
Context-Based Algorithms for the List-Update

Problem under Alternative Cost Models∗

Shahin Kamalia, Susana Ladrab, Alejandro López-Ortiza, and Diego Secobc

aCheriton School of Computer Science, University of Waterloo, Canada,

{s3kamali,alopez-o}@uwaterloo.ca
bDatabase Laboratory, University of A Coruña, Spain, sladra@udc.es
cDepartment of Computer Science, University of Concepción, Chile, dseco@udec.cl

Abstract: The List-Update Problem is a well studied online problem with di-
rect applications in data compression. Although the model proposed by Sleator
& Tarjan [16] has become the standard in the field for the problem, its appli-
cability in some domains, and in particular for compression purposes, has been
questioned. In this paper, we focus on two alternative models for the prob-
lem that arguably have more practical significance than the standard model.
We provide new algorithms for these models, and show that these algorithms
outperform all classical algorithms under the discussed models. This is done
via an empirical study of the performance of these algorithms on the reference
data set for the list-update problem. The presented algorithms make use of
the context-based strategies for compression, which have not been considered
before in the context of the list-update problem and lead to improved compres-
sion algorithms. In addition, we study the adaptability of these algorithms to
different measures of locality of reference and compressibility.

1 Introduction

The list-update problem is a classical online problem that has been extensively studied
in the past decades due to its applicability for various data structures and algorithms.
The input to the problem is a set of items stored in a list, and a sequence of requests
to access said items. This sequence is revealed in an online manner, i.e., upon serving
the t-th request, the algorithm does not know any of the requests coming after t.
In practice, input sequences have locality of reference, i.e., the items that have been
recently requested are more likely to be requested again. To serve a request, an
algorithm needs to probe all items in the list, starting from the front of the list,
up until accessing the requested item. The cost of accessing the i-th item in the list
(called access cost) is linear in i. A list-update algorithm can rearrange the list so that
the items that are more likely to be requested appear closer to the front. Different
models for the problem assume different costs for reordering items in the list. In the
standard model proposed by Sleator & Tarjan [16], after an access to an item in the
i-th position (which has an access cost of i), the algorithm can move the requested
item closer to the front using a free exchange at no additional cost. It can also swap
the positions of two consecutive items in the list with a paid exchange, at a unit cost.

∗This work was supported in part by Xunta de Galicia (co-funded with FEDER), ref. 2010/17
and CN 2012/211, and by MICINN grant (PGE/FEDER) TIN2009-14560-C03-02 for S.L. and D.S.

1

Although many algorithms have been proposed and analyzed for the standard
cost model, the validity of the assumptions behind this model has been questioned,
and consequently other models have been proposed. In particular, Mart́ınez and
Roura [12], and Munro [13], independently, proposed an alternative model called
the MRM model. This model is arguably more realistic for practical scenarios like
maintaining dictionaries. In [7], it is argued that the standard model is not suitable
for compression purposes, and an alternative model is suggested. In our opinion,
the prevalence of the standard model over all other models has precluded the study
of list-update algorithms that do not perform well in the standard model, but may
outperform known ones in some actual practical domains.

In this paper, we provide efficient algorithms for the list-update problem under
alternative cost models. Based on the ideas in [7], we introduce a compression model
for the list-update problem, which provides a suitable framework for applying list-
update algorithms for compression purposes. The main contribution of this paper
is to present list-update algorithms that outperform all previous algorithms under
the MRM and compression models. In contrast with previous list-update algorithms,
which avoid reordering items in the list (in order to save on paid exchanges under
standard model), our algorithms effectively rearrange the list after each request based
on the patterns observed between the previously served items. In providing these
algorithms, we have been inspired by the context-based symbol ranking algorithms
[9, 11] for data compression, which constitute the base of the outstanding compression
technique PPM [5]. To the best of our knowledge, these techniques have not been
studied in the context of the list-update problem (probably because of their poor
performance under the standard model due to the high cost of list rearrangements).

The efficiency of online algorithms is usually studied using competitive analysis,
which measures the competitive ratio between the cost of the algorithm and that of
an offline optimum with unbounded computational power. In [13], it is proved that
no online algorithm can have a constant competitive ratio under the MRM model. In
Section 1.1 we extend this result to the compression model. We take an experimental
approach to evaluate several list-update algorithms, including the ones proposed in the
paper, under alternative cost models. Our empirical study shows that context-based
algorithms perform well under both MRM and compression models, and confirms
that the study of list-update algorithms in different models is worthwhile and may
open a door to improvements in practice. We also consider the relation between the
list-update problem and locality of reference, which has been addressed in [1, 2]. We
push a bit further on this direction, and study the adaptability of several list-update
algorithms to different measures of locality of reference, entropy, and compressibility.
Our experiments show a high correlation between context-based algorithms and the
T-entropy [18, 17].

1.1 Alternative List-Update Models

In this section, we review the MRM model, and also formally define the compression
model that was implicitly defined in [7].

2

MRM Model. As mentioned earlier, the standard model is not realistic in some
practical settings. This is particularly the case when the list is represented by a linked
list (e.g., in order to maintain a dictionary data structure). To see that, consider a
scenario in which an algorithm accesses the item at the end of the list and then
reverses the entire list. In practice, reordering items takes time linear on the size of
the list, while under the standard model this has quadratic cost. The MRM model
assumes that, after an access to the item of the list at position i, all items up to
position i can be rearranged at cost proportional to i; while rearranging items at
positions after i requires paid exchanges.

Compression Model. List-update algorithms have proven to be efficient solutions
for data compression schemes [3], particularly in combination with the Burrows-
Wheeler transform [4] where compression ratios compare favourably with Lempel-Ziv
based schemes. Consider a text that needs to be encoded, and let each character of
the text alphabet be an item in the list, while the whole text forms the input sequence.
A list-update algorithm A can work as a compression algorithm as follows. To com-
press the text, A writes the access cost for serving each character in the compressed
file. Decompression is similar by following the algorithms’ steps (starting from the
same initial configuration). Since the compression algorithm only writes the index of
the accessed item, under a desirable compression model for list-update, an algorithm
only pays for the access costs and not for rearrangements of the list. Note that if we
have a randomized algorithm, in order to follow the same steps as the compressor,
the random bits used by the algorithm are required to be written in the compressed
file. We propose the following definition.

Definition 1 In the list-update problem under the compression model, the cost of an
algorithm for serving a request to the i-th item of the list is equal to i. After serving
each request, the whole list can be rearranged free of charge. In case of a randomized
algorithm, the cost is increased by the number of random bits used by the algorithm.

Hence, the compression model is the same as the standard model except that there
is no cost for paid exchanges. It is also similar to the MRM model except that it can
rearrange the whole list, rather than the first i items, free of charge. Consequently,
all the algorithms defined for the standard model are well-defined for the MRM and
compression models. The above definition of the compression model implies that the
position of each item in the list is written in unary format in the compressed file. This
can be replaced by a binary code, hence charging log i for accessing an item in the i-th
position. This variant is considered in [7], in which a cost of c⌊log i⌋ + b is charged,
where b and c are constants. In our experiments, we consider both variants of the
compression model, and observe that our algorithm performs well in both cases.

If an algorithm has cost C under the MRM model, it is well-defined and has cost
at most C under the compression model (since the costs of paid exchanges under the
MRM model are relaxed under the compression model). In [13], an offline algorithm
is introduced for the MRM model, which has a cost of at most n log l for serving any
sequence of size n for a list L of l items, and consequently a cost of at most n log l
under the compression model. Thus, the cost of the best offline algorithm is not more
than n log l for serving any sequence of size n. For any online algorithm, there are

3

sequences that have total access cost of nl (a cruel adversary asks for the last item of
the list in each request). As a result, the competitive ratio of any online algorithm is
lower bounded by l/ log l.

Proposition 1 Under the compression model, there is no online algorithm with a
constant competitive ratio.

This implies that online algorithms under the compression model using competitive
analysis do not compare well since all ratios are non-constant for large lists. Instead,
we apply an experimental approach to compare the algorithms.

1.2 List-Update Algorithms

For serving an item x, a list-update algorithm should linearly probe the list to find x.
After this access, the online algorithm can rearrange the list. Different online algo-
rithms are distinguished by their respective policies for reordering the list. Although
the standard model allows paid exchanges, almost all previously studied algorithm
use free exchanges only. Here we list a few of them. Note that all these algorithms
are well-defined and have the same costs under both MRM and compression models.

Move-To-Front (MTF) moves the requested item to the front of the list.

Transpose (TR) exchanges the requested item with its immediate predecessor.

Frequency Count (FC) maintains an access count for each item ensuring that the
list is always sorted in non-increasing order of frequency of access.

Timestamp (TS) inserts the requested item x in front of the closest item to the
head y that precedes x in the list and was requested at most once since the last
request for x. If there is no such item y (or if this is the first access to x), TS does
not reorganize the list.

BIT maintains a bit (initialized independently and uniformly at random) for each
item. This bit is complemented and, if its value changes to 1, the item is moved to
the front of the list. Note that unlike previous algorithms, BIT is randomized. This
implies that, when the algorithm is used for more than one agent in a synchronized
fashion (for example, for compression), the random source needs to be shared by both
agents as well as the initial configuration.

COMB executes BIT with probability 4/5 and TS with probability 1/5. Obviously,
this is also a randomized algorithm.

2 Context-based Algorithms for List-Update

In this section we propose new algorithms for the list-update problem under the
compression and MRM models. These algorithms are inspired by previous works
that use contexts for symbol ranking, which have been generally applied for data
compression [9, 11]. We first describe the basic algorithm, named Context Based
(CB), which is designed for the compression model and rearranges the whole list
after each request. Note that under the MRM model rearranging the whole list is not
free. We present a slightly modified version of CB, called Restricted Context Based

4

(RCB) for the MRM model. Our experiments in Section 3 indicate that CB and RCB
outperform other list-update algorithms under the compression and MRM models.

Let L = {a1, a2, . . . , al} be the set of l items in the list. We call any subsequence of
size c of members of L a c-context of L. The idea behind algorithm CB is to keep track
of the frequencies of all possible c-contexts for any value of c, 1 ≤ c ≤ C. Here C is a
parameter of the algorithm that is set according to the locality of the input sequence.
Given the frequencies of the c-contexts for the first t−1 requests of an input sequence,
the algorithm predicts the likeliness of each item of the list to be the t-th item, and
rearranges the list according to that. For example, let C = 4 and assume the last
three requests have been to items a, b, and c, in that order. Now if the 4-context abcb
has been more frequent than abca in the previous requests, the algorithm assumes
it is more likely to have b in the next request, and arranges items so that b appears
before a. In other words, the algorithm assumes that the frequent patterns in the
previous requests are more likely to appear in the future (the parameter C bounds
the maximum length of such patterns). Note that this assumption is stronger than a
simple locality assumption by algorithms like MTF. Our experiments verify that the
assumption is valid for real-world sequences.

To keep track of the context frequencies, the algorithm maintains a context tree,
which is a weighted tree of degree l and height C + 1 (See Figure 1). The values of
the nodes in level c+1 indicate the frequencies of the c-contexts in previous requests
(1 ≤ c ≤ C). Right after serving the t-th request, the value of C of the contexts
should be increased by one unit. These are the c-contexts that include the last c− 1
items as their prefix (1 ≤ c ≤ C). For example, when C = 4, if the last three requests
have been respectively to a, b, and c, and the t-th request is to a, then the frequencies
of contexts a, ca, bca, and abca should be increased (this requires updating up to C
branches of the tree).

The algorithm looks at the last C−1 requests and at the context tree to rearrange
the items according to their likeliness to appear as the next item. More precisely, for
each item x in the list, the algorithm uses the context tree to find the frequency of the
C-context if x were to follow as next character in the sequence, i.e. the frequency of
the C-context that is formed by concatenating the last C−1 requests with x. The list
is then rearranged according to the frequencies of these l C-contexts. If the C-contexts
formed by two items x and y have the same frequencies, the algorithm compares the
frequencies of their (C−1)-contexts, and again in case of equal frequencies, compares
the frequencies for (C − 2)-contexts, and so on. In an extreme case, the algorithm
might need to look at the frequencies of the 1-contexts for x and y, which are indeed
the number of requests to these items (if these are also equal, the relative order of x
and y is set in some arbitrary but previously agreed fashion, e.g. alphabetically).

To summarize, the algorithm performs three steps to serve a request to item
x. In the first step, it linearly probes the list to find x. In the second step, it
updates (increases) the frequencies of the contexts that include x as their last item
in the context tree. In the last step, the algorithm rearranges the list by looking
at the last C − 1 requests, and the (updated) frequencies in the context tree. A
straightforward time analysis shows that the time complexity of the algorithm is
O(n l log l) for constant values of C. Figure 1 illustrates the details of these steps.

5

σ = a a b a b c a … b a

cabL =

4 2 1

1

1

2

1 1

1

1

1

1

1

a

a

a

a a

a

b

b

b

b

c

c

c

4 3 1

1

1

3

1 1

1

1

1

1

1

a

a

a

a a

a

b

b

b

b

c

c

c

σ = a a b a b c a b … a

bcaL =

1

b

cba

000ca

021a

124ε

cba

101ab

101b

134ε

Figure 1: The context tree and list reordering of CB with C = 3 for a sequence σ = aababcaba.
(a) After accessing seven items, the algorithm updates the context tree to achieve the tree on the
left. To rearrange items, the algorithm looks at the last two requests (i.e., c and a), and checks the
frequencies of the 3-contexts caa, cab, and cac. Since they all have the same frequencies (i.e., 0), CB
compares the frequencies of the 2-contexts aa, ab, and ac, which respectively have frequencies 1, 2,
and 0. Consecutively the algorithm rearranges the list as b, a, c. (b) After serving the eighth item,
the context tree is updated (bolded nodes). To rearrange the items, the algorithm looks at the last
two requests (i.e., a and b), and forms the 3-contexts aba, abb, and abc. The frequencies of these
3-contexts imply that a and c should appear before than b. To find the relative order of a and c, the
algorithm checks the frequencies of ba and bc (which are both 1), and eventually those of 1-contexts
a and c (which are consecutively 1 and 4). Consequently, the items are reordered as a, c, b.

We can modify Step 3 of the algorithm to obtain different variations of this context-
based approach. Specifically, instead of a complete rearrangement of the list according
to the symbol ranking explained above, we can just sort the items of the list that
appear before the requested item. We call this variant Restricted Context Based
(RCB), and as we will see, it outperforms other list-update algorithms under the
MRM model. In particular, since the complete rearrangement of the list might be too
costly under the MRM model, this restricted variation of the context-based algorithm
has an advantage over CB, under the MRM model.

In the experimental evaluation we also consider two modifications of the described
algorithms that do not use the cumulative frequency of the contexts. Instead, they
use the timestamp of the last occurrence of the contexts to rearrange the list. These
algorithms sort the list by recency of the contexts rather than their frequency. We call
these algorithms CB′ (when the whole list is rearranged) and RCB′ (when the items
located before the requested item are rearranged). Other variants of the algorithm
can be implemented, e.g., using a time window to consider local context information.

3 Experimental Evaluation

This section presents an experimental evaluation of the proposed context-based algo-
rithms for the list-update problem under different cost models. Our results demon-
strate that using the context-based algorithms is an efficient strategy under the com-
pression cost model, as well as the MRM model. We used the reference dataset for

6

the list-update problem, that is, the Calgary text compression corpus. In Section 3.1
we perform an extended comparison of several methods under different cost models.
We analyze the compression ratios obtained by context-based algorithms and their
relation with locality of reference and different entropy measures in Section 3.2.

3.1 Total Costs under Different Models

We evaluate the performance of two of the most efficient algorithms (MTF and TS)
under different cost models and compare their results with the two context-based al-
gorithms proposed in this paper (CB and RCB). The parameter C of these algorithms
is fixed to be 3. Table 1 shows the results for some of the files of the Calgary corpus.

book1
Free Paid AC STD MRM CC linear CC log

MTF 9,002,657 0 9,771,428 9,771,428 9,771,428 9,771,428 5,155,343
TS 3,215,445 0 8,326,983 8,326,983 8,326,983 8,326,983 4,653,983
CB 907,829 351,564,554 3,216,242 354,780,796 52,941,414 3,216,242 2,542,883

RCB 2,415,021 19,399,435 7,373,290 26,772,725 7,373,290 7,373,290 4,008,491

news
Free Paid AC STD MRM CC linear CC log

MTF 6,033,483 0 6,410,592 6,410,592 6,410,592 6,410,592 2,669,833
TS 2,324,979 0 5,788,482 5,788,482 5,788,482 5,788,482 2,479,925
CB 967,786 357,520,313 2,271,967 359,792,280 32,919,516 2,271,967 1,384,551

RCB 2,363,356 24,002,408 5,141,341 29,143,749 5,141,341 5,141,341 2,128,293

progc
Free Paid AC STD MRM CC linear CC log

MTF 645,069 0 684,680 684,680 684,680 684,680 281,197
TS 262,363 0 632,842 632,842 632,842 632,842 264,907
CB 78,196 26,575,729 223,937 26,799,666 3,010,434 223,937 129,079

RCB 159,749 1,580,853 529,991 2,110,844 529,991 529,991 213,139

trans
Free Paid AC STD MRM CC linear CC log

MTF 1,531,585 0 1,625,280 1,625,280 1,625,280 1,625,280 656,437
TS 651,001 0 1,548,988 1,548,988 1,548,988 1,548,988 634,037
CB 129,422 69,476,148 380,704 69,856,852 7,339,262 380,704 264,085

RCB 485,861 4,937,879 1,344,826 6,282,705 1,344,826 1,344,826 522,627

Table 1: Performance of MTF, TS, CB, and RCB algorithms over several files of the Calgary corpus
under different cost models. Legend: Free = free exchanges; Paid = paid exchanges; AC = access
cost; STD = cost in the standard model (access cost + paid exchanges); MRM = cost in the MRM
model (access cost + some paid exchanges); CC linear = cost in the compression model (when
accessing i costs i); CC log = cost in the compression model (when accessing i costs 1 + 2⌊log i⌋).
We use bold type to highlight the best values for the column of each cost model.

We observe that MTF and TS obtain the best results for the standard model, while
the context-based algorithms perform poorly, as they require many paid exchanges
for the rearrangement of the list. In contrast, for the alternative cost models, the
context-based algorithms achieve interesting results. CB outperforms other methods
for the compression model, since it exploits the context information to completely
reorder the list at free cost. RCB is the preferred choice for the MRM model, as it
uses the cost-free reordering of the list up to the accessed position. One can con-
clude that the context-based algorithms, which might have been originally discarded
for list-update due to their unsatisfactory performance under the standard model,
become attractive practical solutions for the problem under alternative models.

7

3.2 Compression Ratio, Locality of Reference and Entropy

We compare the performance of the proposed context-based list-update algorithms
on text files of the Calgary Corpus before and after the Burrows-Wheeler Transform
(BWT) [4]. The BWT produces a permutation of the sequence with a high number of
runs of repeated symbols, and it is commonly used as a first stage of data compression
methods. MTF strategy is known to obtain good results after BWT [6, 7], and it is
commonly used as a second stage after BWT [3]. Table 2 shows the comparison of our
context-based algorithms (CB, CB′, RCB, and RCB′) with MTF. The results reported
for the context-based algorithms are obtained when using a maximum context length
of C = 10 before BWT, and a maximum context length of C = 3 after BWT.
Since the goal is to compare these algorithms, and not to necessarily obtain the best
compression, we simply represent the obtained sequence using the standard prefix
integer encoding of Elias [8] that encodes an integer i using 1 + 2⌊log i⌋ bits.

File
Size Before BWT After BWT

(bytes) MTF CB CB′ RCB RCB′ MTF CB CB′ RCB RCB′

bib 111261 95.69 29.78 30.47 70.44 72.16 30.49 34.04 36.03 32.90 32.24
book1 768771 83.82 34.15 35.75 63.99 65.97 35.74 38.66 40.22 36.37 36.21
book2 610856 84.35 29.97 30.54 65.00 65.39 31.14 34.08 35.87 32.32 32.20
geo 102400 104.91 76.69 80.46 99.43 104.37 50.78 47.87 51.79 47.13 48.53
news 377109 88.50 35.05 35.72 68.31 69.01 36.21 39.85 43.16 38.25 38.47
obj1 21504 89.99 59.38 57.39 80.40 76.11 43.75 46.02 49.04 45.38 44.66
obj2 246814 101.68 36.72 34.81 88.20 79.39 28.06 30.29 32.49 29.34 29.25

paper1 53161 86.79 33.64 34.21 65.11 66.82 34.70 39.44 41.93 37.68 37.08
paper2 82199 84.47 33.50 34.62 62.83 65.35 34.86 38.43 41.06 36.52 36.35
pic 513216 23.21 19.54 20.14 21.55 21.78 20.08 19.77 21.07 19.60 19.84

progc 39611 88.74 34.46 34.34 66.28 66.28 35.04 40.01 42.20 38.48 37.23
progl 71646 77.01 26.08 25.71 58.15 57.58 26.31 29.29 31.36 28.02 27.80
progp 49379 81.09 26.32 25.90 61.23 59.90 26.00 29.20 30.91 28.05 27.70
trans 93695 87.58 24.35 24.31 65.63 65.25 24.12 26.92 28.76 26.02 25.78

Table 2: Compression percentage of text files of the Calgary Corpus using different list-update
algorithms. We use bold type to highlight the best values for each file.

We observe that context-based algorithms obtain the best performance for the
original dataset (especially CB algorithm). This is consistent with the results obtained
by compression methods that exploit the same idea as PPM [5]. MTF obtains the best
results after BWT, proving their combined efficiency for data compression, such in
bzip2 [15]. However, CB competes with BWT+MTF and achieves better compression
ratios for some files of the dataset. In addition, in pure online scenarios where the
sequence of requests is not known in advance and it is not feasible to compute the
BWT of the sequence, CB may become the preferred choice.

To improve our understanding of these results, we relate the behavior of the list-
update algorithms with some properties of the sequence such as its locality of reference
or its entropy. All previous works on this topic conclude that MTF is the best strategy
when the locality of reference is high [1]. The relation between entropy, compression,
and list-update algorithms has been previously studied [14]. We analyze the behavior
of the proposed context-based algorithms depending on the k-th order entropy and the
T-entropy of the sequence [18, 17]. We show that the T-entropy is a good performance
characterizer for the use of context-based algorithms in the list-update problem.

8

 1

 2

 3

 4

 5

 6

 7

 8

 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

C
om

pr
es

si
on

 (
bp

c)

Locality of Reference

b
o

o
k

1

p
ap

er
2

p
ro

g
p

b
o

o
k

2
p

ro
g

l
b

ib
p

ap
er

1

n
ew

s
p

ro
g

c

tr
an

s

b
w

t-
b

o
o

k
1

b
w

t-
b

o
o

k
2

b
w

t-
p

ap
er

2

b
w

t-
b

ib
b

w
t-

n
ew

s

b
w

t-
p

ap
er

1

b
w

t-
p

ro
g

c

b
w

t-
p

ro
g

l

b
w

t-
p

ro
g

p

b
w

t-
tr

an
s

MTF
TS
TR
BIT

COMB
CB

RCB

(a) Compression vs. locality of reference (as defined by Albers).

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

C
om

pr
es

si
on

 (
bp

c)

Entropy

MTF
TS
TR
BIT

COMB
CB

RCB

(b) Compression vs. k-th order entropy (k = 4).

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
C

om
pr

es
si

on
 (

bp
c)

T-Entropy

MTF
TS
TR
BIT

COMB
CB

RCB

(c) Compression vs. T-entropy.

Figure 2: Compression vs. different entropy measures.

Figure 2a shows the compression ratio (in bits per character) for the ten ASCII
files of the Calgary Corpus before and after the BWT transform, and its relation with
the locality of reference of the text, as defined by Albers [1]. We observe that most of
the list-update algorithms behave differently depending on the locality of reference of
the text. For the original text, we obtain higher values than for the text transformed
with BWT. After BWT, the best values are obtained by MTF. From the original
text, the best values are obtained by CB, whose behavior is not significantly affected
by the locality of reference of the input text.

Figures 2b and 2c show different entropy measures of the input sequences (k-
th order empirical entropy and T-entropy). As we can see from the figures, there
seems to be no relation between the performance of list-update algorithms and k-th
order entropy. However, there is relation between T-entropy and the performance of
the CB algorithm. This measure, proposed for finite strings, and similar to the LZ
production complexity [10], measures the effective number of steps required to build
a string from an alphabet based on the decomposition of the string into constituent
patterns, determined by a recursive hierarchical pattern copying algorithm. For lack
of space, we refer the reader to [18, 17] for details of this measure.

4 Conclusions

The list-update problem has been extensively studied in the past decades, especially
under the standard model proposed by Sleator & Tarjan [16]. In the last years al-

9

ternative cost models have been proposed to address the drawbacks of the standard
model in practical settings such as data compression. In this paper, we studied the
applicability of context-based algorithms for the list-update problem under three al-
ternative cost models. Specifically, we proposed a Context Based (CB) algorithm
that outperforms all existing algorithms under the compression cost model. These
results are consistent with the existing results on applying the context information to
data compression [5, 9, 11]. More strikingly, we introduced a similar context-based
algorithm, called Restricted Context Based (RCB), which outperforms all other al-
gorithms under the MRM model (which is the model realized in practice for list
accessing purposes). We also analyzed how the locality of reference and several en-
tropy measures are related to the performance of these algorithms, and observed that
the T-entropy is a good characterizer of the behavior of the context-based algorithms.

References

[1] Albers, S., Lauer, S.: On list update with locality of reference. In: Procs. of ICALP. pp. 96–107
(2008)

[2] Angelopoulos, S., Dorrigiv, R., López-Ortiz, A.: List update with locality of reference. In:
LATIN. pp. 399–410 (2008)

[3] Bentley, J.L., Sleator, D.D., Tarjan, R.E., Wei, V.K.: A locally adaptive data compression
scheme. Commun. ACM 29(4), 320–330 (1986)

[4] Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm. Tech. Rep.
124, Digital Equipment Corporation (1994)

[5] Cleary, J.G., Witten, I.H.: Data compression using adaptive coding and partial string matching.
IEEE Transactions on Communications 32, 396–402 (1984)

[6] Dorrigiv, R., López-Ortiz, A., Munro, J.I.: List update algorithms for data compression. In:
Procs. of DCC. p. 512 (2008)

[7] Dorrigiv, R., López-Ortiz, A., Munro, J.I.: An application of self-organizing data structures to
compression. In: Procs. of SEA. pp. 137–148 (2009)

[8] Elias, P.: Universal codeword sets and representations of the integers. IEEE Transactions on
Information Theory 21(2), 194 – 203 (1975)

[9] Howard, P., Vitter, J.: Design and analysis of fast text compression based on quasi-arithmetic
coding. In: Procs. of DCC. pp. 98 –107 (1993)

[10] Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Transactions on Information
Theory 22, 75–81 (1976)

[11] Manzini, G.: Efficient algorithms for on-line symbol ranking compression. In: Procs. of ESA.
pp. 694–694 (1999)

[12] Mart́ınez, C., Roura, S.: On the competitiveness of the move-to-front rule. Theoretical Com-
puter Science 242(1-2), 313–325 (2000)

[13] Munro, J.I.: On the competitiveness of linear search. In: Procs. of ESA. pp. 338–345 (2000)
[14] Pandurangan, G., Upfal, E.: Can entropy characterize performance of online algorithms? In:

Procs. of SODA. pp. 727–734 (2001)
[15] Seward, J.: bzip2, http://www.bzip.org
[16] Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Commun.

ACM 28, 202–208 (1985)
[17] Titchener, M.R.: A measure of information. In: Procs. of DCC. pp. 353–362 (2000)
[18] Titchener, M.: Deterministic computation of complexity, information and entropy. In: Procs.

of ISIT. pp. 16–21 (1998)

10

