
Space-Efficient Representations of Rectangle Datasets

Supporting Orthogonal Range Querying

Nieves R. Brisaboaa, Miguel R. Luacesa, Gonzalo Navarrob, Diego Secoa,c,∗

aDatabase Lab., University of A Coruña, Campus de Elviña, 15071, A Coruña, Spain
bDept. of Computer Science, University of Chile, Blanco Encalada 2120, Santiago, Chile

cDept. of Computer Science, University of Concepción, Edmundo Larenas 219,

Concepción, Chile

Abstract

The increasing use of geographic search engines manifests the interest of
Internet users in geo-located resources and, in general, in geographic infor-
mation. This has emphasized the importance of the development of efficient
indexes over large geographic databases. The most common simplification of
geographic objects used for indexing purposes is a two-dimensional rectangle.
Furthermore, one of the primitive operations that must be supported by ev-
ery geographic index structure is the orthogonal range query, which retrieves
all the geographic objects that have at least one point in common with a
rectangular query region. In this work, we study several space-efficient rep-
resentations of rectangle datasets that can be used in the development of
geographic indexes supporting orthogonal range queries.

Keywords: GIS, data structure, space-efficient, orthogonal range query

1. Introduction

In the age of on-line digital availability, an ever-increasing demand for
geo-located information has emphasized the importance of geographic search
engines, such as Google Local or Yahoo! Local, which allow users to find
the geographic location of some resources on a map (e.g., business, public
administration services, places of interest, pictures, etc.). In this context,

∗Corresponding author. Tel.: +56 (41) 220 4692
Email addresses: brisaboa@udc.es (Nieves R. Brisaboa), luaces@udc.es (Miguel

R. Luaces), gnavarro@dcc.uchile.cl (Gonzalo Navarro), dseco@udec.cl (Diego Seco)

Preprint submitted to Information Systems January 29, 2013



research on orthogonal range queries on geographic databases has become a
hot topic. These queries define a rectangular query window and retrieve all
the geographic objects having at least one point in common with it. Other
types of queries, such as region queries (which permit arbitrary orientations
and shapes for the query regions) and point queries (which retrieve all the ob-
jects overlapping a query point), are also relevant for geographic information
services. However, orthogonal range queries are the most interesting by far as
they allow for more efficient solutions while providing good approximations
to solve the others.

Orthogonal range querying on point datasets can be thought of as a re-
stricted variant of the general problem. This variant has arisen in many
research areas (e.g., computational geometry, text indexing, databases, etc.).
For example, in conventional databases a typical application of range queries
on point datasets are queries of the form find all employees between a1 and a2
years old, and with a salary in the range [s1, s2]. As a result, this problem has
been tackled from several points of view, achieving many different trade-offs
[1, 2, 3, 4].

The more general problem (i.e., geographic datasets) has been a topic of
interest in the research field of Geographic Information Systems (GIS). A
good survey of spatial queries and index structures designed to solve them is
that of Gaede and Günther [5]. Although these multidimensional structures
generalize our two-dimensional problem, the two-dimensional case models
the most common problems in GIS.

In order to achieve a good time performance, both the two-dimensional
and the multidimensional problem have been tackled using a filter and refine-
ment strategy [5]. Complex geographic objects are simplified at the indexing
stage. Queries in these indexes first filter a set of candidate objects (those
whose simplification satisfy the query) and then refine the result using the
real geographic objects. The most common simplification of geographic ob-
jects is the Minimum Bounding Rectangle (MBR), or Minimum Bounding
Box in the multidimensional case. Figure 1 shows the MBRs of five geo-
graphic objects consisting of European countries. Query q2 illustrates why
the refinement step is necessary: both the MBRs of Spain and Italy intersect
with q2 but none of these countries actually intersect with such query.

Definition 1. Let o be a geographic object. The Minimum Bounding Rect-
angle of o, MBR(o) = I1(o) × I2(o) where Ii(o) = [li, ui](li, ui ∈ R) is the
minimum interval containing all the points of o along the dimension i.

2



Figure 1: The problem modeled as MBRs intersecting with a query rectangle.

Definition 2. Let q be an orthogonal rectangle q = [lq1, u
q
1] × [lq2, u

q
2]. An

orthogonal range query (RQ) to find all the objects o having at least one
point in common with q is defined as RQ(q) = {o | q ∩MBR(o) 6= ∅}.

In this paper we propose and compare several space-efficient represen-
tations for static collections of MBRs (or rectangles in general) supporting
orthogonal range querying. These representations can be used as indexes in
GIS, but applications in many other domains are feasible (CAD, VLSI, etc.).

Space-efficient data structures are a timeless topic of interest because of
the memory hierarchy. Access times in upper levels of the hierarchy have de-
creased much faster than in lower levels. Thus, placing these data structures
in upper levels of the memory hierarchy considerably reduces access times,
by several orders of magnitude in some cases. In Figure 2 (Section 2), we
exemplify this with an R-tree that can perform both in RAM and disk with
minor changes (i.e., we just need to adapt the node size). We observe that
the RAM variant performs up to 1,000 times faster. Note that we simulate
a limited memory scenario using a virtual machine, which offers the possi-
bility of configuring the available memory. Thus, although we use the same
datasets as in the experimental evaluation presented in Section 8 (in this case,
the TIGER dataset), query times are not directly comparable. In addition,
reducing the space may be key not just to avoid using secondary memory (or
lower levels of the memory hierarchy in general), but also to achieve feasible
solutions when the memory is limited, such as in mobile devices.

Finally, static indexes that take advantage of the knowledge of the data
distribution are interesting in many applications where the data is semi-static

3



(e.g., Geographic Information Retrieval systems [6]).
Preliminary partial versions of this work appeared in [7, 8]. Specifically,

in [7] we introduce some of the ideas of the SE-PQ structure described in
Section 6. Similarly, [8] introduces the main idea of the WTR (Section 7).
In this paper we analyze both structures more carefully and also perform a
more exhaustive empirical comparison. In addition, we generalize the idea of
the SE-PQ to a general strategy to design indexes on rectangle datasets (see
Section 4). As a reward, we obtain new structures offering different space-
time trade-offs. Those structures are also described in this paper. Moreover,
we present several improvements on the CR-tree [9], and use this optimized
structure in our experiments.

This paper is organized as follows. First, some basic concepts and related
work are summarized in Sections 2 and 3. Then, in Section 4, we present
a general strategy to develop indexes on rectangle datasets based on pro-
jecting to one-dimensional problems, and derive from it three space-efficient
structures in Sections 5 and 6. In Section 7 we present a solution that does
not fit in this general strategy, and that is adaptive to the complexity of
the problem. Each structure presents some features that make it suitable
for some scenarios. An experimental comparison of all the structures (and
other ones in the state of the art) is shown in Section 8, which concludes
with a discussion about the pros and cons of each structure. Finally, some
conclusions and future lines of work are presented in Section 9.

2. Related Work

Orthogonal range search, both on point and general geographic object
datasets, has received significant attention in the literature and many data
structures have been proposed that achieve different space-time trade-offs.
In this section we review the main related work.

Many different point access methods supporting orthogonal range search
have been proposed along the years. The Kd-tree [1] is one of the most
prominent because it achieves O(

√
n + k)1 worst-case search time, which

is optimal in k [10], and also performs well in practice. Non-linear-space
structures, such as Range trees [11], can beat this worst-case search time.

1k is the number of elements in the output. We use this output-sensitive analysis
throughout the paper because otherwise range search is Θ(n) worst-case time.

4



However, as we aim at space-efficient data structures these non linear-space
solutions are out of the scope of this work.

The seminal computational geometry work by Chazelle [2] offers sev-
eral space-time trade-offs, including one that in two dimensions requires
O(n logU) bits of space and answers range queries in time O(logn+k logǫ n),
where n is the total number of points in [1, U ]× [1, U ] and 0 < ǫ < 1 is a con-
stant affecting memory consumption. The wavelet tree [12] can be regarded as
a compact version of this structure that requires exactly n logU + o(n logU)
bits to index n points in the range [1, U ] (we assume binary logarithm). This
was made explicit by Mäkinen and Navarro [13]. As the structures presented
in this paper are closely related with this technique, we give further details
on the technique in Section 3. Recent results [3, 4, 14], improve this structure
in time and extend it to a general set of points in a discrete grid. However,
they come with a significant implementation overhead.

Besides point access methods, many different spatial access methods have
been also proposed along the years. A good survey of these structures is the
one by Gaede and Günther [5]. Many of the methods initially proposed
for point datasets have been generalized to support complex geographic ob-
jects. For example, the Extended Kd-tree and Skd-tree are extensions of the
Kd-tree to support rectangles. In addition, other techniques allow the trans-
formation of the original objects into a different representation that can be
managed by point access methods or one-dimensional access methods (e.g.,
interval structures).

One of the most popular spatial access method and a paradigmatic ex-
ample is the R-tree [15]. Several variations of the original R-tree have been
proposed to improve its efficiency (e.g., the R+-tree or the R∗-tree) and to
take into account some specific problems (e.g., the STR R-tree for static
data). Most of these proposals have been summarized by Manolopoulos et
al. [16]. This structure does not provide worst-case guarantees (it could be
forced to examine the entire tree in O(n) time, even when the output is
empty). However, it is simple to implement, uses linear space, and performs
very well in practice. Although it has been originally designed for secondary
memory, it can be easily adapted to perform in main memory by reducing
the size of the nodes. In Figure 2 we show that the difference between both
alternatives is of several orders of magnitude.

There are some variants of the R-tree that use compression techniques
achieving lower storage requirements than the STR R-tree. However, these
structures produce precision loss, and thus, false positives. The CR-tree [9]

5



 0.001

 0.01

 0.1

 1

 10

 100

Tiny Small Medium Large

T
im

e 
(m

s)
. L

og
 s

ca
le

Query selectivity

RAM
Disk

Figure 2: Performance comparison of a
RAM-resident vs. a disk-resident R-tree.

 0

 2

 4

 6

 8

 10

 4  6  8  10  12

F
al

se
 p

os
iti

ve
s 

(%
)

Space (MB)

STR R-tree
Original CR-tree

Our CR-tree

Figure 3: Influence in the number of false
positives of a lossy-compression strategy.

stands out in this new setting. This structure is based on two key ideas.
First, the coordinates of the MBRs are represented relatively to their parent
node, and second, all the coordinates in a node are quantized with a fixed
number of bits. The granularity of this quantization determines the precision
of the structure, and thus, the number of false positives. In this paper, we
assume a finite precision for the geographic coordinates, which is a realis-
tic assumption in GIS. Under this assumption, the first contribution of this
paper is a variant of the CR-tree that does not produce false positives. In
addition, this structure takes advantage of the knowledge of the data distri-
bution improving the compression of the original CR-tree for the static case
(it can be regarded as an STR CR-tree). In Figure 3 we motivate the interest
of this structure with the example of the EIEL dataset (see Section 8 for more
details). Both the classical and our variant of the CR-tree require around
60% the space of an STR R-tree without producing false positives. The CR-
tree can save up to a 20% additional space by producing false positives. The
decision of when this penalty is affordable depends on the complexity of the
indexed objects (thus, it is completely application dependent). For exam-
ple, if we consider some of the layers available in the TIGER dataset (see
Section 8), on average, primary roads are composed of 200 points, countys
of 1,800 points, and states of 15,000 points. Recall that each false positive
requires to retrieve a complex object from disk and compute an intersection,
whose cost depends on the complexity of the object. Thus, we argue that,
although interesting, lossy compression of spatial indexes is a different and
non-comparable problem.

In our variant of the CR-tree, we use the same bulk-loading strategy as the
STR R-tree. In addition, the MBRs stored at each node are ordered according

6



to the projection of their left corner onto the x-axis. Therefore, the lower
x-coordinate of an MBR can be differentially represented with respect to the
lower x-coordinate of its left sibling (except for the first MBR of each node
that is represented relatively to the lower x-coordinate of its parent). The
representation of the lower y-coordinates is the same as in the original CR-
tree (i.e., relative to the lower y-coordinate of the parent). Finally, for each
MBR the upper coordinates in both dimensions are differentially represented
with respect to the lower coordinates of such MBR. As we assume that the
original coordinates can be scaled to integers without losing any precision,
this scheme produces a sequence of small integers that can be encoded using
a variable length encoding. Note that, at each node, this sequence has to
be sequentially decoded from the beginning, which does not add any time
overhead because in a range query all the MBRs stored in a node visited
during the traversal of the tree need to be compared with the query. In our
experiments (Section 8) we refer to this variant as CR-tree (in spite of the
aforementioned differences with the original CR-tree).

3. The Virtues of the Wavelet Tree

The wavelet tree [12] is a data structure used to store and index data in
a compact way. Since Grossi et al. presented it in 2003, its many virtues
[17] have been demonstrated and it has been widely used in many fields. For
example, they have been used to index sequences [12, 18, 19], documents
[20], and images [21]. They are efficiently implementable [22].

The basic tool used in the wavelet tree is the bit-vector rank opera-
tion: given a bit vector B[1, n], the query rank(B, i) = rank 1(B, i) re-
turns the number of bits set to 1 in the prefix B[1, i] of B. Symmetrically,
rank0(B, i) = i−rank 1(B, i). The dual query to rank 1 is select1(B, j), which
returns the position of the j-th bit set to 1 inB. The definition of select0(B, j)
is analogous. For example, given a bitmap B = 1000110, rank0(B, 5) = 3,
rank1(B, 5) = 2, select0(B, 4) = 7, and select1(B, 3) = 6. Both rank and
select operations can be implemented in constant time and using little addi-
tional space (o(n) in theory) on top of B [23, 24]. This is achieved by storing
precomputed results of the operations at regular positions. Many practical
implementations of these structures sacrifice some theoretical guarantees to
perform better in practice [25]. The construction of the structures requires
linear time and little extra space [26, 27].

7



16151413121110987654321

1010000011111001

96142537813101216114115

16151413121110987654321

1010000011111001

96142537813101216114115

00 11

87654321

10101100

62537841

87654321

10101100

62537841

87654321

01100101

914131012161115

87654321

01100101

914131012161115

00 11

4321

0110

2341

4321

0110

2341

4321

0011

6578

4321

0011

6578

00 11
21

10

21

21

10

21

21

01

34

21

01

34

00 11

11 22

00 11

33 44

00 11
21

10

65

21

10

65

21

01

78

21

01

78

00 11

55 66

00 11

77 88

00 11

4321

0011

9101211

4321

0011

9101211

4321

0011

14131615

4321

0011

14131615

00 11
21

01

910

21

01

910

21

10

1211

21

10

1211

00 11

99 1010

00 11

1111 1212

00 11
21

10

1413

21

10

1413

21

10

1615

21

10

1615

00 11

1313 1414

00 11

1515 1616

[1. 16]

[1. 8]

[1. 4]

[1. 2]

[9. 16]

[5. 8]

[3. 4]

[9. 12] [13. 16]16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

16151413121110987654321

16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

16151413121110987654321

[5. 6] [7. 8] [9. 10] [11. 12] [13. 14] [15. 16]

Figure 4: Representing an n×n grid of points using a wavelet tree. We highlight the areas
corresponding to the query [9, 14]× [6, 10].

In [28] we adapt this structure to index two-dimensional points in GIS.
The experimental evaluation in that paper shows that the wavelet tree keeps
a good trade-off between the space needed to store the index and its search
efficiency. Figure 4 illustrates how a grid of n points with one point in each
row and column is represented using a wavelet tree. Let PXi

be the i-th point
sorted along the x-axis (longitudes) and PYi

the i-th point along the y-axis
(latitudes). The root of our structure is a bitmap B = b1 . . . bn where each
position i represents the i-th point assuming them ordered along the x-axis.
We set bi = 0 if PXi

∈ {PY1
. . . PYn/2

}, and bi = 1 if PXi
∈ {PYn/2+1

. . . PYn}.
The sequence of points given a 0 in this vector is recursively represented in the
left child of the node, and those marked 1 are represented in the right child
of the node. Hence, each node indexes half the points indexed by its parent
node. This process is repeated recursively in each node until the leaves, where
the sequence of indexed symbols corresponds to the permutation sorting the
points along the y-axis. Therefore, the wavelet tree can be regarded as a
device for progressively shuffling the points, initially sorted along the x-axis
(tree root), into sorted along the y-axis (tree leaves). Only n bits are actually
stored at each tree level, for a total of n⌈log n⌉ bits, plus o(n logn) for the
rank and select data structures.

Given an orthogonal range query q = [lq1, u
q
1]× [lq2, u

q
2] and being B1,n the

bitmap at the root of the tree, we can project the range [lq2, u
q
2] onto the second

level using rank operations. Note that we assume that the first interval of

8



q are rows (latitudes) and the second one are columns (longitudes). Thus,
the interval of columns ([lq2, u

q
2]) determines valid ranges inside the nodes

of the wavelet tree and the interval of rows ([lq1, u
q
1]) determines nodes that

can be pruned. We use rank0 to project the range onto the left child as
[lL2 , u

L
2 ] = [rank0(B, lq2 − 1) + 1, rank0(B, uq

2)] and rank1 to project onto the
right child as [lR2 , u

R
2 ] = [rank 1(B, lq2 − 1) + 1, rank1(B, uq

2)]. This process is
repeated recursively in each node until the leaves are reached. Nonetheless,
paths are abandoned when a node v covering an interval [lv1, u

v
1] does not

intersect with the interval [lq1, u
q
1], or when [lv2, u

v
2] is empty. If we reach a leaf

[l2, l2] without discarding it, then the point with row value l2 is part of the
answer. In the worst case, each element is reported in O(logn) time.

Lemma 1. An n × n grid with one point in each row and column can be
stored in n⌈log n⌉ + o(n logn) bits, supporting orthogonal range queries in
time O((k+1) log(n/(k+1))), where k is the size of the output. The structure
is built in O(n logn) time and extra bit space.

Proof. The space follows from the definition of wavelet tree: a perfect bi-
nary tree where each point is represented exactly once per level using one
bit. The term o(n logn) allows rank operations in constant time over the
aforementioned bitmaps [23]. Therefore, we can project a range in a node
onto their two children in constant time by means of rank operations at the
endpoints of the range. If there are k elements in the output, these force
us to visit at most k nodes per level, but in the first levels they cannot be
all different. In the worst case we visit 2i nodes up to the level i where
2i = k, and then we visit k nodes per level. For k > 0 this adds up to
log k−1
∑

i=0

2i +
logn−1
∑

i=log k

k = 2log k + k(log n− log k) = O(k + k log(n/k)) nodes. The

other nodes visited are those the search abandons because either the mapped
[lq2, u

q
2] becomes empty, or because the range [lq1, u

q
1] does not intersect the

node range. The first ones are amortized because their sibling cannot also
be empty if the parent interval is nonempty. The second ones are at most
two per level, and hence O(logn) in total, as they limit a contiguous interval
[lq1, u

q
1]. As k log(n/k) increases with k, it is dominated by O(logn) only if

k = 0. The given time formula matches the result in either case.
Finally, it is very easy to build the wavelet tree node by node, within the

stated time and space.

Figure 4 highlights the nodes visited to solve a range query q = [9, 14]×

9



[6, 10]. In the first step we compute the projection onto the left child as
[lL2 , u

L
2 ] = [rank0(B, 6 − 1) + 1, rank0(B, 10)] = [3, 4], and similarly onto the

right child as [lR2 , u
R
2 ] = [rank1(B, 6 − 1) + 1, rank1(B, 10)] = [4, 6]. How-

ever, it is not necessary to access the left child because it covers the range
[1, 8], which does not intersect with the query range [lq1, u

q
1] = [9, 14]. We

repeat this process in the right child to access its children nodes. The range
of valid positions in its left child is computed as [lL2 , u

L
2 ] = [rank0(B, 4 −

1) + 1, rank0(B, 6)] = [2, 3], and similarly in its right child as [lR2 , u
R
2 ] =

[rank1(B, 4− 1) + 1, rank1(B, 6)] = [3, 3]. Both ranges belong to valid nodes
because both [9, 12] and [13, 16] intersect with the query range [lq1, u

q
1] =

[9, 14]. If we repeat this process until the leaves are reached, we obtain the
result composed of the points in the rows 10, 12, and 13.

Although we show this example on a discrete grid, the real coordinates of
the n points are stored in ordered arrays to translate the real queries to rank
space (see Section 4.1). In addition, the identifiers of the n points are stored
in the same order of the leaves, to return those identifiers as the result of the
query.

4. Reducing to One-Dimensional Problems

In this section we introduce a general strategy to design indexes on
rectangle datasets, based on reducing the d-dimensional problem to d one-
dimensional ones, which is a better studied case. The strategy consists of
three steps: translation to rank space, projection of the problem into one-
dimensional ones, and integration of the results. Although this general strat-
egy is well known, we introduce at each step some ideas that will be used in
our space-efficient variants. These will be developed in Sections 5 and 6.

4.1. Translation to rank space

Gabow et al. [29] proved that the orthogonal nature of the problem makes
it possible to work with the rank of the coordinates (i.e., their position in
sorted order) instead of the coordinates themselves. De Berg et al. [30] also
proved that two-dimensional points sharing one coordinate can be ordered
in both dimensions in a total order using the composite-numbers of their
coordinates.

In practical terms this implies that we can store the real coordinates of
the MBRs in sorted arrays and then use the ranks as the coordinates. Then,
binary searches allow the mapping of queries in the original space to rank

10



Rank 1 2 3 4 5 6 7 8 9 10
Original -9.1 -8.9 -5.9 -4.7 -4.5 6.2 6.4 8.4 15.3 18.8
Scaled 1 3 33 45 47 154 156 176 245 280
Differences 2 30 12 2 107 2 20 69 35
Encoding φ(2) φ(30) φ(12) φ(2) φ(107) φ(2) φ(20) φ(69) φ(35)

Figure 5: Coordinate encoding.

space (thus all the queries need Ω(log n) query time). Depending on the way
the data structure is organized, these arrays store different coordinates. In
the simplest case, we can assume a sorted array for the x-axis coordinates
and another one for the y-axis coordinates. This method to translate to rank
space is particularly convenient for the design of space-efficient structures:
storing the coordinates as sequences of non-decreasing values makes them
easily compressible.

We present now a coordinate encoding scheme that takes advantage of
this property. Let us assume these coordinates are scaled to integers in
the range [1, U ]. Geographic coordinates have finite precision: they can be
represented in degrees or meters and in most cases they can be rounded to
integer values, after appropriate scaling, without losing any precision.

Let A = a1a2 . . . an be one of the arrays of integers to encode. Then, we
encode A as a sequence of non-negative differences between consecutive values
bi+1 = ai+1−ai and b1 = a1, so that ai =

∑

1≤j≤i
bj . The array B = b1b2 . . . bn

is a representation of A that can be compressed by exploiting the fact that
consecutive differences can be small. Several coding algorithms for integers
can be used on these small numbers. In Section 8.3 we empirically compare
four different well-known coding algorithms [31]: Elias-Gamma, Elias-Delta,
Rice, and VBytes. Figure 5 shows the preprocessing steps used to transform
the original floating-point coordinates to encoded values (φ(i) represents the
integer value i encoded using a certain function φ).

In order to translate queries in the original space to rank space, this
scheme must support the search for the endpoints of the original queries.
Because duplicate coordinates are allowed, the result of those searches must
always include in the resulting range the point coordinates that are equal to
the query coordinates. Given a lower or upper coordinate v we are interested
in finding, respectively, the leftmost ai ≥ v or the the rightmost ai ≤ v. We
name these operations leftSearch and rightSearch, respectively. In order to

11



solve them efficiently we store in an array the accumulated sum at regularly
sampled positions (say every hth position, thus the array stores all values
xi·h). The search algorithm first performs a binary search in the vector of
sampled sums, and then it carries out a sequential scan in the resulting
interval of B. The following, easy to prove, lemma summarizes the properties
of this storage scheme.

Lemma 2. Let φ : N → {0, 1}∗ be an encoding function. Then a sorted ar-
ray A = a1a2 . . . an of coordinates in [1, U ] can be stored in cs = ⌈n/h⌉ logU+
∑n

i=2 |φ(ai−ai−1)| bits, supporting rightSearch and leftSearch in O(log(n/h)+
d · h) time, for any 1 ≤ h ≤ n, where d is the time to decode a φ code.

A simple formulation is obtained by using h = log n and Rice codes [31]
with log(U/n) bits in the binary part of the representation. This is easy to
modify to be decodable in constant time.

Corollary 1. A sorted array A = a1a2 . . . an of coordinates in [1, U ], n =
o(U), can be stored in n log(U)/ log(n) + n log(U/n) + O(n) = n log(U/n)
(1 + o(1)) bits, supporting leftSearch and rightSearch in O(logn) time. If
U = O(n) the space is O(n) bits.

The case of small U is obtained by just marking in a bitmap of length
n+ U the number of points with each coordinate value in unary. That is, if
there are ni coordinates equal to i, the bitmap is 0n110n21 . . . 0nU1. Then the
mapping is easily done with rank/select queries. In any case, the construction
time of the representation is bounded by the O(n logn) time needed to sort
the coordinates.

4.2. Projection

The resulting one-dimensional subproblems after projection onto any di-
mension are interval stabbing problems, that is, find the intervals of a set
that intersect a query interval (see Figure 6). This problem is well-known
and many structures solving it can be found in the literature. For exam-
ple, common structures like Interval trees and Priority trees (see de Berg et
al. [30] for a good survey) solve the problem in time at least Ω(log n+ k).

However, one can do better when working in rank space. Schmidt [32]
presented a structure solving several interval stabbing problems in rank space
in optimal time O(k + 1) and linear space. It can be built in O(n) time and
O(n logn) extra bits, given the sorted coordinates.

12



f

g

h a

d

e

c

b

q

f

g

h

a

e

q
d

c

b

h

g

f

Figure 6: Decomposition of a two-dimensional query into two one-dimensional problems.

Schmidt defines the parent of an interval a, parent(a), as the one with
rightmost starting point among all intervals that cover a. This parent relation
defines a tree, where sibling intervals are sorted left to right (note that sibling
intervals cannot contain each other). The root of the tree is a special node
that acts as the parent of all the nodes not covered by any interval. In order
to solve interval stabbing queries, the structure stores for each point the
rightmost-starting interval stabbed by the point (array start , see Figure 7).

Array start serves to find, at query time, the rightmost minimal interval
that intersects the query [lq, uq], start(uq). After reporting it, the algorithm
traverses the tree using a recursive procedure that reports all the siblings to
the left of a reported node, stopping at the first sibling that is not stabbed
by the query interval. For each reported node, it also considers its descen-
dants (starting recursively from the rightmost child), the ancestors of the
first node reported, and their descendants to the left of the ancestor path.
This procedure is easily seen to traverse O(k+ 1) nodes in order to report k
results [32].

It is possible, however, that the upper coordinate of the query interval
does not stab any interval. A solution to this problem requires maintaining
a second array2. However, in our case, where the ranked coordinates are
not the original universe but come from endpoints of the original intervals,
a better solution is possible.

Consider a query Q = [Lq, U q] in the original space. This is mapped via
binary search to q = [lq, uq] = [leftSearch(Lq), rightSearch(U q)]. Let us call
o(v) the original coordinate in the set of intervals that was mapped to v in
rank space. If U q = o(uq), then start(uq) is the rightmost minimal interval

2J. Schmidt, personal communication.

13



a

d

e

c

b

q

f

g

h

Figure 7: Representing x-axis intervals in Figure 6 using Schmidt’s structure.

containing U q. If, instead, it holds o(uq) < U q < o(uq + 1), the right answer
is still start(uq) if o(uq) corresponds to a lower coordinate of an interval (as
the intervals that cover o(uq) and U q are exactly the same). Yet, if o(uq) is
an upper coordinate, start(uq) may end at o(uq) and not cover point U q.

To handle this case, note that if the query was slightly different, Q′ =
[Lq, U q′ ], with U q′ = o(uq + 1), then the correct starting point would have
been start(uq + 1). If o(uq + 1) is an upper coordinate, then the intervals
that contain U q′ and those that contain U q are exactly the same, and we can
run the normal procedure starting from start(uq + 1). If o(uq + 1) is a lower
coordinate, then start(uq+1) = [o(uq+1), x] and the only difference between
Q and Q′ is that Q does not intersect this last interval. Hence we can run
the normal procedure starting from start(uq +1) and exclude the first value.

Although this structure requires linear space, this space is considerably
high. Given n two-dimensional points, for each coordinate it stores a tree
of n nodes (each storing 4 pointers: to its parent, rightmost child, next left
sibling, and upper coordinate of the interval) and array start with 2n entries.
This gives a total of 6n⌈log n⌉ bits per dimension, in addition to the storage
of the real coordinates and the identifiers.

A way to decrease the space by n⌈log n⌉ bits is to map only the lower
coordinates of intervals, and build array start only for those coordinates.
Then, if query Q = [Lq, U q] is mapped to q = [lq, uq], we only know that
there is an interval starting at o(uq), which may or may not contain U q (we
would only be sure it does if U q = o(uq)). What is sure is that o(uq+1) starts
after U q, and then we can use start(uq + 1) to boot the recursive reporting
algorithm, omitting the first element (see Figure 8).

The reason why this works is, again, that if the query had been Q′ =

14



a

d

e

c

b

q

f

g

h

Figure 8: Representing x-axis intervals in Figure 6 using a variation of the Schmidt’s
structure and balanced parenthesis (BP) representation of the tree.

[Lq, o(uq+1)], then start(uq+1) would have been the starting point yielding
the correct output. We analyze now which intervals belong to the output
of Q′ but not of Q. Between U q and o(uq + 1) there can only be upper
coordinates, U q < u1 < u2 < . . . < ur < o(uq + 1), but no lower coordinates.
All those upper coordinates belong to intervals that also intersect Q, and
all other intervals belong to either none or both outputs as they have no
endpoints between U q and o(uq + 1). Thus the only difference between both
outputs is the interval start(uq + 1) itself.

Since upper coordinates of intervals are not used for mapping, we store
these upper coordinates in the tree in their original form. This way the tree
stores only 3 values per node, apart from the coordinate data. This subtracts
other n⌈log n⌉ bits from the data structure.

Lemma 3. Given a set of n intervals, there is a data structure using 4n⌈log n⌉
bits, plus the storage needed for the coordinates, able to report all the k in-
tervals that intersect a query interval in time O(logn+ k).

4.3. Intersection

The final step is to intersect the results obtained at each projected di-
mension. This intersection can be performed on-line using an additional
bit-vector of n bits (whose space is charged to that of the index itself). The
algorithm solving the first subproblem marks the results obtained in this bit-
vector and the algorithm solving the second subproblem reports the results
obtained if they have been previously marked (the unmarking can be done by
rerunning the first query to maintain the same complexities, or in practice,
storing the results of the first query or sweeping the bitmap).

15



We do not assume that the identifiers are in the range [1, n]. Rather, we
store intervals sorted according to their first coordinate and use n⌈log n⌉ ad-
ditional bits to store the permutation from the order in the second coordinate
to the order in the first coordinate.

Although we focus on two dimensions, all the structures obtained with
this general strategy are easily generalizable to d dimensions. Combining the
techniques developed in this section (while still representing the coordinates
in plain form) we have the following result. We call the structure IS, for
“interval stabbing”.

Theorem 1. Given n rectangles with coordinates in [1, U ], there is a data
structure (called IS) that requires n(4 logU+8 logn+O(1)) bits and finds the
rectangles that intersect a query rectangle in time O(logn + k1 + k2), where
k1 and k2 are the intervals that intersect the query when projected along each
dimension. The structure is built in O(n logn) time and extra bit space.

Note this structure returns an identifier of the interval in the range [1, n].
The application may store an array mapping those positions to pointers or
another kind of identifier.

5. Space-Efficient Interval Stabbing Structures

5.1. Fully-functional tree-based structure (IS-FF)

Succinct data structures represent data types using an amount of space
close to the theoretic lower bounds, and still supporting common navigation
and search operations. In the case of trees, the general pointer representation
requires Θ(n logn) bits whereas succinct representations require 2n + o(n)
bits and support a broad range of operations in constant time. A subfamily
of these succinct representations called BP, for balanced parentheses, repre-
sents the tree via a DFS preorder traversal, where a parenthesis is opened
when arriving at a node and closed when leaving the node. A recent BP-
based proposal, named Fully-Functional Succinct Trees (FF) [33], achieves
constant time for the widest range of operations and can be built in O(n)
time. Arroyuelo et al. [34] experimentally compared various succinct rep-
resentations for trees and concluded that FF offers an excellent space-time
trade-off and wide functionality. In our space-efficient variant of the IS struc-
ture we use FF trees to represent the tree of intervals. An example of the
generic BP representation is given in Figure 8.

16



For each dimension, we store the lower coordinates of the intervals in a
sorted array (using the storage scheme proposed in Section 4.1).

Instead of representing array start , we will handle the queries using the
mapping between coordinates and tree nodes. Since a preorder traversal of
the tree enumerates the intervals by increasing lower coordinate, it turns out
that the preorder numbers of the tree nodes correspond to positions in the
array sorted by lower coordinate. FF representation solves in constant time
operation preorderSelect(p), which gives the tree node with preorder p.

To solve an interval intersection query we first map it via binary searches
to q = [lq, uq] in the array that contains the lower coordinates. Then we
proceed as in the final strategy described in Section 4.2. We start the tree
traversal from the node representing the interval with lower coordinate uq+1
and recursively traverse the tree from that node, omitting the first interval
from the output.

Starting from the node, we apply the recursive traversal of the tree us-
ing operations parent , lastChild (which gives the last child of a node), and
prevSibling(i) (which gives the previous sibling of a node), all of which are
computed in constant time. The final challenge is how to compare the upper
coordinate of an interval in the tree with lq, in order to determine whether
the interval is to be reported and the traversal must continue. FF provides
in constant time operation preorderRank , which gives the preorder of a tree
node. We store the upper coordinates in preorder and then access that array
at the position given by preorderRank . Algorithm 1 shows the pseudo-code
to do this traversal.

Since the upper coordinates are not stored in increasing order of values,
we cannot use the compact storage technique of Section 4.1. In practice,
however, there is some correlation between consecutive MBRs, so we use a
folklore technique for sequences that are not necessarily increasing. Instead
of storing the differences bi = ai − ai−1, we store the xor, bi = ai xor ai−1,
and represent its significant bits using, for example, Rice codes. A regular
sampling is added to provide direct access, just as in Corollary 1.

Theorem 2. Given a set of n rectangles with coordinates in [1, U ], n =
o(U), there is a data structure (called IS-FF) that requires n(4 logU− log n+
o(log(U/n))) bits and finds the rectangles that intersect a query rectangle
in time O(logn + k1 + k2), where k1 and k2 are the intervals that intersect
the query when projected along each dimension. If U = O(n), the space is
3n logn + O(n) bits. The structure is built in O(n logn) time and extra bit

17



Algorithm 1 Tree traversal for IS-FF. ffTree is the fully-functional tree,
Q = [Lq, U q] is the query interval, and L and U the storage of the lower and
upper coordinates, respectively. S is an auxiliary stack.

IS− FF(ffTree, Q = [Lq, U q], L, U)

1: cNodePreorder← rightSearch(L, U q) + 1
2: cNode← ffTree.preorderSelect(cNodePreorder)
3: while ffTree.parent(cNode) 6= ∅ do
4: cNode← ffTree.parent(cNode)
5: S.push(cNode)
6: cNodePreorder ← ffTree.preorderRank(cNode)
7: Mark/report interval cNodePreorder
8: end while
9: while S 6= ∅ do
10: cNode← ffTree.prevSibling(S.pop())
11: while cNode 6= ∅ do
12: cNodePreorder ← ffTree.preorderRank(cNode)
13: if U.access(cNodePreorder) < Lq then
14: break
15: end if
16: S.push(cNode)
17: Mark/report interval cNodePreorder
18: cNode← ffTree.lastChild(cNode)
19: end while
20: end while

space.

Proof. Construction and time complexities have been already discussed. The
space includes, for each dimension, n log(U/n)(1 + o(1)) bits for storing the
lower coordinates (Corollary 1), n⌈logU⌉ for the upper coordinates, and
2n + o(n) for structure FF. In addition we need n⌈log n⌉ + n bits for the
intersections (Section 4.3).

5.2. Independent interval set-based structure (IS-IIS)

Although the space required by the IS-FF improves the other structures
presented in this paper, the query time of that structure is not competitive
(we shall show this in Section 8), and this is mainly due to the performance

18



of the Fully-Functional tree. In this section we present an alternative rep-
resentation for interval sets that does not require the usage of such trees.
We name this structure IS-IIS because it is based on a decomposition into
Independent Interval Sets.

Definition 3. A set of intervals I = {i1,. . . ,in} is independent if no interval
ij ∈ I is strictly contained in other interval ik ∈ I. More precisely, ∀ij =
[lj , uj], ik = [lk, uk], ij , ik ∈ I, if lj < lk then uj ≤ uk.

Reporting the k intervals in an independent interval set that intersect
a query Q = [Lq, U q] can be easily solved in O(logn + k) by storing the
intervals in order. Note that by definition of independent set the order of
the lower and upper coordinates is the same. We first locate the rightmost
interval stabbed by U q (using binary search), and then we walk through the
set (from right to left) reporting all the intervals until we find one that does
not intersect the query.

If the set of intervals is not independent, we can decompose it into m
independent sets in O(n logm) time, once the intervals have been ordered
by left endpoint. The algorithm is well-known to find the longest increasing
subsequence in a stream of numbers, and it is also related to the problem
of decomposing a permutation Π over [1, n] into the minimum number of
shuffled (i.e., not necessarily consecutive) upsequences [35] (the rightmost
endpoints of the intervals correspond to the permutation values). Our algo-
rithm is equivalent to Fredman’s [36] to find the optimal number of shuffled
upsequences.

In the general case, reporting the intervals that intersect a query Q can
be solved in time O(m logn + k) by running the algorithm proposed above
in each independent set . However, we can improve this query time to
O(logn + m + k). The data structure stores the lower coordinates of all
the intervals in ascending order using a single array (the storage scheme pro-
posed in Section 4.1 is used to save space). Hence, the m binary searches to
find the rightmost interval stabbed by the query in each group are replaced
by a single binary search. Let lq = rightSearch(U q) + 1 be the result of
such binary search. If we can compute in constant time the rank of right-
most interval of each group that starts before lq (let us name this operation
rankAll(lq)), the algorithm performs in the claimed complexity (just by walk-
ing through the lower coordinates of each group starting from the position
computed by rankAll). In parallel to the lower coordinates, we store a se-
quence that indicates for each coordinate the respective group to which it

19



belongs. A wavelet tree can be used to store such sequence [12, 18, 19] in
n⌈logm⌉+o(n logm) bits supporting rankAll(lq) in O(m) time (i.e., constant
time per group). The algorithm traverses the whole wavelet tree from the
root to the leaves. It starts at position lq and maps this position into each
node until the leaves, where mapped positions are the result of the query.
Thus, the algorithm performs 1 + 2 + 4 + . . .+m = O(m) rank operations.

Lemma 4. Given a set of n intervals, there is a data structure using n⌈logm⌉+
o(n logm) bits, plus the storage needed for the coordinates, able to report all
the k intervals that intersect a query interval in time O(logn +m+ k).

In the algorithm we have just described, the lower coordinates of each
maximal set cannot been stored using the general scheme proposed in Section
4.1 because they are decompressed from right to left. However, a symmetric
traversal starting at the first interval that ends after Lq, and walking from
left to right, computes the same result. This algorithm allows the use of the
compact storage technique of Section 4.1.

Theorem 3. Given a set of n rectangles with coordinates in [1, U ], n = o(U),
there is a data structure (called IS-IIS) that requires n(4 log(U/n)+3 logm+
o(log(U/n))) bits and finds the rectangles that intersect a query rectangle in
time O(logn+m+ k1 + k2), where k1 and k2 are the intervals that intersect
the query when projected along each dimension, and m is the sum of the
number of independent sets along both dimensions. If U = O(n), the space
is 3n logm + O(n) bits. The structure is built in O(n logn) time and extra
bit space.

6. Space-efficient Point Query Structure (SE-PQ)

Instead of reducing the two-dimensional problem to one-dimensional in-
terval stabbing problems, in this section we reduce it to two-dimensional
range search problems, yet on points rather than on rectangles. As noted in
Section 2, there are many structures solving orthogonal range searching on
point datasets. We use wavelet trees to achieve a space-efficient structure,
while keeping competitive query times.

The idea is to interpret an interval a = [la, ua] as a point (la, ua) in an
integer grid n × n and then transform the queries in the original space to
orthogonal range queries in this grid. The following, easy to verify, obser-
vation provides a basis for this transformation. It says, essentially, that in

20



a

d

e

c

b

q

f

g

h

l/u 1 2 3 4 5 6 7 8
1 f
2 a
3 b
4 h
5 c
6 d
7 g
8 e

Figure 9: Transforming x-axis intervals in Figure 6 into a two-dimensional grid.

the original space an intersection between a query q and an object o (an
MBR) occurs when, across each dimension, the query does not finish before
the MBR starts, and the query does not start after the MBR finishes.

Observation 1. o ∈ RQ(q) iff ∀i, uq
i ≥ loi ∧ lqi ≤ uo

i .

Let us define the function lorderi(o), which computes the order of the
object o in the dimension i according to the lower coordinate loi , and the
analogous uorderi(o) defined according to the upper coordinate uo

i . Figure 9
shows the transformation of the x-axis intervals in the previous example to
a two-dimensional grid. In this example, lorder1(f) = 1, lorder1(a) = 2,
lorder1(b) = 3, uorder1(f) = 4, uorder1(a) = 2, and uorder1(b) = 3.
These functions provide a mechanism to compute the cell of an object o
in the first grid as cg1(o) = (lorder1(o), uorder1(o)) and its cell in the sec-
ond grid as cg2(o) = (lorder2(o), uorder2(o)). In the example, cg1(f) =
(lorder1(f), uorder1(f)) = (1, 4), cg1(a) = (2, 2), and cg1(b) = (3, 3).

This transformation involves the construction of two-dimensional grids
with one point in each row and in each column. Therefore we can represent
each grid with a wavelet tree as described in Section 3. In each wavelet tree
(i.e., in each dimension) we perform a query derived from the transformation
of the original query q into the new space. The query q = [lq1, u

q
1] × [lq2, u

q
2]

is decomposed according to its two dimensions, resulting in a query to each
wavelet tree: qwt1 = [1, uq

1]× [lq1, n] and qwt2 = [1, uq
2]× [lq2, n]. The conceptual

idea behind this formula is to retrieve those MBRs with lower coordinates
that are less or equal than the upper coordinate of the query and with upper
coordinates that are greater or equal than the lower coordinate of the query
(in each dimension). These queries are two-sided, and they are a particular

21



Algorithm 2 Wavelet tree traversal for SE-PQ. cNode is the wavelet tree
node, maxR the maximum row, and minC the minimum column. The initial
call is PQ(root, n, 1). It outputs points ranked by their y-axis.

PQ(cNode, maxR,minC)

1: maxRange← maxR
2: if maxRange ≥ 1 then
3: if (maxRange = cNode.size) and (cNode.range ⊆ [minC, n]) then
4: output all ids ∈ cNode.range
5: else
6: if cNode.leftChild .range ∩ [minC, n] 6= ∅ then
7: PQ(cNode.leftChild , rank0(cNode, maxRange))
8: end if
9: PQ(cNode.rightChild , rank1(cNode, maxRange))
10: end if
11: end if

case of the four-sided queries that the aforementioned wavelet tree handles.
Hence, an optimization of the algorithm to solve the queries is possible.

Algorithm 2 shows the pseudo-code to solve these particular two-sided
queries. This algorithm is very similar to the point case but there are two
important differences. First, just one rank operation (lines 7 and 9) has to
be performed to compute the valid range in each node, because these valid
ranges always start in the first position of the node. Second, the recursive
call to the right child (line 9) is always performed because the range used to
prune the tree traversal only prunes left branches.

We store the lower and upper coordinates separately, each in increasing
order using the compact representation of Section 4.1. Then binary searches
convert the query coordinates into rank space along each dimension. The
resulting structure is called SE-PQ (for “point queries”) and offers the fol-
lowing trade-off.

Theorem 4. Given a set of n rectangles with coordinates in [1, U ], n = o(U),
there is a data structure (called SE-PQ) that requires n(4 logU − logn +
o(logU)) bits and finds the rectangles that intersect a query rectangle in time
O((k1 + k2 + 1) log(n/(k1 + k2 + 1)), where k1 and k2 are the intervals that
intersect the query when projected along each dimension. If U = O(n), the
space is 3n logn + o(n logn) bits. The structure is built in O(n logn) time

22



b

c

h

d

e

a

g

f

Figure 10: Base example for the WTR structure.

and extra bit space.

Proof. The coordinates are stored in 4n log(U/n)(1 + o(1)) bits according
to Corollary 1. From Lemma 1 we can represent each of the two grids in
n⌈log n⌉ + o(n log n) bits. Additionally, n⌈log n⌉ + n bits are necessary for
the intersection, recall Section 4.3. The O(logn) time to translate to rank
space is absorbed by that to report the k1 and k2 points from the wavelet
trees, O((ki + 1) log(n/(ki + 1)) (Lemma 1). As this function increasing
sublinearly with ki, the costs for k1 and k2 can be added as stated in the
theorem. Construction is dominated by sorting the coordinates and building
the wavelet trees.

7. A Wavelet Tree on Rectangles (WTR)

We propose a new structure for the rectangle intersection problem that
considerably deviates from the framework used in the previous sections. It
also uses a translation to rank space and a decomposition of the problem, but
this decomposition is not on the dimensions. Instead we define a new decom-
position, into independent sets, where each resulting subproblem (each inde-
pendent set) is also a two-dimensional rectangle intersection problem where
rectangles do not contain each other along the x-axis (i.e., their x-projections
form a set of independent intervals, see Definition 3). This decomposition
results in a structure that is adaptive in the number of independent sets
required to decompose the space. Figure 10 shows a new example of the
orthogonal range query problem that we use as a base to describe our struc-
ture.

23



7.1. Data structure

Recall we assume that the first dimension represents rows (y-axis or lat-
itudes) and the second represents columns (x-axis or longitudes). We will
describe a structure able to handle independent sets of rectangles.

Definition 4. A set of MBRs g = {m1,. . . ,mn} is independent if no projec-
tion over the x-axis of an MBR mi ∈ g is strictly contained in the projection
over the x-axis of another MBR mj ∈ g, that is, if {[l12, u1

2], . . . , [l
n
2 , u

n
2 ]} is an

independent set of intervals.

If the set of MBRs to index is not independent, we will decompose it into
m independent sets using the same algorithm described in Section 5.2. All the
solid rectangles (identified by letters) in Figure 10 form a single independent
set, whereas the dotted rectangles must form other independent sets.

Let n be the number of MBRs in an independent set, each one described
by two pairs {(xl,yl),(xu,yu)} (the real coordinates of two opposite vertices).
These MBRs can be represented in rank space in a 2n × 2n grid with only
one point in each row and column (see Section 4.1). Let X l, Xu, and Y be
ordered arrays storing the real coordinates of the MBRs. X l stores all the
x-axis lower coordinates (xl), X

u stores the x-axis upper coordinates (xu),
and Y stores y-axis coordinates (both lower, yl, and upper, yu, in the same
array). In Figure 11 each position in the Y array has been annotated with
the identifier of the corresponding MBR for clarity, but these identifiers are
not stored. In addition, in this figure we use the original identifier when the
coordinate corresponds to a lower coordinate and append a quote (’) when
it corresponds to an upper coordinate (for example, the MBR a starts at
position 1 and ends at position 4). Note that the order of the lower (X l)
and upper (Xu) coordinates in the x-axis is the same because the set is
independent. In Section 7.2 we show how these arrays are used to translate
real queries to rank space. The space-efficient storage scheme presented in
Section 4.1 considerably reduces the space necessary to store them.

A wavelet tree-like structure (Figure 11) with ⌈log 2n⌉ levels is used to
represent the independent set of MBRs. Akin to the basic wavelet trees
(Section 3), this is a binary tree where each node covers a range of positions
in the Y array that represents the first half of the array covered by its parent,
in the case of a left child, and the second half in the case of a right child.
The range covered by the root node is Y [1, 2n].

Each node in the tree stores two bitmaps, B1 and B2, of the same length,
and each position in these bitmaps corresponds to an MBR represented in

24



Figure 11: Representing the independent set in Figure 10 using a wavelet tree-like struc-
ture. We highlight the traversal for query Q = [2.0, 2.75]× [2.0, 3.5].

the node, ordered by their x-axis (in the figure, these positions have been
annotated with the identifier of the corresponding MBR). Let Y [lB, uB] be
the range of Y values covered by the node. Then an MBR is represented
in that node if its y-axis extension intersects Y [lB, uB], that is, it does not
finish before Y [lB] and it does not start after Y [uB]. Let {m1, m2, . . .} be
the rectangles represented in the node. Then B1 and B2 tell whether the
nodes are represented in the left and right children, respectively, according
to Eqs. (1) and (2). Note that an MBR can be represented in both the left and
right child of the node and thus both B1[i] and B2[i] can be 1 simultaneously,
but not 0 simultaneously.

B1[i] =

{

1 if lmi
1 ≤ Y [

⌊

lB+uB
2

⌋

]
0 otherwise

(1)

B2[i] =

{

1 if umi
1 ≥ Y [

⌊

lB+uB
2

⌋

+ 1]
0 otherwise

(2)

As such, this structure might require quadratic space. The reason is that
an MBR with a large extent in the y-axis can be represented in Θ(n) nodes
at the same level. In order to solve this problem Eq. (3) slightly modifies
the way the structure is created. When an MBR mi completely contains
the range covered by the node, this will be signaled with the assignment
B1[i] = B2[i] = 0, and mi will not be stored in the descendants of this
node (a similar technique is used in segment trees [30]). Then each MBR

25



can be stored at most four times per level and we can guarantee logarithmic
bit-space per MBR (Lemma 5).

B1[i] = B2[i] =

{

0 if (lmi
1 ≤ Y [lB]) and (umi

1 ≥ Y [uB])
use (1) and (2) otherwise

(3)

Lemma 5. Given an independent set of n rectangles with coordinates in
[1, U ], n = o(U), structure WTR requires at most n(4 logU + 4 logn +
o(logU)) bits. If U = O(n), the space is at most 8n logn+ o(n log n) bits.

Proof. Each of the n MBRs has two endpoints. Each appears in a tree
node at each level. The MBR spans that node, plus possibly its sibling
that is completely covered by the MBR. In each of those 4 nodes per level
the MBR induces 2 bits, in B1 and B2, for a total of 8n log(2n) bits, plus
o(n logn) bits for rank queries. Added to the arrays X l and Xu, each requir-
ing n log(U/n)(1 + o(1)) and Y requiring 2n log(U/(2n))(1 + o(1)) (Corol-
lary 1), we have the result.

7.2. Solving queries

Our wavelet tree-like structure can be used to solve range queries in rank
space derived from the translation of the original queries in geographic space
using the ordered arrays of coordinates (X l, Xu, and Y ). The scheme pre-
sented in Section 4.1 stores these arrays space-efficiently. We make use of
operations leftSearch and rightSearch introduced in that section.

A query in geographic space Q = [Yl, Yu] × [Xl, Xu] is translated into
q = [yl, yu]× [xl, xu] in rank space as follows:

yl = leftSearch(Y, Yl),

yu = rightSearch(Y, Yu),

xl = leftSearch(Xu, Xl),

xu = rightSearch(X l, Xu).

Note the upper x-axis coordinates of the MBRs are searched for the lower
x-axis coordinate of the query, and vice versa. In this way, [xl, xr] will cover
the ranks in bitmaps B1 and B2 of the MBRs that intersect the query: We
will exclude those MBRs o = mi such X l[i] > Xu or Xu[i] < Xl. In the
nomenclature of Observation 1, this is lo2 > uq

2 or uo
2 < lq2. For exam-

ple, the query Q = [2.0, 2.75] × [2.0, 3.5] translates into q = [4, 5] × [3, 5]

26



(leftSearch(Y, 2.0) = 4, rightSearch(Y, 2.75) = 5, leftSearch(Xu, 2.0) = 3,
rightSearch(X l, 3.5) = 5).

Algorithm 3 shows the recursive method to solve range queries once they
have been translated into rank space. The interval [xl, xu] determines the
valid range inside the root node of the wavelet tree and the interval [yl, yu]
determines nodes that can be pruned. The algorithm recursively projects a
range, [xl, xu] at the beginning, onto the left child using rank 1 operations
over bitmap B1, and onto the right child using rank1 over B2. Note that
the same MBR can be reported by both child nodes but no repeated results
should be reported by their parent node. Thus, the results of both siblings
are merged to compute the result of their parent node.

In addition, there can be local results in a node, corresponding with
MBRs that completely contain the range covered by the node (i.e., MBRs
at positions i where B1[i] = B2[i] = 0), which are added to the result in
the merging stage. Those local results can be obtained using an extension of
the rank and select operations introduced in Section 3. Given two bitmaps
B1 and B2, rank00(B1, B2, p) counts the number of positions i ≤ p where
B1[i] = B2[i] = 0. For example, given B1 = 1000110 and B2 = 0011010,
rank00(B1, B2, 7) = 2. In a similar way, select00(B1, B2, i) returns the posi-
tion of the i-th occurrence of the symbol 00 (representing occurrences of the
symbol 0 in both bitmaps simultaneously). For instance, in the previous ex-
ample, select00(B1, B2, 1) = 2. Then rank 00(B1, B2, u)− rank00(B1, B2, l− 1)
returns the number of local results in [l, u] and select00 is used to find the
position of each single local result in such range.

It is easy to solve rank 00 and select00 in constant time and o(n) extra
space. One can create the sublinear-space data structures for a virtual bitmap
B such that B[i] = 1 iff B1[i] = B2[i] = 0, and then translate those queries
into rank1 and select1 queries on B. Any desired portion of B that needs be
consulted to complete the queries is created on the fly in constant time from
the corresponding areas of B1 and B2.

3

Lemma 6. Given an independent set of n rectangles, structure WTR finds
the k rectangles that intersect a query rectangle in time O((k + 1) logn).

3More precisely, to achieve constant time in the RAM model we need to be able to
retrieve portions of Θ(logn) bits of B in constant time. This is easily obtained from B1

and B2 since B[i] = ∼ B1[i] ∧ ∼ B2[i], using machine-word bitwise operations, or universal
tables in theory.

27



Algorithm 3 Range query algorithm on structure WTR. cNode is the tree
node, [lB, uB] is the valid Y range, and [xl, xu] is the valid bitmap range. It
returns MBRs ranked by their x-axis. Note cNode.B is a virtual bitmap.

WTR(cNode, lB, uB, xl, xu)

if cNode .range ⊆ [lB, uB] then
return [xl, xu]
end if
leftResult ← 〈〉; rightResult ← 〈〉; localResult ← 〈〉
if cNode .leftChild .range ∩ [lB, uB] 6= ∅ then
leftResult ←WTR(cNode.leftChild , lB,

⌊

lB+uB
2

⌋

],
rank1(cNode.B1, xl − 1) + 1, rank1(cNode .B1, xu))

end if
if cNode .rightChild .range ∩ [lB, uB] 6= ∅ then
rightResult ←WTR(cNode.rightChild ,

⌊

lB+uB
2

⌋

] + 1, uB,
rank1(cNode.B2, xl − 1) + 1, rank1(cNode.B2, xu))

end if
for i = rank 1(cNode.B, xl − 1) + 1 to rank1(cNode .B, xu) do
add select1(cNode.B, i) to localResult
end for
for i = 1 to |leftResult | do
leftResult [i]← select1(cNode.B1, leftResult [i])
end for
for i = 1 to |rightResult | do
rightResult [i]← select1(cNode.B2, rightResult [i])
end for
return merge(leftResult , rightResult , localResult)

28



Proof. The process is similar as for the point wavelet tree (Lemma 1), where
each result may require a full root-to-leaf traversal. In addition, each unique
result is merged upwards, costing O(1) time per node, until the root. Re-
peated results add a cost that is equal to the number of times the same
result appears duplicated in a merge and copies are deleted. The number of
times this can occur for a unique result is limited by the number of times
any MBR is represented in the tree. This is at most 4 log(2n), see the proof
of Lemma 5.

Figure 11 highlights the nodes visited to solve the query Q = [2.0, 2.75]×
[2.0, 3.5]. As noted before, this query is translated into the ranges [xl, xu] =
[3, 5] (valid positions in the root node) and [yl, yu] = [4, 5] (interval to prune
the tree traversal). The first range is projected onto the child nodes of the
root node as [rank1(B1, 3 − 1) + 1, rank1(B1, 5)] = [2, 4] and [rank1(B2, 3 −
1) + 1, rank1(B2, 5)] = [3, 4] but the second one is not accessed because it
covers the range [9,16], which does not intersect the query range [4,5]. In
the same way the range [2, 4] of the left child is projected onto its chil-
dren as [rank1(B1, 2 − 1) + 1, rank1(B1, 4)] = [1, 1] and [rank1(B2, 2 − 1) +
1, rank1(B2, 4)] = [2, 4]. In the next level, the first node accessed is the sec-
ond one that covers the range [3,4]. The result of this node comes from the
local result that is computed in this way: there is one local result (because
rank00(B1, B2, 1) = 1) that is at position 1 (because select00(B1, B2, 1) = 1).
When the recursive call returns the control to the parent of this node, its
result is computed using the merge of the left child result (an empty set), the
right child result (select1(B2, 1) = 1) and the local result (an empty set). In
the parent of this node, there are no local results, and the left result 〈1〉 and
right result 〈2〉 reference the same MBR (select1(B1, 1) = select1(B2, 2) = 2).
Finally, in the root node the result comes from the left child and it is com-
puted as select1(B1, 2) = 3. Note that the MBR at position 3 is b, the result
of the query.

7.3. Generalization to m independent sets

In the general case, the dataset can be decomposed into m independent
sets using the same algorithm mentioned in Section 5.2. Note that we define
independent set over the x-axis projection of the MBRs, which form a set of
intervals. In the same way, we propose two techniques in order to reduce the
number of binary searches.

29



On the one hand, we use a single shared Y array for the whole dataset.
In this way, the m wavelet tree-like structures are built in the same range [1,
2n] (i.e., the nodes of the m trees at the same position and level cover the
same range). Hence, the y-axis range of the query is the same for all the trees
and it can be obtained using two single binary searches on the endpoints of
the query interval.

On the other hand, the x-axis range of the query is not the same for all
the trees and thus we use the same technique described in Section 5.2. We
store x-axis lower coordinates (the same holds for the upper coordinates) in
a single array and an additional wavelet tree over a sequence that indicates
for each coordinate the corresponding independent set.

Although these two techniques do not affect the asymptotic query time
complexity (dominated by the m traversals in the trees), they improve the
practical performance of the structure.

Theorem 5. Given a set of n rectangles with coordinates in [1, U ], n = o(U),
that can be partitioned into m independent sets, there is a data structure
(called WTR) that requires at most n(4 logU + 4 logn + 2 logm + o(logU))
bits and finds the rectangles that intersect a query rectangle in time O((m+
k) logn). If U = O(n), the space is at most 8n logn + 2 logm + o(n logn)
bits. The structure is built in O(n logn) time and extra bit space.

Proof. The space follows from Lemma 5, considering that each MBR is repre-
sented in just one independent set, and the two additional wavelet trees used
to improve the translation to rank space. The time follows from Lemma 6
considering that we carry out m searches and collect k results overall. Con-
struction time is dominated by the decomposition into m independent sets
(analyzed in Section 5.2) and the construction of the wavelet tree-like struc-
tures (see Section 3).

7.4. Additional considerations

The minimum number m of independent sets that cover the MBRs can
be thought of as the difficulty of the problem, thus our O((m+k) log n) time
query algorithm is adaptive to this difficulty. Yet, the situation is indeed
more complex. As a simple example, the number of independent sets can
be different if we rotate the data. For example, in the TIGER dataset (see
Section 8), we obtain 19 independent sets in the x-axis and 36 in the y-
axis. This difference is also reflected in the query time performance (for

30



example, using the Block query-set the time almost doubles when using the
y-axis decomposition). A finer analysis is as follows (considering a version
of the structure where each independent set has its own Y array). Assume
n1, n2, . . . , nm are the sizes of the m independent sets. Then, the space
necessary to store the wavelet tree-like structures is at most 8

∑

ni⌈log ni⌉,
and they solve the queries in time O(

∑

logni) plus O(logni) for each result
reported by the i-th tree. This is interesting because the space is a convex
function whereas the time is a concave function. Therefore, balancing the
number of elements in the independent sets improves the size of the structure
whereas the opposite improves query time performance. Hence, we can design
heuristics to create the independent sets based on this trade-off. For example,
the algorithm to create the independent sets decomposition can choose the
set that, without violating the constraints, contains fewest/most elements, or
minimizes ni⌈log ni⌉, etc. Finally, the analysis of the query time performance
can be refined by defining the complexity of the problem m as the number of
independent sets accessed to solve a query (and not all the independent sets
necessary to represent the dataset). In this case, heuristics that minimize the
overlap between independent sets can improve the query time performance.
This leads us to a band-decomposition of the space very typical in some
packing algorithms for spatial indexes [16].

Table 1 summarizes all the theoretical space-time trade-offs achieved
along the article, together with the R-tree variants. The way we compute the
space for the STR R-tree is explained in Section 8. For the CR-tree we have
given a space lower bound considering that, if a good spatial packing of rect-
angles is achieved, the differences between consecutive coordinates could be
as small as if we ordered them all. The next section is devoted to a practical
comparison among all these data structures.

8. Experimental Results

8.1. Datasets

Both synthetic and real datasets were used in our experiments. The
two synthetic collections have one million MBRs each, the first one with
a Zipf distribution (world size = 1000 × 1000, ρ = 1) and the second one
with a Gauss distribution (world size = 1000 × 1000, µ = 500, σ = 200).
We created two query sets for each dataset. In the first one, queries are

31



Structure Space per rectangle in bits Same space if U = O(n) Query time (order, worst-case)
IS 4 logU + 8 logn+O(1) 12 logn+O(1) logn+ k1 + k2
IS-FF 4 logU − logn+ o(log(U/n)) 3 logn+O(1) logn+ k1 + k2
IS-IIS 4 logU − 4 logn+ 3 logm+ o(log(U/n)) 3 logm+O(1) logn+m+ k1 + k2
SE-PQ 4 logU − logn+ o(logU) 3 logn+ o(log n) (k1 + k2 + 1) log(n/(k1 + k2 + 1))
WTR 4 logU + 4 logn+ 2 logm+ o(logU) 8 logn+ 2 logm+ o(logn) (k +min(m1,m2)) logn
STR R-tree (4 logU + logn)M/(M − 1) 5M/(M − 1) logn —
CR-tree ≥ (4 log(U/n) + logn)M/(M − 1) ≥M/(M − 1)(logn+O(1)) —

Table 1: Space/time complexities of the described data structures for orthogonal range queries on rectangles. Here n is the
number of rectangles, U the coordinate universe size, k the query output size, k1 and k2 the output sizes of the projected one-
dimensional queries (k ≪ min(k1, k2)), m1 and m2 the number of independent intervals when projecting the data rectangles to
either dimension, m = m1+m2, and M the R-tree arity. The first five structures are described in Theorems 1 to 5, respectively,
whereas the last two come from the literature (and we have adapted them slightly).

Tiny Medium Broad
n m m1 m2 k k1 k2 k k1 k2 k k1 k2

GAUSS U 1,000,000 20 10 10 187 14,396 13,695 1,808 47,137 43,662 12,763 123,512 125,122
GAUSS G 1,000,000 20 10 10 446 20,918 21,371 3,711 60,180 62,022 25,313 159,505 158,258
ZIPF U 1,000,000 20 10 10 121 12,214 14,496 707 27,982 29,290 3,501 60,818 56,978
ZIPF Z 1,000,000 20 10 10 23,876 153,649 157,757 81,307 268,849 288,758 145,124 380,945 377,871
EIEL 569,534 69 35 34 41 1,814 1,715 136 2,986 2,749 10,375 66467 58,578
TIGER 2,249,727 55 19 36 14 2,903 2,236 412 10,703 20,395 10,739 128,998 88,401

Table 2: Quantitative analysis of the parameters that may have an influence on the performance of the data structures (see
Table 1 for a description of these parameters). We study these parameters in all the four different datasets. GAUSS and ZIPF
dataset are studied with the two kinds of query sets (uniform distribution, GAUSS U and ZIPF U, and same distribution of
the dataset, GAUSS G and ZIPF Z). For each query set, three different selectivities are shown: Tiny: 0.001%/URBRU/Block;
Medium: 0.1%/CENT/AIANNH; and Broad: 1%/MUN/COUSUB.

32



uniformly distributed over the area of the space where the MBRs are lo-
cated, whereas in the second one queries follow the same distribution of the
dataset. The second variant emulates the typical user behavior of perform-
ing more queries in areas containing more information. Each of these four
query sets contains four subsets of queries grouped by selectivity that rep-
resents 0.001%, 0.01%, 0.1%, and 1% of the space. These subsets contain
1,000 queries each with a ratio between the horizontal and vertical exten-
sions of the queries varying uniformly between 0.25 and 2.25. The algorithm
generating these query sets is based on the one used in the evaluation of
the R∗-tree [37]. The first real collection, named EIEL dataset, contains
569,534 MBRs from buildings in the province of A Coruña, Spain4. Five
smaller collections available at the same place were used as query sets: UR-
BRU (urbanized rural places), URBRE (urbanized residential places), CENT
(population centers), PAR (parishes), and MUN (municipalities). The sec-
ond real collection, named TIGER dataset, contains 2,249,727 MBRs from
California roads and is available at the U.S. Census Bureau5. In addition,
six smaller real collections available at the same place were used as query
sets: Block (groups of buildings), BG (block groups), AIANNH (American
Indian/Alaska Native/Native Hawaiian Areas), SD (elementary, secondary,
and unified school districts), COUSUB (country subdivisions), and SLDL
(state legislative districts).

In Table 2 we study various parameters of the collections (data and
queries) that may affect the result. We refer to these results later in the
discussion. For each dataset we show the average number of results, k, and
the average number of results in each dimension, k1 and k2, for three query
sets representing different selectivities. For example, Tiny contains queries
that represent 0.001% of the space for Gauss and Zipf datasets, URBRU
queries for the EIEL dataset, and Block queries for the TIGER dataset.

8.2. Implementation details

Our experiments evaluate the space and time performance of our data
structures, and compare them with a static variant of the R-tree (by far
the most popular index for MBRs) named STR R-tree. All the struc-

4http://www.dicoruna.es/webeiel
5http://www.census.gov/geo/www/tiger

33



tures were implemented by ourselves6, and the source code is available at
http://lbd.udc.es/research/serangequerying. The computer used fea-
tures an Intel Pentium 4 processor at 3.00GHz with 4GB of RAM. It runs
GNU/Linux (kernel 2.6.27). We compiled with gnu/g++ version 4.3.2 and
options -m32 -O9. Our time measures always show average user time per
query.

In our analyses we have assumed for simplicity that we can return any
injective function from the MBRs onto [1, n] as a valid MBR identifier. This
is hardly the case in practical applications, where MBRs are usually simplifi-
cations of more complex objects, and thus, MBR identifiers are in most cases
pointers to data in memory or disk. In the experiments we will assume these
MBR identifiers are stored in an array of n 4-byte integers, and will consider
this array as part of the space cost of the data structures.

Two of our structures, SE-PQ and WTR, are based on wavelet trees and
thus their performance heavily relies on the implementation of rank/select for
bitmaps. There exist several implementations offering different space-time
trade-offs and we consider some of them in our experiments. Specifically, we
use a practical one-level implementation proposed by González et al. [25].
The space-time trade-off offered by this implementation can be easily config-
ured, and we use three different space overheads: 5%, 25%, and 33%. We also
use a practical version of the classical two-levels solution [23], which was also
described in the same paper [25] and requires 37.5% extra space. We noticed
that the time performance of the latter is much better that the one-level so-
lution with 33% of space overhead (see for example Figure 13(a)). Therefore,
we emphasize the two endpoints of the trade-off (i.e., the one-level 5% solu-
tion when aiming at space efficiency, and the two-levels solution to improve
the time performance). Also, when the rank/select operations are not very
frequent, the most space-efficient solution is usually preferable. This is the
case for the WTR structure that, besides the common rank/select operations
for bitmaps, requires rank00 and select00 queries. As these two operations are
not very frequent, the 5% implementation is much more suitable for them.
We omit the experiments with other solutions because the impact in the time

6In previous work [7, 8] we used the STR R-tree implementation due to Marios Had-
jieleftheriou (http://libspatialindex.github.com). That implementation is general
and uses the Standard Library, which makes it not suitable to measure the time perfor-
mance of the structure. Our implementation uses its construction algorithm but its time
performance has been drastically optimized (by several orders of magnitude in some cases).

34



 0

 0.5

 1

 1.5

 2

 0.75  1  1.25  1.5  1.75

T
im

e 
(m

s)

Bytes per coordinate

Gamma
Delta
Rice

VBytes

(a) EIEL

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

T
im

e 
(m

s)

Bytes per coordinate

Gamma
Delta
Rice

VBytes

(b) TIGER

Figure 12: Influence of the coordinate encoding.

performance is minimal, whereas the space is considerably increased.
We compute the size of STR R-trees conservatively, assuming that the

nodes are perfectly full (this is not far from real as this static variant can be
built bottom-up). When using nodes of M entries, the R-tree will contain

n
M−1

nodes. The size of an entry is the size of an MBR plus a pointer to the
child (or the MBR identifier if the node is a leaf). In order to compare these
variants with our structure we assume that MBRs are stored in 16 bytes (4
coordinates in 4-byte numbers) and the pointer in 4 bytes. Hence, the total
size of an STR R-tree is n

M−1
×20×M bytes. Note that the coordinates stored

by the STR R-tree are not sorted, thus it is not possible to apply differential
encoding. Therefore, for sufficiently large M , the size of the STR R-tree is
essentially the size of the raw data without compression: MBR coordinates
and identifiers.

8.3. General overview of the results

The experiments in this section are aimed at giving a general overview
of the main results. Next sections carry out more exhaustive and detailed
empirical analyses.

First, we studied the influence of different coding algorithms and con-
figuration parameters for coordinate storage. As described in Section 4.1,
the sampling rate provides a space-time trade-off. We aim at reducing the
space while keeping good search time performance. In general, coordinate
encoding does not have a key influence in search time performance because
these arrays are only used to translate the real coordinates of the query to

35



rank space by means of binary searches. Thus we can tolerate a small loss
in performance in exchange for better compression. We performed exper-
iments with four coding algorithms (Elias-Gamma, Elias-Delta, Rice, and
VBytes) and five sampling rates h (10, 50, 100, 1,000 and 10,000). Figure 12
shows the results of these experiments in the EIEL and TIGER datasets
when these algorithms are plugged in the SE-PQ structure (similar graphs
could be presented for the other structures). Note that this experiment is
only meaningful in real scenarios because the compression achieved strongly
depends on the precision and distribution of the data. Query sets contained
1,000 uniformly distributed queries in the surface covered by each dataset
with a selectivity equivalent to 0.01% of the area. The four lines correspond
to the coding algorithms and each point in these lines represents a different
sampling rate.

Although all the coding algorithms provide a good compression rate (i.e.,
the space usage is much smaller than the 4 bytes per coordinate necessary
when no coding algorithm is used), Rice coding achieves the best space-time
trade-off in most situations. It can also be seen that, unless the sampling
step h is too large, time performance is quite stable, so tuning is not hard.
Due to this fact, in the rest of the experiments we will use Rice codes with
sampling h = 500.

We now carry out a space-time comparison of all the structures presented
in this paper, including a static R-tree (named STR R-tree) and our proposal
of a lossless compressed R-tree (named CR-tree). The lines correspond to
different structures and each point in the lines represents either a different
node size (in the case of STR R-tree and CR-tree), a different space overhead
for the rank/select structures (in the case of SE-PQ and WTR), or a different
sampling rate for the upper coordinates (in the case of IS-FF and IS-IIS).

We use the TIGER dataset and four query sets of different selectivities.
CB contains the most selective (i.e., smallest) queries, SLDL the least selec-
tive (i.e., biggest) queries, and BG and SD contain medium size queries.

The first conclusion of these experiments is that the theoretical complex-
ities given in Table 1 are good predictors of practical performance, possibly
with the exception of the space of WTR, where theory is a bit pessimistic,
as explained later in this section.

Our space-efficient structures offer interesting space-time trade-offs, and
many of them clearly beat the space of the classical STR R-tree (the space
saving is around 20% for the SE-PQ and WTR structures, and more than
50% for the CR-tree and IS-IIS structures). The SE-PQ structure is quite

36



 0.001

 0.01

 0.1

 1

 10

 0  25  50  75  100  125  150

T
im

e
 (

m
s
).

 L
o

g
 s

c
a

le

Space (MB)

STR R-tree
CR-tree
SE-PQ

WTR
IS

IS-FF
IS-IIS

(a) CB query set.

 0.01

 0.1

 1

 10

 100

 0  25  50  75  100  125  150

T
im

e 
(m

s)
. L

og
 s

ca
le

Space (MB)

(b) BG query set.

 0.01

 0.1

 1

 10

 100

 0  25  50  75  100  125  150

T
im

e 
(m

s)
. L

og
 s

ca
le

Space (MB)

(c) SD query set.

 0.1

 1

 10

 100

 1000

 0  25  50  75  100  125  150

T
im

e 
(m

s)
. L

og
 s

ca
le

Space (MB)

(d) SLDL query set.

Figure 13: Space-time trade-off, on TIGER dataset.

insensitive to the selectivity of the queries, which makes it more competitive
on broader queries. We will discuss further this behavior in Section 8.5.

Although we claimed at the beginning of this section that the coordinate
encoding does not have a key influence in search times, this is not completely
true for the IS-FF and IS-IIS structures. For both it is still true that the
encoding scheme of the lower coordinates, which only take part in the trans-
lation to rank space, does not have a key influence in search times. However,
the upper coordinates are used in a different way. As we explained in Sec-
tion 5.1, the upper coordinates in the IS-FF structure require an xor-based
compression and a dense sampling rate to provide direct access. In the case
of IS-IIS, the upper coordinates are sequentially accessed from the first can-
didate to the first non-result. As the first candidate might not be a sampled
value, some coordinates might be decompressed without being part of the

37



result. The influence of the sampling rate is emphasized even more because
this process must be completed for each independent interval set.

Finally, we found that a convenient trade-off for R-tree variants is achieved
with M = 30, which we use for the rest of the experiments.

8.4. Detailed space analysis

Figure 14(a) shows the space to store all the compact structures presented
in this paper. The STR R-tree provides a comparison with the state of the
art. As noted before, we are assuming that the nodes of the STR R-tree are
completely full, and thus, we give the least space an R-tree can achieve.

As the classical IS structure requires about seven times more space than
the most space-efficient variant (IS-IIS), we left IS out of the graph. The
effectiveness of the compression scheme, and thus the space of the resulting
structures, varies across datasets, so we show the results for each dataset.

These results show that the structures presented in this paper can in-
dex geographic data in less space than the STR R-tree. Some datasets are
more compressible than others. The best results were obtained with the real
TIGER dataset, where the CR-tree and IS-IIS structures save around 60%
of the space of the STR R-tree. Compression rates are not so impressive for
the synthetic and EIEL datasets. Geographic coordinates in these synthetic
collections use four decimal positions, whereas in the EIEL dataset they are
given in centimeters, and thus in all of these cases distances between con-
secutive coordinates are quite large. However, even in these cases the space
needed to represent the IS-IIS structure is considerably less than the space
needed to represent an STR R-tree (the IS-IIS saves around 40%). The SE-
SQ and IS-FF structures do not save as much space as the CR-tree or IS-IIS
structures, but the space-saving is still considerable (around 20% with the
TIGER dataset) when compared with the STR R-tree. Finally, the WTR is
competitive with the STR R-tree (especially in the TIGER dataset, where
the encoding of the coordinates performs best).

Figure 14(b) shows a breakdown of the space into the three basic com-
ponents of each structure: the coordinate storage, the MBR identifiers, and
the main structure. We only show the results obtained with the TIGER
dataset because the graphs obtained with the other collections just differ
in the proportion used by the coordinate storage scheme. The differential
scheme performs quite well in all of our structures, as the proportion of space
required by this component is minimum when compared with the other two
components. There is a noticeable difference in the case of IS-FF, because

38



 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38
 40
 42
 44
 46

Gauss Zipf EIEL TIGER

In
de

x 
S

iz
e 

(M
B

)

STR R-tree
CR-tree
SE-PQ

WTR
IS-FF
IS-IIS

(a) Structures comparison.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38
 40
 42
 44
 46

STR R-tree CR-tree SE-PQ WTR IS-FF IS-IIS

S
pa

ce
 (

M
B

)

Coordinates
Ids

Structure

(b) Space decomposition. TIGER dataset.

Figure 14: Space usage.

the upper coordinates are not stored differentially but using xor. Note that
the space used to store the coordinates in this structure is comparable with
that of the CR-tree, which uses a compression scheme local to nodes.

The structures using the projection into one-dimensional problems (i.e.,
SE-PQ, IS-FF, and IS-IIS) require twice the space of the others to store the
identifiers. The reason is that for the R-tree variants and the WTR we are
considering just the identifier data, whereas in the others we are considering
in addition the extra data needed to connect both projected problems. If
identifiers are unique numbers in [1, n], they can be used themselves to con-
nect the subproblems; otherwise we need to store a permutation as described
earlier in the paper. In these experiments this makes no difference.

Finally, the main structure corresponds to the pointer-based tree for the
R-tree variants, with wavelet trees in the case of SE-PQ and WTR, with the
FF tree representation in the case of IS-FF, and with some additional pointers
for each independent set in the case of IS-IIS. Note that in these last two
structures the space of the main structure is almost negligible. In a sense, IS-
FF trades main-structure data for coordinate data (as we could alternatively
have sorted upper coordinates in increasing order and a permutation in the
main structure, but this scheme would have been slower). With respect to
SE-PQ and WTR, the two wavelet trees stored by SE-PQ use less space than
the wavelet tree-like structure stored by WTR. The WTR space depends on
the number of times an MBR is represented across the tree, and this turns out
to be much less than the 4-per-level upper bound, as explained. This number
is entirely data dependent and, for example, with the TIGER dataset, each

39



MBR is represented around 2.35 times per level. Although the core of the
WTR is not competitive with the SE-PQ wavelet trees, the resulting global
structure (considering coordinates and identifiers) does not require much
more space (in particular, we do not need to map among projections). In a
sense, the WTR main structure contains the information that is lost in the
projected wavelet trees, and thus it trades main structure space for identifier
space. It is also important to notice thatm is extremely small in practice (see
Table 2), and thus its influence on the space required by the data structures
that depend on it (IS-IIS and WTR, see Table 1) is negligible.

As explained, the STR R-tree space (or, more precisely, the lower bound
we use) is almost exactly the size of the raw data. Our data structures can
be thought of as ways to represent these data in different form: coordinates
are reorganized to make them compressible and data structures provide the
linkage information lost. Our results show that this strategy not only reduces
the raw data space, but it supports efficient searches.

8.5. Detailed time analysis

We experiment both with synthetic and real collections. Recall that we
use query sets with different distributions and selectivities for the synthetic
datasets, whereas for the real datasets we use real query sets. These con-
tain queries of different selectivities. In the graphs, real query sets have
been sorted accordingly with their selectivity (from left to right queries are
broader). Figure 15 shows the results.

These experiments confirm the good performance of the STR R-tree, as it
performs best in all the scenarios and with all the different selectivities. The
good performance of its compressed version, our CR-tree improved lossless
variant, is also remarkable. For the different selectivities, the CR-tree is
consistently about 7 times slower than the STR R-tree. Although the number
of node accesses is comparable for both structures, the cost of a node access
is higher in the case of the CR-tree because of the compression. The query
algorithm has to decompress the values in each node, which involves some
bit-operations that are computationally expensive. It is interesting that the
WTR, a structure completely different in nature to those R-tree variants,
also performs very similarly to them for the different selectivities. The other
structures, especially the SE-PQ, are much less sensitive to the selectivity of
the query. The space-efficient structures based on intervals (i.e., IS-FF and
IS-IIS) are not competitive in time. However, their space-inefficient variant
is not far from the CR-tree or the SE-PQ. This is makes the IS-FF and IS-IIS

40



 0.01

 0.1

 1

 10

 100

 1000

0.001% 0.01% 0.1% 1%

T
im

e
 (

m
s
).

 L
o

g
 s

c
a

le

Selectivity

STR R-tree
CR-tree
SE-PQ

WTR
IS

IS-FF
IS-IIS

(a) Gauss dataset. Uniform query set.

 0.01

 0.1

 1

 10

 100

 1000

0.001% 0.01% 0.1% 1%

T
im

e
 (

m
s
).

 L
o

g
 s

c
a

le

Selectivity

(b) Gauss dataset. Gauss query set.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

0.001% 0.01% 0.1% 1%

T
im

e
 (

m
s
).

 L
o

g
 s

c
a

le

Selectivity

(c) Zipf dataset. Uniform query set.

 1

 5

 25

 125

 625

0.001% 0.01% 0.1% 1%

T
im

e
 (

m
s
).

 L
o

g
 s

c
a

le

Selectivity

(d) Zipf dataset. Zipf query set.

 0.01

 0.1

 1

 10

 100

 1000

URBRU URBRE CENT PAR MUN

T
im

e
 (

m
s
).

 L
o

g
 s

c
a

le

Query-set

(e) EIEL dataset.

 0.01

 0.1

 1

 10

 100

Block BG AIANNH SD COUSUB SLDL

T
im

e
 (

m
s
).

 L
o

g
 s

c
a

le

Query-set

(f) TIGER dataset.

Figure 15: Time performance.

41



still interesting, since new developments (for example, improvements in the
implementation of succinct trees) may turn them just slightly worse than
the IS and thus competitive with the others. The SE-PQ is competitive with
the CR-tree and represents a good choice when queries are not too selective.
Note that, in the real scenarios, even the broadest queries are meaningful.
For example, in the EIEL dataset the query set MUN contains queries of the
form buildings contained in a municipality. Actually, even broader queries,
such as buildings in a certain region or state, may be also interesting in GIS.

As we mentioned above, another important conclusion is the little de-
pendency of the SE-PQ to changes in selectivity. This is due to the space
transformation. We divide the problem into two subproblems, each concern-
ing one dimension. This decomposition makes queries in the two wavelet trees
only marginally dependent on the query size (i.e., selectivity). For example,
on uniformly distributed small MBRs, a query that selects a fraction α along
each coordinate will retrieve α2n rectangles, but the projected wavelet trees
will retrieve αn candidates to verify. This “square root” impact of the query
size in the performance of the algorithm explains its resilience to the query
selectivity. Of course, it also explains why our projection techniques do not
perform so well when queries are very selective, as we work O(αn) time in
order to retrieve a result of size O(α2n). A similar analysis applies to the
interval based structures (IS, IS-FF, and IS-IIS), whose query time depends
on k1 and k2 (see Table 1). In Table 2, we show that k1, k2 ≫ k for very
selective queries, but they get closer for broader queries.

The surprising time decrease of SE-PQ with the increase of the query size
in Figures 15(c) and 15(d) is explained because all the MBRs represented in
a node are directly reported without reaching the leaves if the node range
is completely contained in the query range and all the positions of the node
are valid. Hence, while smaller queries prune the tree more than bigger ones,
bigger queries report more elements without reaching the leaves. The Zipf
dataset markedly increases the number of directly reported objects due to
the high concentration of MBRs near the origin of coordinates (see Table 2).

8.6. Discussion

We performed experiments in various synthetic and real scenarios and we
found that, in general, the new CR-tree variant stands out as an excellent
space-time trade-off, because it is not much slower than the STR R-tree and
it requires up to 60% less space. The SE-PQ also stands out as a good
candidate when queries are not too selective, because it requires up to 20%

42



less space than the STR R-tree and it is not much slower on very selective
queries. For the more selective queries, the WTR is faster than the SE-PQ.
While not faster than the R-tree variants, it takes less space than the STR R-
tree in real datasets. Interval set-based structures require around the same
space as the CR-tree (slightly less in some datasets), but they are slower.
However, their non space-efficient variant (named IS) performs similarly to
the SE-PQ and provides a lower bound on the best performance we may
expect from the space-efficient variants.

The structures that come from a reduction to one-dimensional problems
(i.e., SE-PQ, IS-FF, and IS-IIS) have some common characteristics. The
space is dominated by the storage of the identifiers. Recall that this strategy
stores the identifiers for each dimension (or an equivalent representation to
perform the intersection). Then, they use some extra space for structures
that improve the query time performance (SE-PQ uses much more space
than the interval set-based structures, but its time performance is also much
better). The anomaly in this general behavior for the differences between the
IS-FF and the IS-IIS (the latter outperforms the former both in space and
query time) is explained by the poor performance of the succinct trees for
our application. IS-FF stores an additional succinct tree to improve query
times with respect to the IS-IIS, but a profiling of the code shows that this
succinct tree is the time bottleneck.

In the case of the WTR, practical results are not very exciting. However,
it is interesting to notice that, although completely different in nature, it
performs similar to the R-tree variants.

Based on this empirical evaluation, we conclude that the STR R-tree is
preferable when space is not an issue. However, space is actually an issue
in many domains, and can mark the difference between operating in main
memory or on disk. When this is the case, the CR-tree is preferable when the
majority of the queries are very selective, whereas the SE-PQ is preferable
for applications with broader queries.

9. Conclusions and Future Work

We have introduced four new space-efficient structures (named SE-PQ,
WTR, IS-FF, and IS-IIS) for general sets of minimum bounding rectangles,
and experimentally compared them with the best classical representation (a
slightly space-optimistic STR R-tree). We have shown that the new data
structures offer large space reductions, while retaining a time performance

43



that is reasonable for many applications. As such, they constitute relevant
alternative access structures for geographic data.

Our space-efficient representations make heavy use of compact data struc-
tures such as rank/select structures, wavelet trees, succinct trees, differential
encoding, and others. On top of those, we apply different decompositions
of the problem into simpler subproblems, whose results are then combined.
The achieved complexities are adaptive to different measures of difficulty of
the problem.

In addition, we have optimized the CR-tree, a static compressed version
of the R-tree. In our GIS scenario, the CR-tree can be set not to produce
any false positive. Note that each false positive involves a huge penalty in
most applications because a real complex (e.g., geographic) object has to be
retrieved (possibly from disk) and a complex comparison operation between
this object and the query window has to be performed to check whether it is
a true hit. This CR-tree also takes advantage of the knowledge of the data
distribution, achieving an excellent compression rate on static data.

The experimental evaluation shows that two data structures excel in the
case of little space available for the index: our optimized CR-tree and the
SE-PQ. The former is more suitable for applications where queries are very
selective, whereas the latter is suitable for applications with broader queries.
We showed some real scenarios where both kind of queries arise. Interval set-
based structures and the WTR have not been competitive, yet they are still
promising because they are based on relatively new succinct data structures
that may be improved in the next few years. See Section 8.6 for a detailed
discussion about the empirical evaluation.

In our experiments all the structures were tested in the same level of
the memory hierarchy (specifically, they were tested in RAM). However, it
is important to notice that our space-efficient structures use less than half
the space of a classical index for many datasets. Thus, it may be the case
that in some large real datasets our structures fit into an upper level of
the memory hierarchy, compared to classical indexes. When that is the
case, the time performance of our space-efficient structures will overcome
the performance of classical indexes. Halving the space may be also key to
achieve feasible solutions when memory is limited, such as in mobile devices.
An alternative scenario is that of maintaining the structure distributed across
the main memories of as many servers as necessary, as in current large search
engines. In this case, the main cost factor is the energy to power those
servers. Reductions in memory usage impact directly and proportionally on

44



the number of servers needed to hold the structure, and thus on the energy
cost of the engine.

We are working on allowing the insertion and removal of MBRs once
the structures have been built. Some recent works [38, 33] describe dynamic
versions of bitmaps and trees that can be used in the design of data structures
with insertion and deletion capabilities. Finally, algorithms to solve other
queries like k-nearest neighbor or spatial joins are in our plans too.

10. Acknowledgements

This work was supported in part by Ministerio de Ciencia e Innovación
(PGE and FEDER) [grant TIN2009-14560-C03-02], Xunta de Galicia (FEDER)
[grant 2010/17, and Ángeles Alvariño program], Agrupación Estratéxica (FEDER)
[grant CN 2012/211], and Millennium Nucleus Information and Coordination
in Networks ICM/FIC P10-024F.

References

[1] J. L. Bentley, Multidimensional binary search trees used for associative
searching, Communications of the ACM 18 (9) (1975) 509–517.

[2] B. Chazelle, A functional approach to data structures and its use in
multidimensional searching, SIAM J. on Comp. 17 (3) (1988) 427–462.

[3] Y. Nekrich, Orthogonal range searching in linear and almost-linear
space, Computational Geometry 42 (4) (2009) 342–351.

[4] P. Bose, M. He, A. Maheshwari, P. Morin, Succinct orthogonal range
search structures on a grid with applications to text indexing, in: Proc.
11th WADS, 2009, pp. 98–109.

[5] V. Gaede, O. Günther, Multidimensional access methods, ACM Com-
puting Surveys 30 (2) (1998) 170–231.

[6] C. B. Jones, R. S. Purves, Geographical information retrieval, Journal
of Geographical Information Science 22 (3) (2008) 219–228.

[7] N. R. Brisaboa, M. R. Luaces, G. Navarro, D. Seco, Range queries over
a compact representation of minimum bounding rectangles, in: Proc.
29th ER Work., 2009, pp. 33–42.

45



[8] N. R. Brisaboa, M. R. Luaces, G. Navarro, D. Seco, A fun application
of compact data structures to indexing geographic data, in: Proc. 5th
FUN, 2010, pp. 77–88.

[9] K. Kim, S. K. Cha, K. Kwon, Optimizing multidimensional index trees
for main memory access, SIGMOD Record 30 (2) (2001) 139–150.

[10] K. V. R. Kanth, A. K. Singh, Optimal dynamic range searching in non-
replicating index structures, in: Proc. 7th ICDT, 1999, pp. 257–276.

[11] G. S. Lueker, A data structure for orthogonal range queries, in: Proc.
19th FOCS, IEEE, 1978, pp. 28–34.

[12] R. Grossi, A. Gupta, J. Vitter, High-order entropy-compressed text in-
dexes, in: Proc. 14th SODA, 2003, pp. 841–850.

[13] V. Mäkinen, G. Navarro, Rank and select revisited and extended, The-
oretical Computer Science 387 (3) (2007) 332–347.

[14] T. Chan, K. Larsen, M. Patrascu, Orthogonal range searching on the
RAM, revisited, in: Proc. 27th SoCG, 2011, pp. 1–10.

[15] A. Guttman, R-Trees: A Dynamic Index Structure for Spatial Searching,
in: Proc. SIGMOD, ACM Press, 1984, pp. 47–57.

[16] Y. Manolopoulos, A. Nanopoulos, A. N. Papadopoulos, Y. Theodoridis,
R-Trees: Theory and Applications, Springer-Verlag, 2005.

[17] G. Navarro, Wavelet trees for all, in: Proc. 23rd CPM, 2012, pp. 2–26.

[18] P. Ferragina, G. Manzini, V. Mäkinen, G. Navarro, Compressed rep-
resentations of sequences and full-text indexes, ACM Transactions on
Algorithms 3 (2) (2007) article 20.

[19] Y.-F. Chien, W.-K. Hon, R. Shah, J. S. Vitter, Geometric Burrows-
Wheeler transform: Linking range searching and text indexing, in: Proc.
18th DCC, 2008, pp. 252–261.

[20] N. Välimäki, V. Mäkinen, Space-efficient algorithms for document re-
trieval, in: Proc. 18th CPM, Vol. 4580 of LNCS, 2007, pp. 205–215.

46



[21] V. Mäkinen, G. Navarro, On Self-Indexing Images - Image Compression
with Added Value, in: Proc. 18th DCC, 2008, pp. 422–431.

[22] F. Claude, G. Navarro, Practical Rank/Select Queries over Arbitrary
Sequences, in: Proc. 15th SPIRE, 2008, pp. 176–187.

[23] G. Jacobson, Space-efficient static trees and graphs, in: Proc. 30th
FOCS, 1989, pp. 549–554.

[24] I. Munro, Tables, in: Proc. 16th FSTTCS, 1996, pp. 37–42.

[25] R. González, S. Grabowski, V. Mäkinen, G. Navarro, Practical imple-
mentation of rank and select queries, in: Poster Proc. 4th WEA, CTI
Press and Ellinika Grammata, 2005, pp. 27–38.

[26] F. Claude, P. K. Nicholson, D. Seco, Space efficient wavelet tree con-
struction, in: Proc. 18th SPIRE, 2011, pp. 185–196.

[27] G. Tischler, On wavelet tree construction, in: Proc. 22nd CPM, 2011,
pp. 208–218.

[28] N. R. Brisaboa, M. R. Luaces, G. Navarro, D. Seco, A new point access
method based on wavelet trees, in: Proc. 28th ER Work., 2009, pp.
297–306.

[29] H. N. Gabow, J. L. Bentley, R. E. Tarjan, Scaling and related techniques
for geometry problems, in: Proc. 16th STOC, ACM, 1984, pp. 135–143.

[30] M. de Berg, M. V. Kreveld, M. Overmars, O. Schwarzkopf, Computa-
tional Geometry – Algorithms and Applications, Springer-Verlag, 2000.

[31] D. Salomon, Data Compression: The Complete Reference, Springer-
Verlag, 2004.

[32] J. M. Schmidt, Interval stabbing problems in small integer ranges, in:
Proc. 20th ISAAC, 2009, pp. 163–172.

[33] K. Sadakane, G. Navarro, Fully-Functional Succinct Trees, in: Proc.
21st SODA, SIAM, 2010, pp. 134–149.

[34] D. Arroyuelo, R. Cánovas, G. Navarro, K. Sadakane, Succinct Trees in
Practice, in: Proc. 12th ALENEX, SIAM, 2010, pp. 84–97.

47



[35] J. Barbay, G. Navarro, Compressed representations of permutations,
and applications, in: Proc. 26th STACS, 2009, pp. 111–122.

[36] M. L. Fredman, On computing the length of longest increasing subse-
quences, Discrete Mathematics 11 (1) (1975) 29 – 35.

[37] N. Beckmann, H.-P. Kriegel, R. Schneider, B. Seeger, The R*-tree: an
efficient and robust access method for points and rectangles, SIGMOD
Record 19 (2) (1990) 322–331.

[38] R. González, G. Navarro, Rank/select on dynamic compressed sequences
and applications, Theoretical Computer Science 410 (2008) 4414–4422.

48


