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Abstract. Given a two-dimensional space, let S be a set of points stored
in an R-tree, let R be the minimum rectangle containing the elements
of S, and let ¢ be a query point such that ¢ ¢ S and RN ¢q # . In this
paper, we present an algorithm for finding the empty rectangle with the
largest area, sides parallel to the axes of the space, and containing only
the query point ¢q. The idea behind algorithm is to use the points that
define the minimum bounding rectangles (MBRs) of some internal nodes
of the R-tree to avoid reading as many nodes of the R-tree as possible,
given that a naive algorithm must access all of them. We present several
experiments considering synthetic and real data. The results show that
our algorithm uses around 0.71-38% of the time and around 3-4% of the
main storage needed by previous computational geometry algorithms.
Furthermore, to the best of our knowledge, this is the first work that
solves this problem considering that the points are stored in an R-tree.

1 Introduction

In computational geometry, there is a research line that is aimed at finding empty
geometric figures in a space that contains a set of points. For example, one of
them is to find the largest empty axis-parallel rectangle in a space containing a
set of points (see Figure 1(a)). A variant of the previous problem is to find the
largest rectangle that only contains a given query point, assuming that the query
point does not belong to the set of points in the space (see Figure 1(b)). More
variants of this problem are those that find a circumference, a square, or a convex
hull. In addition, in the case of rectangles and squares, another alternative is to
consider figures with sides that are not parallel to the axes.

The search for empty geometric figures with the largest area, or any other
metric, has applications in several fields. Among them, we can cite data mining
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(a) Largest empty rectangle. (b) Largest rectangle containing only a
query point (the triangle point is the query
point).

Fig. 1. The two variants of the problem.

[EGLMO3], geographical information systems (GIS), and very-large-scale inte-
gration design [ADM™10a].

In the case of data mining, Edmonds, et al. [EGLMO03] propose the search
for empty spaces as a complementary technique for the characterization of data
patterns. More precisely, it is interesting to discover if there are certain ranges of
values that never appear together. For example, suppose a database that stores
the amounts and dates of bank deposits. Consider a graph where we have the time
in the x axis and the amount in the y axis. An empty space indicates that during
a given period of time there were not deposits within a certain range of amounts.
For example, if we find that during years 2007 and 2008, there were no deposits
of more than one million dollars, this could a symptom of a new economic crisis
that is arising. In this scenario, the query point could be defined by a time
point and a minimum deposit amount. Apart from the discovered knowledge,
the empty spaces have value by their own [EGLMO03]. Another example could
be a database of a Hospital or Social Security system. Considering data about
surgery operations, it is possible to discover that there are not face transplants
in the database before 2008. This knowledge indicates that such procedure was
not possible before that year, and it can be introduced as a integrity restriction
of the database, in order to perform semantic query optimization [Kin81].

As an example of GIS application, suppose that we want to build a park in
a region, and that we have a database that stores the buildings/houses, electric
towers, and other important facilities of that region. The following queries can
be interesting: which is the largest empty rectangular space? (this gives the space
where it is cheaper to place the park) or which is the largest empty rectangular
space around a certain position q?, if we have a restriction in the position of the
park.

The spatial databases (SDB) represent an important aid for GIS to manage
large amounts of data. Yet, SBDs require the development of efficient algorithms



and data structures in order to address several query types, among others, the
window query, the intersection query, the nearest neighbor, or the pair of nearest
neighbors [GG98,SC03]. Many of those query types are problems that were first
tackled in the field of the computational geometry, where it is assumed that
all spatial objects can be fit into main memory, and later, those problems were
faced in the field of the SBDs. Following this path, several algorithms have been
proposed considering that objects are stored in a multidimensional structure,
in most cases an R-tree [Gut84], for example; [HS98,Cor02,CMTV04] present
several algorithms that solve the k-pairs (k > 1) of nearest neighbors between
two sets, [RKV95] shows an algorithm to find the nearest neighbor to a given
point, and more recently, [BK01] presents an algorithm to obtain the convex hull
of a set of points stored in an R-tree.

Given a space with a set of points stored in an R-tree, the main contribution
of this paper is an algorithm, called ¢g—MER, that finds the largest axis-paralell
rectangle that only contains a given query point. The algorithm computes a set
of candidate maximum empty rectangles (CERs). At least one of these CERs is
either the solution or a higher bound of the solution. Instead of inspecting the
complete R-tree, we only inspect the blocks/nodes of the R-tree that intersect
with those CERs. Our approach takes advantage of the extensive use of the R-
tree in real database management systems (Oracle, PostgreSQL, etc.), extending
the usefulness of that data structure.

The results show that our algorithm requires between 0.71% and 38% of
the running time and between 3% and 4% of the storage required by the naive
approach of reading all the points from disk, storing them in main memory,
and finally running a computational geometry algorithm with those points. The
improvement of our approach comes, in part, by its filtering capability; in our
experiments, g—MER only needed to access between 10% and 55% of the blocks
of R-tree

The outline of the paper is as follows: Section 2 presents some previous
related work. Section 3 presents our algorithm. Section 4 shows the results of
our experiments. Finally, Section 5 shows our conclusions and directions for
future work.

2 Related work

Given a space with a set of n points, the search for the largest empty geomet-
ric figure (circumference, square, rectangle, or convex hull) has been an active
research field in last decades. Focusing on the problem of finding the largest
rectangle with sides parallel to the axes of the space, two variants have been
considered: (i) no information about the position of the figure is provided, and
(ii) information about the position is provided, typically by means of a point.
The first variant has been extensively studied. The first work is [NLH84],
where two algorithms are described: the first one takes O(n?) time and O(n)
space, the second one takes O(n log? n) expected time considering that the points
are randomly arranged into the space. Later, in [CDL86], it is presented a divide-



and-conquer algorithm with O(n log® n) time complexity using O(nlogn) space.
An algorithm with similar time complexity is discussed in [AS87], this one using
O(n) space. In [Or]90], it is shown an algorithm that takes O(slogn) time, where
s is the number rectangles with the largest area. Moreover, that algorithm has an
expected time O(nlogn). A more recent approach [DN11] takes O(nlog®n + s)
time and O(logn) space by using a priority search tree.

For the second variant, [ADM*10a], [ADM*10b], and [KS11] present algo-
rithms to find the largest empty rectangle that contains a query point. The
algorithm presented in [ADM™*10a] and [ADM*10b] performs a preprocessing
step where the space is divided into a set of cells such that all points that fall in
the same cell produce the same maximum empty rectangle (MER). These cells
are stored in main memory organized into a data structure for objects in two
dimensions called range tree. The preprocessing stage takes time and storage
O(n?logn) and, to retrieve the MER corresponding to a query point ¢, an addi-
tional O(logn) time is needed. The algorithm in [KS11] corresponds to a signifi-
cant improvement in terms of time and space with respect to those in [ADM™ 10a]
and [ADM*10b]. Specifically, this algorithm requires O(na(n)log® n) storage to
maintain the data structure (a segment tree), O(na(n)log* n) time to build the
structure, and O(log* n) time to find the MER that only contains ¢, where the
term a(n) is the slowly increasing inverse Ackermann function.

All the algorithms commented so far assume that the objects can be fit into
main memory. Edmonds, et al. [EGLMO03] face the problem of finding all the
empty spaces left by a set of objects, assuming that the main memory does
not have enough space to store all the objects. That algorithm takes O(|X||Y]),
where X e Y are the distinct values of the coordinates of the data set. Yet, this
work does not consider the case where the objects are stored in a multidimen-
sional structure.

3 Empty rectangle with largest area that contains only a
query point

Given a set of points stored in an R-tree, a naive solution could be to read all of
them from the R-tree and then find the largest empty rectangle using some of
the algorithms described in Section 2. Instead of reading all nodes (disk blocks)
of the R-tree, g—MER uses the query point ¢ and the properties of the MBRs of
the R-tree to avoid inspecting as many blocks as possible. It requires two steps:

1. First, it computes a set of CERs, where at least one of them is either the
solution or a higher bound of the solution. In order to obtain those CERs,
another two steps are needed:

(a) A set of points, called C, is generated from the query point ¢ and the
MBRs of the R-tree. Specifically, for each MBR in parent nodes of the
leaves of the R-tree, the algorithm might add one or two points to C.
Those points correspond to the most distant points to the query point
q that could be located in the considered MBR. Therefore, it is likely



that most of the points in C' do not exist in reality. Figure 2 displays
an example. From the MBRs in parent nodes of leaves (the rectangles
drawn with solid lines) and the query point ¢, g—MER produces the
set of points C' = {p1, p2, p3, P4, P5, 6} The MBRs in parent nodes of
leaves are processed sequentially. The process of the MBR R; produces
the point p;, since it is the farthest point with respect to ¢ that could be
located in that MBR, but, as explained, p; is probably not part of the
set of points actually stored in the R-tree. In the same way, the process
of Ry produces the point p2, Rz generates ps and pg, and finally R4 adds
p3 and py.

(b) A computational geometry algorithm is run using the set C as input to

finally obtain the CERs. A CER is similar to a MER, which is a rectangle
that cannot be enlarged if we want to keep only the query point inside
it. The difference between a CER and a MER is that while MERs are
computed with real points, CERs are computed using C.
Observe that a MER (CER) is not necessarily the largest empty rectangle
containing ¢. Figure 2 displays two CERs, labeled as A and B, which
are the rectangles with dotted lines. There are others, but they are not
shown to simplify the illustration. For example, observe that the CER
B can not be enlarged in any direction. To the south, the space ends; to
the east, the CER can not be enlarged, otherwise B would contain the
point pg; to the north, the CER founds a barrel in points ps and py; and
finally to the west, ps represents an obstacle to the growth of B. This
does not mean that B is the largest empty rectangle containing ¢, for
instance, A is larger.

2. In the second step, the CERs are processed according to their area, from
largest to smallest. For each CER, our algorithm accesses the leaves of the
R-tree that contain the real points that intersect with such a CER. Those
real points, that we call C’, are used to obtain a candidate solution (by means
of the same computational geometry algorithm used to obtain the CERs).
This candidate solution is the real MER (since it is computed using real
points) that is equal to or contained into the processed CER. As the process
of CERs progresses, the candidate solutions may improve previous ones. For
example, when the CER B of Figure 2 is processed, it is necessary to access
the children of the entries containing the MBRs R3 and R4. Those nodes
are leaves of the R-tree, and contain the real points that caused the creation
of R3 and Ry4. Then ¢g—MER inserts in C’ the points that intersect with B
and processes C’ with the computational geometry algorithm. Finally, if the
obtained candidate solution is better than the previous ones, then it passes
to be considered the best candidate solution so far.

3.1 Basic definitions

First of all, let us present the problem more formally and some definitions that
will be used later.
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Fig. 2. An example of the elements involved in the first step of ¢g—MER.

Given a set of points S in a space R C R?2, which is stored in an R-tree, and
a point ¢ ¢ S that is in R, find the rectangle, also in R, with the largest area
that only includes q.

Let p be a point, v, is the vertical line that covers R from north to south
and passes through p. h;, is the horizontal line that covers R from west to east
and passes through p. These two lines define four regions in R: (i) NW (p) is the
northwestern region of p, (ii) NE(p) is the northeast region of p, (iii) SW(p) is
the southwestern region of p, and (iv) SE(p) is the southeast region of p. Figure
3(a) displays all these elements.

The four corners of a rectangle r are denoted as: (i) NW (r), the northwestern
corner, (ii) NE(r), the northeast corner, (iii) SW (r), the southwest corner, and
(iv) SE(r) the southeast corner. In addition, a rectangle r defines four lines: (i)
W (r) is the line that connects NW(r) with SW(r), (ii) E(r) is the line that
connects NE(r) with SE(r), (iii) N(r) is the line that connects NW(r) with
NE(r), and (iv) S(r) is the line that connects SW(r) with SE(r). Figure 3(b)
shows these elements.

3.2 Obtaining the CERs

As explained, ¢—MER starts by computing a set of CERs. To obtain them, we
use a variant of a computational geometry algorithm that obtains the rectangle
with the largest empty area. This variant, that we call ComputeCER, produces
the set of MERSs, instead of obtaining only the largest one.

The key idea is to use ComputeCER with much fewer points than in the case
of using the computational geometry algorithm over the whole set of points.

As it can be seen in Algorithm 1, the first step of g—MER obtains zero, one,
or two points from each processed MBR, depending on three cases.

The first case is when the if of line 8 is true. This means that the considered
MBR; is completely inside one of the regions defined by the query point (see
Figure 4(a)). In this case, the algorithm produces the point of the farthest corner
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Fig. 3. Definitions.

of M BR; with respect to the query point. In Figure 4(a), it is supposed that
MBR; is in SE(q), and therefore the point SE(MBR;) is added to the set of
points C.

Another treated case is when the if of line 19 is true. This means that M BR;
intersects with two of the regions defined by the query point (see Figure 4(b)).
In this case, two points are added to the set C, those in the farthest corners of
M BR,; with respect to the query point. In Figure 4(b), M BR; intersects with
regions NE(q) and SE(q), and therefore the algorithm adds NFE(M BR;) and
SE(MBR;) to C.

The last case appears when the query point is inside the considered M BR;.
For this situation, we have three options:

1. The first option is to split C in two sets of points C; = CU {NE(M BR;),
SW(MBR;)} and Cy = C U {NW(MBR;),SE(MBR;)}. Now each set
should continue the whole process independently. This apparently does not
represent a big issue. The problem arises when the query point is in more
than one MBR. In this case the number of set of points increases rapidly,
since for C; two new sets should be created Ci; and Cis, and the same for
C5. Furthermore, since for each set of points C;, several CERs should be
created, if the number of sets of points grows fast, the same will happen
with the number of CERs.

2. To access the leaf node corresponding to M BR; and add all the real points
it contains to C. This increases significatively the number of points in C' and
thus, the number of CERs to be processed. Observe again, that the query
point might be inside several MBRs, and then all the points in the leaves
corresponding to the entries of those MBRs should be added to C.

3. No point is added to C.

We chose the third option since the other two options increase the compu-
tation time, whereas the benefits we found in the filtering capability were not
significative.



Algorithm 1 Algorithm that processes an R-tree to obtain the CERs.

1: stepl(q, T)

2: INPUT: ¢ {the query point and T the R — tree}

3: OUTPUT: Lcrr {a set of CERs}

4: Let C = 0 {a set of points}

5: for each node n parent of the leaves of T do

6: for each MBR M BR; in n do

7 if g is not inside M BR; then

8: if hg and vq do not cross N(MBR;), S(IMBR;), E(MBR;), and W(MBR;) then

9: if M BR; is completely inside NW(q) then

10: add NW(MBR;) to C

11: else if M BR; is completely inside SW(q) then

12: add SW(MBR;) to C

13: else if M BR; is completely inside NE(q) then

14: add NE(MBR;) to C

15: else if M BR; is completely inside SE(q) then

16: add SE(MBR;) to C

17: end if

18: else

19: if hq or vg crosses exactly two of the lines N(MBR;), S(MBR;), E(MBR;), and
W (MBR;) then

20: if M BR; intersects with NW (q) and SW(q) then

21: add NW(MBR;) and SW(MBR;) to C

22: else if M BR; intersects with SW(q) and SE(g) then

23: add SW(MBR;) and SE(MBR;) to C

24: else if M BR; intersects with NE(q) and NW(q) then

25: add NE(MBR;) and NW(MBR;) to C

26: else if M BR; intersects with SE(q) and NE(q) then

27: add SE(MBR;) and NE(MBR;) to C

28: end if

29: end if

30: end if

31: end if

32: end for

33: end for

34: Locgr = ComputeCER(C, q)

As explained, once we have the set of points C, the algorithm runs the Com-
puteCER to obtain the CERs. Next we prove that the solution cannot be larger
than, at least, one of these CERs.

Theorem 1. Let Loggr the list of CERs obtained by the first step of ¢-MER.
The solution or solutions can not be larger than one of the CERs in Lcgr.

Proof:

It is clear that the solution should be one (or more) of the real MERs. For
each real MER, we are going to prove that the first step of g—MER, produces at
least one CER that is either equal or a higher bound of that MER. We prove
this by showing that the points computed by the first step of g—MER using one
MBR can not shorten a CER with respect to the corresponding real MER. Once
we prove this for the points obtained from one MBR, the proof trivially extends
for any number of MBRs.

Let MBR, a MBR in an entry of a node of the R-tree, which is parent of
leaves:

Case 1 Assume that M BR, is fully inside one of the regions defined by ¢, then the
first step of g—MER adds only one point to the set C. Let P, be that point
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Fig. 4. The two cases tackled by the first step of g—MER.

and let us suppose without loss of generality that P, is in NW(q). Figure
5(a) shows an example of the four regions defined by P, and the MBR
responsible of its creation.

NWPw | p NE(Py,) NW(Py) NE(Pi)
, P
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L2 NW (P | MBR, NE(P.)
|
| Py
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(a) Example of Case 1. (b) Example of Case 2.

Fig. 5. The two cases of the proof.

Assuming no other MBR, the algorithm ComputeCER creates two CERs:
(1) the union of SW(PFy,,) and SE(P;,), and (2) the union of N E(P;,;,) and
SE(Pim). The region NW (P;,;,) can not be part of a CER that contains ¢
and does not contain Pj,,, by construction.

If by chance, there is a point in S (the set of real points) with the same
coordinates as P, we are going to show that the CERs (1) and (2) are
larger than corresponding the real MERs. It is clear that the existence of
M BR,, requires the presence of more points than P, , at least one more. One
of these two cases should occur. (i) At least the point SE(MBR,,) exists:
this point would not allow the existence of MERs with the same size as the
CERs (1) and (2), given that SE(M BR),,) is closer to ¢ than P, since it
is more to the right and in a lower position with respect to Pj,,. Thus, it



would represent an obstacle that would produce MERs shorter than (1) and
(2). (ii) The existence of, at least, another two points, one that intersects
with N(MBR,) and another one that intersects with W(MBR,,). These
points would be placed with respect Py, more to the right (that lying on
N(MBR,)) and in a lower position (that lying on W(MBR),)). Therefore,
again the real MERs would be shorter than the CERs (1) and (2).

If Py, does not exist in reality, by construction, M BR,, requires the exis-
tence of at least two points; one intersecting N(M BR,,) and another one
intersecting W (M BR,,). Those points, once again, must be placed more to
the right and in a lower position with respect to Py, respectively. Therefore,
the real MERs would be shorter than the created CERs, as well.

Thus, we can conclude that the CERs (1) and (2) are higher bounds of the
real MERs.

Case 2 Now we consider that M BR,, is between two regions of those defined by g.

Let P, and P,; be the two points produced by the first step of g—MER.
Without loss of generality, let us suppose that those points are to the east
of ¢ (see an example in Figure 5(b)). As it can be seen in the figure,
there are only two CERs that only contain ¢: (1) The area resulting from
(SW(Pym) "NNW (Pp1,)) U(SE(Pyn) "N NE(Pyp)), and (2) the area resulting
from NW (Py,) U SW(P,,), or which is the same, NW (P,p) U SW (P,p).
For the CER (1), if the real points in M BR,, are placed only intersecting
with N(M BR,,) or S(M BR,,), the obtained CER is equal to the real MER.
In any other case, the MER that contains ¢ would be, at least, a rectangle
less high, and therefore it would have a shorter area.
In the case of CER (2), the existence of M BR,, requires the existence of, at
least, one point lying on W (M BR,,). That point would be more to the west
than Py, and P,; and, at the same time, more to the east of ¢ (otherwise
MBR, would include q), therefore that point would shorten the real MER
with respect to the CER (2).

Observe in Figure 2 that, for example, any point that do not lie on the east
and south lines of the MBR, R3 would shorten the CER A. Indeed, those points
should exist, otherwise R3 would not be created. Therefore A is a higher bound
for the real MER.

Figure 6 displays a possible arrangement of the real points. As seen, the real
MER A’ is shortened with respect to the CER A, due to, among other points,
the existence of a point intersecting with N(Rj3). The case of the CER B is
even worse, as its corresponding MER, B’ is not a MER anymore, as now B’ is
included in the MER A’.

3.3 Computing the rectangle with the largest area containing ¢q

Algorithm 2 shows the second step of g—MER, which obtains the largest MER
containing ¢. The set of CERs obtained from the first step are stored in a heap
where the largest CER is at the top.
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Fig. 6. An example of a real MER corresponding to Figure 2.

The algorithm starts by checking the largest CER. The function Get extracts
the top of the heap. Now the corresponding real MER is computed by accessing
the real points stored in the leaves of the R-tree. We run the computational ge-
ometry algorithm computeER3 with the real points that intersect the considered
CER. To obtain them, we check all the MBRs of parent nodes of leaves that
intersect with the current CER. Moreover, from the points inside those MBRs,
we only consider those that actually intersect with the considered CER.

The real MER is stored in a temporary object (TMPMER). The function
area computes the area of that MER, and if its area is greater than that of the
current M ER,,q., then TMPMER becomes M ER,,4... The process ends when
the heap becomes empty or the area of the CER at the top of the heap is shorter
than that of the current M ER, 4.

4 Experimental results

We compared ¢—MER with a naive algorithm that retrieves all the points stored
in the R-tree by reading all the blocks and then solving the problem in main
memory with the computational geometry algorithm (computeER). We used the
algorithm of Naamad, et al. [NLH84] modified to meet our requirements, that
is, the computation of the largest rectangle containing only q. computeCER is
also a modification of the same algorithm, which obtains all the possible MERs
containing q.

The restriction of the query point allows some improvements in the algorithm
that speed up its execution times. Naamad’s algorithm compute three types of
MERs (called A, B, and C). The MERs of Type A are obtained by drawing a
vertical line from the top to the bottom of the space passing through each point
(see Figure 7). In our case, we only have to compute the MER delimited by the

3 computeER is similar to computeCER, with the difference that computeER only
returns the largest MER.



Algorithm 2 Algorithm that computes the rectangle with the largest area con-

taining a query point

1: Step2(Hcer, 4, T)

2: INPUT: {Hcggr a heap with the CERs obtained by ComputeCER, q the query point, and T
the R — tree}

3: OUTPUT:MERpaz {the largest rectangle containing only q}

4: Let a = 0 {The area of the MER currently stored at M E R0

5: repeat

6:

7

8

9

Let C’ = 0 {A set of points}
Let CER = Get(Hcer) {Extracts the first CER of the heap Hcgr}
for each node n parent of leaves with M BRs intersecting with CER do
: Let C’ = C’U all the points stored in the children of n that intersect with CER

10:  end for

11: Let TMPMER = compute ER(C’, q) {The computational geometry algorithm computes the
largest rectangle only containing g considering the points in C’}

12: if area(TMPMER) > a then

13: Let MERaw = TMPMER
14: Let a=area(TMPMER)
15: end if

16: until (Hcogr is empty) OR (area(CER)< a)

lines that intersect with points W and Z, since that MER is the only one (of
this type) that contains ¢g. To compute this type of MERs, Naamad’s algorithm
sorts the points by the x coordinate, we take advantage of this ordering to obtain
the target MER by performing a binary search that obtains the nearest points
to ¢, in our example, the points W and Z. This reduces the cost from linear to
logarithmic. Similar improvements were applied to MERs of Type B and C.

Fig. 7. Naamad’s Type A MERs.

We suppose that it is possible to store all the points in main memory. This
eliminates the effect of the memory over our experiments, since we provide the
computational geometry with all the memory it needs that, as we will see, it is
much more than ¢—MER.

The algorithms were implemented in Java and the programs were run on an
isolated Intel®Xeon®-E5520@2.26GHz with 72 GB DDR3@800MHz RAM with
a SATA hard disk model Seagate® ST2000DL003-9VT166. It ran Ubuntu 9.10
(kernel 2.6.31-19-server).

The performance of both algorithms was measured comparing the number
of accessed blocks and the real time that each algorithm required to find the
solution. The time includes the time required to read the points from disk. We



recall that we assume that the R-tree is already built (that is, the time required
to build it is not included in our times) since it is the structure that stores
the points. Both ¢—MER, and the naive approach use a stack to traverse the
R-tree. This stack is used to avoid the repetitive read of internal nodes of the
R-tree from disk. As a search traverses the R-tree downwards, the nodes are
stored in the stack, if we need to go back upwards, we already have the parent
node at the top of the stack, therefore the maximum size of the stack is the
height of the R-tree. For measurement purposes, these reads of nodes in the
stack are not counted. We do not use any other read buffer, therefore whenever
the algorithms read a node (disk block) that is not in the stack, that read is
counted regardless of whether the node comes from disk or from the operating
system cache. Therefore, the measure of accessed blocks eliminates the effect of
any type of buffer cache (excepting the simple stack).

We considered real and synthetic set of points in a two-dimensional space
[0,1]x[0, 1]. The synthetic data sets have uniform distribution. The real data sets
are the Tiger Census Blocks data set (RD1) from the web site rtreeportal.org
and a data set (RD2) that was given by a Chilean company provided that the
source were not published. Figure 8 shows some of the points of these data sets
(we only plot some of them in order to simplify the graphs). The sizes of the
sets were as follows: for the synthetic data, we used sets with size 200K*, 500K,
1,000K, 2,000K, and 5,000K; and the real data sets have size 556K (RD1) and
700K (RD2). In the case of the synthetic data sets, we considered block sizes of
1KB® and 4KB. Furthermore, for all measures, we computed the average of 100
queries.
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Fig. 8. Real data sets.

The results of the experiments using synthetic data are summarized in Fig-
ures 9-11 and Table 1. In Figures 9 and 10, we can observe the filtering capability
of the g—MER algorithm. For example, g—MER only needs to access around be-

41K = 1,000 points
5 1KB = 1,024 Bytes



tween 10% and 55% (Figure 9) of the blocks of the R-tree, whereas the naive
algorithm needs to access all of them. Furthermore, we can see that when the size
of the set increases, the percentage of the blocks accessed by ¢g—MER, decreases.
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Fig. 9. Percentage accessed blocks.
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Fig. 10. Performance (accessed blocks) against total blocks of R-tree.

Figure 10 shows the amount of blocks accessed by ¢g—MER and the total
number of blocks that the R-tree uses to store the points. When the size of the
collection of points increases, we can see that the slope of the line that shows the
blocks accessed by g—MER to solve the problem is less pronounced than that
showing the size of the R-tree.

Figure 10 also shows the effects of the size of the blocks over the amount of
accessed blocks, which, as expected, decreases inversely proportional to the size
of the block.



size of set | size of [ # points |
(thousand) |block(KB)|problems|average[minimum[maximum|
200 1 54 928 57 5,893

4 48 2,206 217 8,464

500 1 60 1,307 90 14,520

4 54 3,002 306 12,941

1,000 1 63 1,799 81 28,893

4 58 3,601 416 17,508

2,000 1 69 2,599 89] 57555

4 66 4,774 344 32,559

5,000 1 k4 4,345 82| 143,402

4 74 6,782 365 53,101

Table 1. Description of the problems.

As explained, we do not use any read buffer (except the stack). The effect
of any read buffer, for example the operating system buffer cache, would benefit
only the ¢g—MER algorithm, since it might access several times the same R-tree
leaf node when processing different CERs. However, the naive approach would
not improve its performance as it reads from disk each leaf node once, since the
repetitive reads of intermediate nodes are solved by the stack.

The second step of g—MER obtains several sets of points C’, one for each
CER computed by the first step. Each set is provided as input to the algorithm
ComputeER, which solves the problem of finding the largest empty rectangle with
those points in main memory. In Table 1, we denote each run of ComputeER
with a set of points C” (line 11 of Algorithm 2) a problem. Table 1 describes each
of those problems considering different sizes of original sets of points and sizes
of blocks. The third column shows the amount of problems solved by ¢—MER
to obtain the final solution. This amount also includes the run of the algorithm
ComputeCER of the first step (line 33 of Algorithm 1). Note that each CER
obtained by the first step of ¢—MER represents a problem, that is, the total
number of problems is the number of CERs provided by the first step of (—MER,
plus one. Observe that the naive algorithm only solves one problem, but with
much more points.

Table 1 shows that the bigger problem treated by ComputeER in the g—MER
algorithm includes a very short percentage of the total number of points, namely
around 3%-4%. This means that ¢—MER only needs around the 3%-4% of the
main memory needed by the naive algorithm to solve the same problem.

Figure 11 compares the average execution time of a query using ¢g—MER
and the naive algorithm when the points are retrieved from the R-tree. In all
cases, g—MER overcomes the naive approach, since g—MER. uses between 7%-
38% of the time required by the naive approach. The differences get bigger as
the size of the problem size increases. In order to avoid any distortion due to the
arrangement of the data in a R-tree that might increase the disk seek times, we
stored all the points in a sequential file, in such a way that the naive approach
can read the points sequentially. The results of this experiment can be seen in
Figure 12. As it can be seen, ¢—MER also overcomes the naive approach in this
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Fig. 11. Performance (real time) of algorithm ¢—MER.

scenario. Figure 12 displays the values for disk blocks of 1 KB, since the results
for 4KB block size were similar as the time required to read the points is a very
small portion of the time required to solve the problem.

25 L Naive ----x--

20

15

seconds

10

i

0
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
set size (K, 1K=1,000 points)

Fig. 12. Experiment where the naive approach reads the points from a sequential file.

With regard to the main memory consumption, each problem (as explained
each run of ComputeER or ComputeCER) needs to store in main memory the
points involved in that computation. In the worst case, a problem solved by
q—MER needs only 3%-4% of the points (or main memory), which needs the
naive approach. If the available memory is not enough for the naive approach,
this implies a important increment of the time required to run the algorithm,
since external sorts would be required.

Tables 2 and 3 show the performance of our algorithm and the naive approach
over the real datasets. In this experiment, we used only one size of disk block



[ [ RD1 RD2|
Size of R-tree(# blocks) 18,509 21,066
# Accessed blocks 1,614 2,416
% accessed blocks with respect the total 8.7 11.5
Table 2. Blocks accessed by ¢g—MER with real data.

(1 KB). Table 2 summarizes the disk block accesses, whereas Table 3 shows the
time consumed to solve the queries.

As in previous data distributions, our algorithm overcome the naive approach.
In this case, differences are even bigger; g—MER needs only 0.71% and 1.5%
(for the data sets RD1 and RD2, respectively) of the time required by the naive
approach (see Table 3).

5 Conclusions

Given a space with a set points stored in spatial index R-tree, we described the
algorithm g—MER that obtains the largest rectangle containing just a query
point g. The results of the experiments with synthetic and real data show that
g—MER requires between 0.71% and 38% of the running time and between 3%
and 4% of the storage required by the naive algorithm. In part, the performance
of g—MER can be explained by its filtering capability, since it requires to access
only around between 10% and 55% of the total blocks of the R-tree.

The experiments also show the scalability of our algorithm, which obtains
better improvements as the size of the collection grows. In addition, g—MER
would benefit from any improvement in the computational geometry algorithm
used by computeCER and computeER.

To the best of our knowledge, this is the first work that solves this problem
considering that the points are stored in a multidimensional data structure R-
tree.

As future work, we want to extend our proposal to objects with more dimen-
sions and to rectangles with sides that are not necessarily parallel to the axes of
the original space. We plan also to work in developing a cost model to predict
the time and space consumed by our approach.

Acknowledgements. We would like to thank Juan Ramén Lopez Rodriguez
for his comments and suggestions.

| [ RDL___RDZ]
Algorithm time (seconds)
Naive (read from R-tree) 62.155 32.939
Naive (read from sequential file)|62.085 32.807
q—MER 0.441 0.494

Table 3. Performance with real datasets and disk block size 1KB.
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