a set of disjoint clus-
ters, and the index stores the information about this partition. The informa-
tion for cluster Ci includes at least the object used as the center of the clus-
ter, ci, the set of objects that belong to that cluster, and the covering radius,
cri = max{d(ci, x)/x ∈ Ci}, that is, the distance from the center to its furthest
object in the cluster. For each cluster Ci, its center and its covering radius define
a ball in the space, (ci, cri), containing all the objects that belong to the cluster.

Given a range query R(q, r), the query object is compared with each cluster
center ci, obtaining the distances d(q, ci). A range query defines a ball in the
space, (q, r). For each cluster Ci, the cluster can be discarded without comparing
the query with its objects if d(q, ci) − cri > r, that is, if the ball (ci, cri) does
not intersect the ball (q, r).

In the case of kNN queries, the distance d(q, ci)− cri gives us a lower bound
on the distance from q to any of the objects that belong to the cluster Ci, that is,
∀x ∈ Ci, d(q, x) ≥ d(q, ci)−cri (if the query object q falls within the ball defined
by the cluster, (ci, cri), the lower bound is negative, so it does not give us useful
information). This lower bound gives us a hint of which clusters we should visit
first and when to stop the search, that is, when none of the remaining clusters
contains objects closer to q than its current kth nearest neighbor.

The search complexity is given by the sum of the internal and external com-
plexities. The internal complexity is the number of distance evaluations needed
to compare the query object with the cluster centers. The external complexity
is the number of distance evaluations needed to compare the query object with
the objects in the clusters that could not be discarded.

Clustering-based methods build smaller indexes and behave better in high-
dimensional spaces with respect to pivot-based methods. Existing clustering-
based methods differ in how they partition the space, how that partitioning is
reflected in the index structure, and on the criteria used for pruning the search
space. Most methods partition the space in a recursive way and create a tree
index that reflects that partition.

BST [4] recursively partitions each cluster into two clusters, and creates a
tree index that maintains the information of the partition. In a first level, two
objects are selected as cluster centers. The root of the index stores the center and
covering radius of each cluster, and each cluster is then recursively partitioned
following the same schema. GHT [5] partitions the space following the same
schema, but changes the criteria to prune the tree during the search. In this case,
the left subtree at each node is searched if d(q, cl) − r ≤ d(q, cr) + r, and the
right subtree is searched if d(q, cr)−r ≤ d(q, cl)+r. GNAT [6] is a generalization

of GHT in which more than two clusters are created at each node. In addition,
each node stores the distances between the centers of the clusters, so some of
them can be discarded without comparing them with the query object. VT [7]
improves BST by using two or three centers in each node and storing in each new
node the closest object from the parent node. SAT [8] creates a tree structure
that approximates the Delaunay graph of the partition, and the search traverses
the tree discarding complete clusters when possible.

The M-Tree [9] recursively partitions the space trying to obtain clusters as
compact as possible to improve the search cost. This method established an
important landmark since it supports the dynamics of a real database system.
Its structure is suitable for efficient secondary memory storage, and it supports
dynamic insertions and deletions of objects in the database without degrading
the index performance, by rearranging the index on such operations, and adapt-
ing it to the new content of the database. The Slim-Tree [10] is a well-known
modification of the M-Tree that reduces the overlap between the clusters.

All the methods described above create a recursive partition that generates
a tree-like index. List of Clusters [11] follows a different approach and organizes
the index as a list instead of as a tree. A first object is used as a cluster center
for the first cluster. Once this cluster is full, the rest of the collection is processed
in the same way. The size of the cluster is determined either by a fixed covering
radius or by a fixed number of objects. The search traverses the list discarding
the clusters when possible, and exhaustively searching non-discarded clusters.

3 Similarity Search with Cluster Reduction

In this Section we present the idea of cluster reduction, and the corresponding
algorithms for range search and kNN search. The goal of cluster reduction is to
decrease the external complexity of the search by avoiding the exhaustive search
within clusters that could not be discarded with the information of the index.

We present the algorithms for the particular case of List of Clusters, although
this approach could be extended to other clustering-based methods using the
covering radius pruning criteria.

3.1 Defining Intermediate Regions

Let Ci be a cluster with center ci and covering radius cri, and let {xi1, . . . , xim}
be the set of objects that belong to Ci (where m is the size of the cluster).
These objects define a set of distances with respect to the center of the cluster,
{d(ci, xi1), . . . , d(ci, xim)}. We select some of these distances to define interme-
diate regions within the cluster Ci, in such a way that each selected distance
acts like an additional internal covering radius. If we want to define β regions
within each cluster, we have to select β− 1 distances. We select the distances in
such a way that each region contains the same number of objects. If the number
of regions, β, does not divide the number of objects in the cluster, one of the
regions will have fewer objects than the others.

c

cr

(a) Cluster divided in regions

c

cr

q
′

r
′

q

r

(b) Example of range search

Fig. 1. Range search with cluster reduction.

Figure 1(a) shows an example in which a cluster is divided into five internal
regions. Each internal region contains four objects. The reason for selecting re-
gions that contain the same number of objects is that in this way they adapt
better to the distribution of the objects within the cluster. As previously stated
in [1, 11], the distribution of the objects with respect to the center of the cluster
is not uniform. Choosing regions with the same “width” could led to a region
that contains almost all the objects in the cluster, which would be useless for
the algorithms we present in this section.

The smallest number of regions we can define within a cluster is two, and,
at most, we could define as many regions as objects in the cluster. In the first
case, we have the chance of discarding half of the cluster without comparing it
with the query. In the second case, each comparison of q with an object of the
cluster gives us a chance of discarding the rest of the cluster without comparing
it with the query. Therefore, the more the regions we define within clusters, the
more chances of reducing the search cost.

However, the number of regions also affects the space requirements of the in-
dex. If we define as many regions as objects in the cluster, the space requirements
would be almost the double, although the space complexity would still be O(n).
Therefore, there is a trade-off between the search cost and space requirements in
terms of the number of regions. As we will see in the experimental evaluation, a
small number of regions leads to a search cost that is very close to that obtained
when the number of regions equals the number of objects.

3.2 Additional Considerations

Cluster reduction can be viewed as a generalization of the range-pivot distance
constraint policy for discarding objects [2] if we consider the limit of each internal
region as an additional covering radius. Similarly, cluster reduction can be viewed
as a generalization of the object-pivot distance constraint for discarding objects
[2], since the center of the cluster assumes a role similar to that of a pivot for the
objects of that cluster. By knowing to which region each object in the cluster
belongs, and the limits of that region, we have a range bounding the distance
from the cluster center to each object, which is a case of range coarsening [1].

The idea of defining regions within clusters has already appeared in previous
work. All methods that recursively partition the space divide each cluster into
smaller clusters, although the leaf nodes have to be searched exhaustively. VPT
[5] and MVPT [12] recursively partition each cluster into regions of the same size,
which are further partitioned using the same schema. M-Index [13] assigns to
each object a key that combines the identifier of the cluster to which it belongs,
and its distance to the center of the cluster. This can be seen as a particular
case of cluster reduction in which the distances from all the objects to the cluster
center are stored. The PM-Tree [14] is an extension of the M-Tree in which each
cluster is divided into hyper-rings with respect to a set of pivots.

The main differences of our proposal with previous approaches are: (i) we
divide the cluster into several concentric regions with respect to the center (that
is, without using other cluster centers or pivots) in an onion-like style, that is,
each region is contained by another region; (ii) as we will see in the description
of the algorithms for range search and kNN search, this allows us to process each
cluster one region at a time until one of them allows us to discard the rest of the
cluster; (iii) the results of our experimental evaluation show that using a small
number of regions within each cluster leads to a search cost very close to that
obtained when using as many regions as objects in the cluster.

Applying the cluster reduction strategy to an existing method modifies the
structure of the index, since we need to store, for each cluster, which objects
belong to each region, and also the distances from the center to the objects that
define the limit of each region. These features of the index allow us to imple-
ment it using different data structures. Dynamic capabilities are also supported,
allowing deletions (in general, logical deletions), and insertion of new objects. If
the number of modifications in a cluster is high, restructuring the regions of the
cluster in the index is necessary to maintain its search performance.

3.3 Range Search

The algorithm for range search proceeds initially in the same way as the original
algorithm, only changing how clusters that can not be discarded are searched.
Given a range query R(q, r), the query object is compared with all the clus-
ter centers ci, obtaining the distances d(q, ci). For each cluster, we have three
possibilities:

(a) d(q, ci)− cri > r: in this case, the ball (ci, cri) defined by the cluster Ci does
not intersect the ball (q, r) defined by the query, so the whole cluster Ci is
discarded from the result without comparing it with the query object.

(b) d(q, ci) − cri ≤ r, and not d(q, ci) + r ≤ cri: the ball (ci, cri) defined by Ci
intersects the ball (q, r) defined by the query. In this case, we can not discard
the cluster. Instead of comparing the query object with all the objects in the
cluster, we start the comparison at the outermost region of the cluster. In
each region, we compare the query object with all the objects in that region.
As we process each region, the cluster is being progressively reduced. The
search within the cluster stops when the limit of the next region does not
intersect the query ball. That is, we use the limit of each region as the
covering radius of the cluster as we reduce it.

(c) d(q, ci) − cri ≤ r, and d(q, ci) + r ≤ cri: the ball defined by the cluster not
only intersects the query ball, but it contains it. In this case, the rest of the
clusters do not have to be explored. The search within the cluster starts at
the outermost region that intersects the query ball, and continues until we
reach a region that does not intersect it.

Figure 1 shows an example of range search with cluster reduction. The left
part of the figure shows a cluster containing 20 objects, that has been divided
into 5 regions, each of them containing 4 objects. The arrows that start at the
center of the cluster point to the objects that define the limit of each region.
The right part of the figure shows two range queries.

In the first case, R(q, r), the query ball intersects the cluster but is not
contained within it. Therefore, the search compares the query with the objects
in the outermost region of the cluster. Once we have processed this region and
therefore reduced the cluster, the next region does not intersect the query ball,
so the rest of the cluster can be discarded. In this example, the cost of searching
within the cluster is reduced to a 20% of its objects.

In the second case, R(q′, r′), the ball defined by the cluster contains the
query ball. Since the query ball only intersects the second and third regions of
the cluster (counting from the outermost one), the search can be reduced to
those regions. The search within the cluster is solved comparing only the query
object with two of the five regions. In this case, the search stops because we do
not need to explore any other cluster.

3.4 kNN Search

In the case of kNN search, the algorithm proceeds by visiting the most promising
clusters first, as in the original algorithm. The difference is that in each step of
the search we do not process the whole cluster, but only its closest region to
q that has not still been processed. After processing that region, this cluster is
reduced and the search continues with the next most promising cluster, including
the cluster we have just processed and modified.

1 kNNSearch(q)

2 foreach cluster Ci do
3 di ← d(q, ci)
4 Insert(clustersQueue, Ci, di − cri)

5 end

6 Ci ← pull(clustersQueue)
7 while d(q, ci)− cri < radius(neighborsQueue) do
8 Reduce(q, Ci, neighborsQueue)
9 Insert(clustersQueue, Ci, di − cri)

10 Ci ← pull(clustersQueue)

11 end

Algorithm 1: Pseudocode for kNN search with cluster reduction.

For each cluster Ci, the distance d(q, ci)− cri gives us a lower bound on the
distance from q to any object in Ci, that is:

∀x ∈ Ci, d(q, x) ≥ d(q, ci)− cri (1)

Given two clusters Ci and Cj , the cluster Ci is more promising than Cj if:

d(q, ci)− cri < d(q, cj)− crj (2)

Given a kNN query, the query object is compared with all the cluster centers,
and the clusters are arranged into a priority queue, in such a way that the
most promising clusters are processed first. In each step of the search, the most
promising cluster is pulled from the queue, and the query is compared only
with the objects in its closest region still not processed, updating the list of k
candidate nearest neighbors as necessary. The cluster is reduced since we have
processed one of its regions, and it is reinserted again in the queue with a new
priority, resulting from the reduction of the cluster. This procedure is repeated
until the lower bound of the distance from q to the next cluster to be processed
is greater than the distance from q to its current kth candidate neighbor.

Pseudocode 1 summarizes the algorithm for near neighbor search with cluster
reduction. The algorithm uses two priority queues: clustersQueue stores the
clusters according to how promising they are for the search, and neighborsQueue
maintains in each step of the algorithm the k nearest neighbors of q among
the objects that have already been processed (neighborsQueue has a limited
capacity of k objects). The function Reduce (line 8) compares q with the objects
in its closest region still not processed of Ci, and sets the covering radius of Ci
to the limit of its next region.

Figure 2 shows an example of 2NN search with two clusters. As we can see in
the figure, the distance from q to C1, d1, is smaller than the distance from q to
C2, d2, so C1 is more promising and it is processed first. The query is compared
with the objects in the first region of C1, and the cluster is reduced and inserted
again into the priority queue. Now, the distance from q to C1, d3, is larger than

c1

c2

q

d
5

d3

d
4

d1
d
2

d1

d2

d3

d4

d5

Fig. 2. kNN search with cluster reduction.

the distance from q to C2, d2. In this point, the search stops processing C1 and
jumps to C2, since it is more promising at this moment. After processing the first
region of C2, the distance from q to C2, now d4, is smaller than the distance to
C1, d3, so we process the next region of C2. After processing the second region of
C2, the search stops, since d3 and d5 are greater than the distance from q to its
second nearest neighbor (distance represented by the ball in dotted line). Note
that the search has finished without having searched exhaustively within either
C1 or C2, but only within one region of C1, and two regions of C2.

4 Experimental Evaluation

In this Section we present the results we obtained in the experimental evaluation
of the new algorithms for range search and kNN search, considering both the
effect of cluster reduction on the search cost and on the space requirements of
the index.

We have implemented the new algorithms on a List of Clusters, under the
framework provided by the SISAP Library1. In our experiments we used six
datasets from the library:

– English: a collection of 69, 069 words from the English dictionary.
– German: a collection of 75, 086 words from the German dictionary.
– Nasa: contains 40, 150 images from NASA archives represented by feature

vectors of dimension 20.

1 http://sisap.org/Metric Space Library.html

– Colors: contains 112, 544 color histograms, represented by feature vectors
of dimension 112.

– Uniform-10, Uniform-12: collections of 100, 000 vectors of dimensions 10
and 12 respectively, with uniform distribution in the unitary cube.

We have chosen two collections of each type (words, images, and uniformly
distributed vectors) since they contain objects of the same nature but present
different complexities for the search. For each dataset, 90% of the objects were
used as the collection to be indexed, and the remaining 10% were used as query
objects. In the case of word datasets, objects were compared using the edit
distance. In the case of vector datasets, we used the Euclidean distance.

4.1 Range Search

In order to evaluate the search cost obtained with cluster reduction for range
search, we used cluster sizes {10, 20, 40, 60, 80, 100}, and values of β (number of
regions) of 2, 5, 10, and 20 regions within each cluster, as well as the case in
which we used all possible regions within each cluster. The search radius was
adjusted to retrieve an average of 0.01% of the database for each query. Figure 3
shows the mean number of distance computations for processing all the queries
(10% of the dataset) for each collection and method. In the figure, “LC” stands
for List of Clusters without applying cluster reduction, “LC CR-i” stands for list
of clusters applying cluster reduction with β = i regions within each cluster. “LC
CR-all” stands for List of Clusters using as many internal regions as objects in
each cluster.

As we can see in the results, the application of cluster reduction produces
a significant improvement on the search cost. The higher cost improvement is
obtained when we use all the objects in the cluster to define a region. However,
the results obtained when using a smaller number of regions are very close to
the best result. An important result is that a significant part of the search cost
improvement is obtained when using just 5 regions within each cluster. Adding
more regions within each cluster reduces the search cost even more, but from the
results we can see that when using 10 or 20 regions within each cluster, adding
more regions does not improve significantly. Note also that this behavior holds
for all the cluster sizes we have considered and for all collections, no matter their
size or complexity.

4.2 kNN Search

In order to evaluate the performance obtained with cluster reduction for kNN
search, we used values of k ranging from 1 to 10, and values of β of 2, 5, 10
and 20 regions. We also considered the case in which each object in the cluster
defines an internal region. In these experiments, the cluster size was fixed to 40,
which produced good results in the previous set of experiments for all collections.
Figure 4 shows the results we obtained. The legend of the figures follows the
nomenclature we used in the experiments for range search.

As we can see in the results, the behavior of the search cost for different
values of β is similar to that obtained in the case of range search. The most
significant improvement in the search cost is obtained when using just 5 regions
within each cluster. When using 10 regions within each cluster, the search cost
is very close to that obtained when maintaining the distances from the cluster
center to all the objects in the cluster. The results are homogeneous for all values
of k in all collections.

4.3 Search Cost and Space Requirements

As we explained in Section 3, the number of regions defined within each cluster
produces a trade-off between the improvement in search cost and the increment
in the space requirements of the index. We obtain the best result in terms of
search cost when all the objects in the cluster are used to define a region within
the cluster, but this almost doubles the space requirements of the index. However,
as we have already seen, when using a smaller number of regions within each
cluster, the search cost is very close to the best result, with a very reduced
increment in the space requirements.

Table 1 shows for each collection the size of the index obtained when using
2, 5, 10, 20, and all possible regions within each cluster (in Kbytes). The column
“Relative” shows the relative value of the size of the index with respect to the list
of clusters without cluster reduction (shown in first row, LC). The increments
in the size of the index range from a 2% to a 20% when the number of regions
is between 2 and 10. When each object of the cluster is used to define a region
in the cluster, the space overhead reaches a 89%. Although in the case of using
all possible regions the space of the index is almost doubled, cluster reduction
preserves the O(n) space complexity of the index, an important property of
clustering-based methods when compared with pivot-based methods.

Figure 5 shows results on the trade-off between the search cost improvement
and the increment of the index size for range search queries. The improvement
of search cost and the increment of the size of the index are expressed as relative
values (in %) with respect to the search cost and index size of the original list
of clusters (as in Table 1). The figure considers all collections and values of β
in {2, 5, 10, 20, all}. When we define 2 regions within each cluster, the search
cost is reduced a 10% approximately, with a space overhead of only a 2%. Using
5 regions produces a space overhead of 9%, while the search cost improvement
ranges between 13% - 24% approximately with respect to list of clusters without
cluster reduction, depending on the collection. When the number of regions is
10, the search cost improves slightly. From this point, using more regions within
each cluster increments the size of the index but does not affect significantly
to the search cost. This result is important since it shows that we only need to
define a small number of regions within each cluster, independently of the size
of the cluster.

8

10

12

14

16

18

 10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
co

m
pu

ta
tio

ns
 (

x
10

3)

Cluster size

ENGLISH - range search

LC
LC CR-2
LC CR-5
LC CR-10
LC CR-20
LC CR-all

6

7

8

9

10

11

12

13

14

 10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
co

m
pu

ta
tio

ns
 (

x
10

3)

Cluster size

GERMAN - range search

LC
LC CR-2
LC CR-5
LC CR-10
LC CR-20
LC CR-all

2

2.5

3

3.5

4

 10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
co

m
pu

ta
tio

ns
 (

x
10

3)

Cluster size

NASA - range search

LC
LC CR-2
LC CR-5
LC CR-10
LC CR-20
LC CR-all

6

7

8

9

10

11

12

 10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
co

m
pu

ta
tio

ns
 (

x
10

3)

Cluster size

COLORS - range search

LC
LC CR-2
LC CR-5
LC CR-10
LC CR-20
LC CR-all

7

8

9

10

11

12

 10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
co

m
pu

ta
tio

ns
 (

x
10

3)

Cluster size

UNIFORM-10 - range search

LC
LC CR-2
LC CR-5
LC CR-10
LC CR-20
LC CR-all

10

11

12

13

14

15

16

17

18

 10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
co

m
pu

ta
tio

ns
 (

x
10

3)

Cluster size

UNIFORM-12 - range search

LC
LC CR-2
LC CR-5
LC CR-10
LC CR-20
LC CR-all

Fig. 3. Search performance in range search. Each figure shows the mean number of
distance computations (in thousands of distances) in terms of the size of the clusters.

4

6

8

10

12

14

16

 1 2 3 4 5 6 7 8 9 10

D
is

ta
nc

e
co

m
pu

ta
tio

ns
 (

x
10

3)

k

ENGLISH - kNN search

LC
LC CR-2
LC CR-5
LC CR-10
LC CR-20
LC CR-all

10

15

20

25

30

 1 2 3 4 5 6 7 8 9 10

D
is

ta
nc

e
co

m
pu

ta
tio

ns
 (

x
10

3)

k

GERMAN - kNN search

LC
LC CR-2
LC CR-5
LC CR-10
LC CR-20
LC CR-all

2

2.5

3

 1 2 3 4 5 6 7 8 9 10

D
is

ta
nc

e
co

m
pu

ta
tio

ns
 (

x
10

3)

k

NASA - kNN search

LC
LC CR-2
LC CR-5
LC CR-10
LC CR-20
LC CR-all

6

7

8

9

10

11

 1 2 3 4 5 6 7 8 9 10

D
is

ta
nc

e
co

m
pu

ta
tio

ns
 (

x
10

3)

k

COLORS - kNN search

LC
LC CR-2
LC CR-5
LC CR-10
LC CR-20
LC CR-all

4

5

6

7

8

9

 1 2 3 4 5 6 7 8 9 10

D
is

ta
nc

e
co

m
pu

ta
tio

ns
 (

x
10

3)

k

UNIFORM-10 - kNN search

LC
LC CR-2
LC CR-5
LC CR-10
LC CR-20
LC CR-all

6

8

10

12

14

 1 2 3 4 5 6 7 8 9 10

D
is

ta
nc

e
co

m
pu

ta
tio

ns
 (

x
10

3)

k

UNIFORM-12 - kNN search

LC
LC CR-2
LC CR-5
LC CR-10
LC CR-20
LC CR-all

Fig. 4. Search performance in kNN search. Each figure shows the mean number of dis-
tance computations (in thousands of distances) in terms of k, the number of neighbors
searched for each query object.

 5

 10

 15

 20

 25

 30

 35

 2 10 20 30 40 50 60 70 80 90

S
ea

rc
h

co
st

 im
pr

ov
em

en
t (

%
)

Space overhead (%)

Search cost vs. space overhead

β=2

β=5

β=10

β=20 β=all

ENGLISH
GERMAN
NASA
COLORS
UNIFORM-10
UNIFORM-12

Fig. 5. Search cost vs. space trade-off in range search with cluster size 40.

Table 1. Effect on space requirements (Kbytes).

β English German Nasa Colors Relative

LC 260.65 283.34 151.53 424.66 1.00

2 266.57 289.79 154.97 434.31 1.02
5 284.34 309.10 165.29 463.26 1.09
10 313.95 341.29 182.50 511.50 1.20
20 373.17 405.66 216.92 607.99 1.43
all 491.60 534.41 285.74 800.96 1.89

5 Conclusions

In this paper we have presented a new strategy, namely cluster reduction, and
new algorithms that avoid the exhaustive comparison of the query with the
objects in clusters that can not be discarded with the information in the index,
thus reducing the external complexity. We have presented the algorithms for the
particular case of List of Clusters, but this approach could be extended to other
clustering-based methods using the covering radius pruning criteria.

We define internal regions within each cluster, in such a way that all regions
contain approximately the same number of objects. When searching within a
non-discarded cluster, the cluster is processed one region at a time, in order of
proximity to the query. This allows us to progressively reduce the cluster until we
can discard the rest of its regions. The definition of a reduced number of regions
within each cluster reduces significantly the search cost, with a small increment
in the size of the index, and maintaining the space complexity as O(n).

We have presented an experimental evaluation with both real and synthetic
collections from the SISAP Metric Spaces Library. Our results show that the im-
provement in search cost ranges between a 13% - 25% approximately depending

on the collection and on the number of regions defined within the clusters. The
results also show that the search cost when using a small number of regions is
very close to that obtained when using all the possible regions.

Some aspects of this work remain as lines for future work. The most im-
mediate, to test the strategy of cluster reduction with other methods using the
covering radius pruning criteria, to compare it with other traditional MAMs,
and to evaluate its scalability with massive data sets. We are also exploring how
to extend this strategy to other similarity queries, such as the similarity join.

References

1. Chávez, E., Navarro, G., Baeza-Yates, R., Marroqúın, J.L.: Searching in metric
spaces. ACM Computing Surveys 33 (2001) 273–321

2. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity search. The metric space
approach. Volume 32 of Advances in Database Systems. Springer (2006)

3. Hjaltason, G.R., Samet, H.: Index-driven similarity search in metric spaces. ACM
Transactions on Database Systems 28(4) (2006) 517–580

4. Kalantari, I., McDonald, G.: A data structure and an algorithm for the nearest
point problem. IEEE Transactions on Software Engineering 9 (1983) 631–634 IEEE
Press.

5. Uhlmann, J.K.: Satisfying general proximity/similarity queries with metric trees.
Information Processing Letters 40 (1991) 175–179

6. Brin, S.: Near neighbor search in large metric spaces. In: Procs. of Conf. on Very
Large Databases (VLDB’95), Morgan Kaufmann Publishers (1995) 574 – 584

7. Dehne, F., Noltemeier, H.: Voronoi trees and clustering problems. Information
Systems 12(2) (1987) 171–175

8. Navarro, G.: Searching in metric spaces by spatial approximation. In: Procs. of
String Processing and Information Retrieval (SPIRE’99), IEEE CS Press (1999)
141–148

9. Ciaccia, P., Patella, M., Zezula, P.: M-tree: An efficient access method for similarity
search in metric spaces. In: Procs. of Conf. on Very Large Databases (VLDB’97),
ACM Press (1997) 426–435

10. Jr., C.T., Traina, A.J.M., Seeger, B., Faloutsos, C.: Slim-trees: High performance
metric trees minimizing overlap between nodes. In: Procs. of Extending Database
Technology (EDBT’00). LNCS(1777), Springer (2000) 51–65

11. Chávez, E., Navarro, G.: A compact space decomposition for effective metric
indexing. Pattern Recognition Letters 26(9) (2005) 1363–1376

12. Bozkaya, T., Ozsoyoglu, M.: Distance-based indexing for high-dimensional metric
spaces. In: Proc. of the ACM Conf. on Management of Data (SIGMOD’97), ACM
Press (1997) 357–368

13. Novak, D., Batko, M., Zezula, P.: Metric index: An efficient and scalable solution
for precise and approximate similarity search. Information Systems 36(4) (2009)
721–733

14. Skopal, T., Pokorný, J., Snásel, V.: Pm-tree: Pivoting metric tree for similar-
ity search in multimedia databases. In: Procs. of Advances in Database Systems
(ADBIS’04), Local Procs. (2004) 803–815

