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Abstract

In the last decades, much attention has been paid to the development of
succinct data structures to store and/or index text, biological collections, source
code, etc. Their success was in most cases due to handling data with a relatively
small alphabet size and to typically exploit a rather skewed distribution (text)
or simply the repetitiveness within the source data (source code repositories,
biological sequences of similar individuals).

In this work, we face the problem of dealing with collections of floating point
data that typically have a large alphabet (a real number hardly ever repeats
twice) and a less biased distribution. We present two solutions to store and
index such collections. The first one is based on the well-known inverted index.
It consumes space around the size of the original collection, providing appealing
search times. The second one uses a wavelet tree, which at the expense of slower
search times, obtains slightly better space consumption.

1 Introduction

Although the web still attracts much efforts, new big challenges deserve also attention.
Stock exchange markets, geographic information systems or the forthcoming electrical
grids (SmartGrid) are examples of producers of large amounts of floating point data,
which should be transmitted through networks and finally stored.

Therefore, the use of compression techniques is mandatory to minimize both the
flow of information through the network and the storage needs. Moreover, once
the data are stored, in cases like the SmartGrid, it is required to access these data
efficiently to help real-time decision-making processes. This last requirement implies
that we also have to develop the suitable indexing techniques.

Current indexing techniques are mature, providing the required performance for
most scenarios. However, the use of these techniques implies that additional space
should be reserved for them. When dealing with large amounts of information those
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indexes might became prohibitive in terms of space. A typical solution is to compress
the data with techniques that permit random decompression from any position. This
both saves space and permits indexes to be built over the compressed data.

Compression techniques for floating point data [3, 15], or those general purpose
techniques that are successful in compressing this type of data (like P7zip), require
that the decompression must start at the beginning of the compressed data. That
makes such compressors unsuitable to be coupled with indexing structures.

Therefore, we have a trade-off, if we want sub-linear search time over sequences
of real numbers, we have to store the data uncompressed in order to use an index
over them, hence increasing the space requirements. On the other hand, if we want
to save space, we have to keep the data compressed and then, to perform searches,
we have to decompress the data and then run a linear-time search algorithm.

The web has boosted the research in several structures that have some very con-
venient characteristics to store and/or index text. Largely, they base their qualities
in a relatively small alphabet, a quite skewed data distribution, and data that do not
suffer from frequent changes. This last requirement is also the case of our scenario,
since we tackle data that once they are produced, they should be stored for future
decision-making processes and never change. In this work, we aim at adapting those
structures to index floating point data.

Inverted indexes [9] have received much attention due to their application to index
text and more specifically to index the web. The main current research focus is on
saving space, since as typical indexes, they are an auxiliary structure added to the
original information.

At the same time, new structures (self-indexes) have integrated compression with
indexing. They take space proportional to the compressed text, replace it, and permit
fast indexed searching on it [14]. Those indexes can extract any text substring and
locate the occurrence positions of a pattern string in a time that depends on the
pattern length and the output size (number of occurrences), but not on the text size
(that is, the search process is not sequential). Most of them can also count the number
of occurrences of a pattern string much faster than just locating them.

In this work, we present two contributions. First, we study the adaption of in-
verted indexes to the indexation of real numbers. We will show that, in our exper-
iments, a structure around 6-19% larger than the original sequence obtains locate
times that are between 50% and around 2000 times faster than the sequential search.
Second, we study the use of self-indexes to index and store sequences of real numbers.
We used a wavelet tree (WT) [5], which is a very flexible structure that allows both
to store and index data. In our experiments, the resulting structure has a size that
is up to 26% smaller than the original one, whereas the locate times are between 5%
and 5 times faster than the sequential search. The price is that when using the WT,
the extract operation needed to recover a portion of the original sequence requires a
considerable amount of time, whereas that time is negligible in the case of inverted
indexes. Yet, it is expectable that in our scenario the typical query will consist in
checking if a data source surpassed a certain threshold, and displaying the whole
original data will be a rather infrequent operation.

As an example of these queries, let us suppose that we have the measures of
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the electricity production corresponding to each minute of the last years of a power
plant. The SmartGrid would be interested in the timestamps where the production
was within a given range. This is important, because when a solar plant produces a
certain amount of electricity, other fossil fuel plants should decrease their production
to avoid a waste of money, since electricity cannot be stored and the solar plants have
priority. Comparing the hour of the day and the weather conditions of those past
periods of time with the current conditions would allow the SmartGrid to predict in
advance (that is, this implies real time restrictions) the production of the fossil fuel
plants, in order to avoid a production excess.

The outline of this paper is as follows. Sections 2 and 3 present some related work
and the 64-bit IEEE 754 format. Sections 4 and 5 present our two contributions:
inverted indexes over real numbers and a WT over real numbers. Section 6 shows our
experiments. Finally, Section 7 shows our conclusions and directions for future work.

2 Related Work

An inverted index [9] is an auxiliary indexing structure that permits to speed up
searches over a given collection. It is composed of a list of search keys, and for
each key, a posting list that stores the positions in the original sequence where that
particular key can be found. To reduce the space requirements both the source data
and the posting lists can be compressed.

To compress the data, usually text, several compression techniques have been used.
Tagged Huffman [13] and the dense codes [1] are well-known examples. For repetitive
data, grammar-based compressors [10] proved also to be successful. To compress
the posting lists incremental encoding has been coupled with different techniques to
encode the gaps, like for example, byte-codes [18], Rice codes [16], or more recently
PforDelta [8]. Another way of saving space is that the pointers of the posting lists
point to blocks instead of pointing to exact positions [12]. When blocks contain several
occurrences of a searched key, the corresponding posting list has fewer elements. The
price is that now the index is only able to filter out some blocks and a sequential scan
within those blocks is required to find the exact locations of the searched key.

Another more recent approach are self-indexes, which were developed for relatively
small alphabets and for sources with a rather skewed distribution. One of the struc-
tures that have been used to build self-indexes is the WT. One of its many features
is to store and index sequences of numbers (or codewords representing the entries in
a given alphabet). There are also examples where they were used as self-indexes in
cases when the size of the alphabet is larger than in the case of text [11].

WTs were firstly proposed for solving rank and select queries over sequences on
large alphabets. Given a sequence of symbols B, rankb(B, i) = y if the symbol b
appears y times between positions 1 and i in B, and selectb(B, j) = x if the jth

occurrence of the symbol b in the sequence B appears at position x.
The original WT is a balanced binary tree. At the root node, the original alphabet

is divided into two halves. The only stored structure is a bitmap that assigns each
symbol of the original sequence to one of the halves of the alphabet. The symbols
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of one half go to one child and the rest to the other. Recursively, each child handles
in the same way, the part of the sequence it received. The WT reduces the searches
to rank and select operations on the bitmaps. Since then, they have been used for
different purposes, and with different shapes, for example Huffman shape [7].

3 Basics

We consider the double precision 64-bit IEEE 754 format. This standard divides
the floating point numbers into three components: (i) 1 bit to indicate the sign of
the number (1 for negative and 0 for positive numbers), (ii) 11 bits to represent the
exponent of the number, and (iii) 52 bits to represent the mantissa.

When we have a collection of real numbers the alphabet size is 264. Therefore, it
is likely that most of those numbers are unique, and very few repetitions would be
found. That is, the entropy is expected to be high. Yet, no assumptions can be made
and highly repetitive sequences can exist depending on the case.

The exponent indicates the magnitude of the number. In general, collections of
floating point numbers are measures or results of some computational process or real
phenomenon. Therefore, we expect that, despite the numbers could be significantly
different, their magnitude should be similar. In such a case, in a sequence of real
numbers, the number of different exponents is usually smaller than the 211 possibili-
ties. This can be also the case of the leftmost bits of the mantissa, as previous works
suggest [3, 15]. The reason is that the mantissa (m) is usually normalized to a number
1 ≤ m < 2, where the 1 is not represented and the bits that are closer to the decimal
point are stored in the leftmost bits reserved for the mantissa. Therefore, in most
cases, the last part of the mantissa is the hardest part to compress.

4 Using Inverted Indexes

As explained in the previous section, an inverted index over a sequence of real numbers
is likely to became a set of posting lists formed in most cases by only one value. This
leads to storing 64 bits in the list of keys plus, around log(n) bits per occurrence
(being n the size of the collection) in its posting list. This results in a large index.

Instead, we index only the first k bits of each number (the more compressible
ones) and store the remaining 64− k bits in an array of fixed length numbers.

This fits quite nicely with the search for real numbers, as we expect that seeking
exact real numbers will be rare, whereas the issue of range queries will be the usual
case. This results in a search involving the sign, the exponent and the first k − 12
bits of the mantissa (from left to right), since as explained, the leftmost bits hold
the most significant part of the number. Therefore, if the index includes the needed
bits, the query is directly solved. If the index does not hold all the bits needed to
answer the query, the index is used over the first part of the pattern (the first k bits
of the number) to filter out all the candidate positions, and then those positions are
inspected in the array of fixed length remainders (the last 64−k bits of each number).
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Therefore the question is: how many bits should we index? First, we consider to
calculate the entropy of the first k bits of all numbers, but this would give an unrealis-
tic level of compression, since any statistical compressor would require a table to hold
the correspondence between the original numbers and the codewords representing
them. Note that the size of such table should also be estimated.

A more realistic way is to use a Huffman compressor. We run that compressor
over the first byte, over the first two bytes, over the first three bytes, and over the first
four bytes of the numbers. Then, for those four cases, we compute the compression
achieved taking also into account the remainders, which are not compressed. If the
differences are not significant, we just index as many bytes as possible.

Yet along with our inverted index we need to maintain the original data to quickly
recover the original sequence or just the ith number. Therefore, we store the part of
the numbers that is indexed in another fixed length array, but using only the bits
that are strictly necessary to represent all the possible values, given that this is the
part of the numbers that has been proven to be compressible. That is, if there are
m different values in the indexed bytes, we use ⌈log(m)⌉ bits per number. This gives
fast direct access to any position and saves space.

Original 
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Remainders

number #1

3 bytes 5 bytes

4 1023

number #2

3 bytes 5 bytes
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Figure 1: Indexing real numbers with an inverted index.

Figure 1 shows the proposed structure, the shaded part is not kept and it is
included only for illustration purposes. In this case, we assume that we index the first
three bytes of each number. To do this, we consider the 64 bits of each floating point
number and we extract the first 24 bits. We treat those 24 bits and the remaining 40
bits as integers. In the upper part of the figure, we can see the array of fixed length
remainders (5 bytes each). In the lower part, we can see the inverted index, formed
by the list of keys, that is, the different values found in the first three bytes of all the
numbers of the collection (sorted increasingly), and their corresponding posting lists.

The indexed data is stored in a k-bit array. In the figure, there are only three
different keys. They are assigned the IDs 〈1, 2, 3〉 sequentially. Therefore, only two
bits are needed to represent them. For clarity, we include a table with the mapping
from the original 24-bit keys to their 2-bit IDs in Figure 1. Finally, to compress the
posting lists, we encoded the gaps of the incremental values with Rice codes.

5 Wavelet Trees

As explained a WT is a binary tree that stores and indexes a sequence of symbols
(S = s1, s2, . . . , sn) of a given alphabet σ, in our case, numbers of 3-4 bytes. Our WT
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has a Huffman shape. That is, the represented numbers are the codewords that the
Huffman algorithm assigns to each original symbol in S.

We used Francisco Claude’s library libcds [4]. libcds includes, among other com-
pressed data structures, an implementation of a WT with Huffman shape that occu-
pies space nH0(S) + o(n log(σ)), where H0(S) is the zero-order entropy of S.

In libcds, when the WT has Huffman shape, the structure of the tree is constructed
by pointers. These pointers represent an overhead (each pointer occupies 4 bytes) that
can be avoided if a canonical Huffman [17] is used. As in the case of a balanced WT
of libcds, pointers can be removed since the navigation through the tree can be done
performing rank and select operations, although this slows down the searches.

We follow the same idea used for the inverted indexes. We only index the first 3-4
bytes of each number, and store the remaining bytes in a fixed length array.

We expect that in many continuous data sources, it is likely that the numbers do
not vary significantly and the magnitude of the number (the exponent) and probably
the leftmost bits of the mantissa will remain rather stable.

Therefore, if we are indexing only, for example, the first three bytes, there are
chances of finding runs of several equal numbers in S. To avoid storing equal consec-
utive numbers, if we have to store the sequence sx, sx, sx, sy, sy, sx, sx, sx, sx, the WT
only stores the sequence sx, sy, sx, that is, it only stores a number when a change in
the sequence is found. Obviously, this would lose information. Yet to maintain the
runs, we store a bitmap B with one bit per number in S to mark the changes in S.
That bit is set to 1 if that number is different from the previous one, and 0 if it is
equal. In our example, the bitmap B is 1, 0, 0, 1, 0, 1, 0, 0, 0.

Therefore, once we found a match, for example the second element (sy) in the se-
quence stored in the WT (sx, sy, sx), to know its exact position in S, we first compute

select1(B, 2) = 4, which gives the position of the first sy of that run. Then, the num-
ber of repetitions of that run is obtained as select1(B, 3)− select1(B, 2) = 6− 4 = 2.

B is compressed with a bitmap technique [6] (also available in libcds) that uses
n+ o(n) bits. The additional o(n) bits are needed to provide efficient rank and select
operations. The same technique is used in the nodes of the WT.

Wavelet Tree
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Figure 2: Indexing real numbers with a WT.

Figure 2 shows the final structure, again the shaded area indicates data that is
not actually stored and that is included for illustration purposes. For simplicity, we
represent the WT with regular shape and assume that each indexed number has only
four bits (instead of the 24 bits of a 3-byte number). Next to each node of the WT, we
indicate the part of the alphabet handled by that node. In case of using a WT with
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Huffman shape, an additional table storing the correspondence between the original
symbols and the corresponding codewords is also needed.

6 Experimental evaluation

In our tests, an isolated IntelR©Xeon R©-E5520@2.26GHz with 72 GB DDR3@800 MHz
RAM was used. It ran Ubuntu 9.10 (kernel 2.6.31-19-server), using gcc version 4.4.1
with -O9 options. Time results refer to cpu user time.

We used several data sets downloaded from Martin Burtscher’s site.1 We used
collections lu, bt, sp, sppm, and sweep3d. Interested readers can find details of the
collections in the web page.

Table 1 provides some relevant information about the data sets. It also displays the
compression ratio2 obtained by a Huffman compressor applied over the first x bytes
and leaving the rest of bytes uncompressed. Except in collection sppm, which is highly
repetitive, compressing the first 3 bytes and leaving the rest of bytes uncompressed
achieve the best balance between compression ratio and indexing as many bytes as
possible. Therefore, this is our choice in our experiments. Finally, we also include
the compression ratio of P7zip (http://www.7-zip.org). We can see that, except
in very repetitive collections, the compression is rather poor and not far from that
of the simpler Huffman. Therefore, in a general scenario we do not expect that both
grammar-based or Lempel-Ziv-based self-indexes to be successful in space.

Description of the collections used Huffman Compression P7zip
Name SIZE(MB) #doubles Unique doubles 1 byte 2 bytes 3 bytes 4 bytes

bt 254.0 33,298,679 92.88% 91.33% 88.44% 87.22% 112.28% 72.09%
brain 135.3 17,730,000 94.94% 89.06% 85.56% 85.65% 100.98% 83.57%
lu 185.1 24,264,871 99.18% 89.84% 88.18% 88.45% 115.15% 78.04%
sp 276.7 36,263,232 98.95% 90.74% 85.67% 85.17% 101.96% 74.23%

sppm 266.1 34,874,483 10.24% 91.26% 82.49% 73.98% 66.19% 9.01%
sweep3d 119.9 15,716,403 89.80% 89.11% 85.80% 85.56% 86.64% 27.90%

Table 1: Properties of the data sets and compression achieved by: a Huffman com-
pressor over the first x bytes (x = 1, . . . , 4), and P7zip run on the whole data.

We include experiments3 for count, locate, and extract for our WT-based index
(WT), our full positional inverted index (II), and a block-addressing inverted index
(II-b) with blocks containing b = {1024, 2048, 4096, 8192} numbers.

We performed count and locate for 1000 numbers. We randomly chosen patterns
of 3 bytes (those indexed), 4 bytes (3 indexed plus 1 byte), and 5.5 bytes (3 indexed
plus 2.5 bytes). The last two cases force a further search over the array of fixed length
remainders, using the candidate positions provided by the index.

When performing count, in the case of the inverted indexes, searches involving
only the indexed bytes are solved directly by the index as we also store the number of
occurrences of each key. However, for searches involving more bytes, we have to run

1http://www.csl.cornell.edu/~burtscher/research/FPC/datasets.html
2The size of the compressed file as a percentage of its original size.
3Source code available at http://vios.dc.fi.udc.es/ieee64.
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a locate search over the first 3 bytes to find a list of candidate positions that should
then be inspected in the fixed length array of remainders. Therefore, if the patterns
are more than 3 bytes long, the count time required is almost the same as for locate.

Figure 3 shows the average times after the application of the corresponding search
operation over all the collections. We try to capture the average behavior over dif-
ferent sources. We include as a baseline a sequential search (SS) over the original
sequence of real numbers.

Figure 3(a) shows the count time for patterns of length 3. In the case of inverted
indexes, this is negligible given that the pattern is indexed and, as explained, that
operation only includes an access to the key entry in the inverted index. The WT
needs to perform select operations from the leaves to the root that require some
computational effort, which implies a worsening in the count times. However, it is
still 5 times faster than the sequential search.

Figure 3(b) shows that the II locates patterns formed by the first three bytes of real
numbers around 2000 times faster than the sequential search. The price is a structure
around 15% larger than the original sequence. The block-addressing inverted indexes
give different space/time trade-offs, where the time ranges from 11 times faster to 70%
faster than the sequential search. Finally the WT, which is the shortest structure, is
around 5 times faster than the sequential search.

Figure 3(c) shows the case of searching the first 4 bytes (one more than those
indexed). As explained, the count operation is almost the same as locate. Still, the
II is around 1700 times faster than the sequential search. The block-addressing IIs
obtain also similar improvements as in the case of 3 bytes. The WT improves the
values of the sequential search in almost 4 times.

Finally, locating patterns formed by the first 5.5 bytes (see Figure 3(d)) yields
worse values due to bit manipulations not aligned to byte values. The II is around 360
times faster than the sequential search. The block-addressing IIs obtain improvements
from 7 times to 50% faster than the sequential baseline. In this case, the WT only
achieves an improvement of 5% with respect the sequential search, yet it is still able
to obtain a 10% reduction in space.

We also measured the time to recover the original data (extract). Our IIs recover
around 115 × 106 numbers per second. Yet, extract in the WT is more expensive,
as the WT has to perform rank operations from the root to the leaves to recover the
original numbers (the current implementation in libcds library takes no advantage of
extracting values in consecutive positions 1..n, to recover S[1..n]). The WT recovers
around 0.4× 106 numbers per second.

7 Conclusions

In this work, we have presented succinct indexes for collections of IEEE 754 double
precision floating point numbers. The size of the resulting structures (including both
the data and the index) is close to the original size: between 26% smaller and 19%
larger than the original sequence. The improvements in search time are remarkable in
the case of inverted indexes to exact positions, being up to around 2000 times faster
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(c) Locate with patterns of 4 bytes.
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(d) Locate with patterns of 5.5 bytes.

Figure 3: Different space/time trade-offs for count and locate operations. In subfig-
ures (b), (c), and (d), the y axis is in logarithmic scale.

than sequentially scanning the original collection. The block addressing IIs and the
WT structure yield different interesting space/time trade-offs.

We expect that the WT would obtain better results when applied to more sta-
ble collections, as expected in the case of SmartGrid. Yet, in average, it displayed
reasonable improvements in space and search speed.

As future work, following the ideas in [2], we are working in a new method to
compress sequences of real numbers that allows direct access to any position.
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