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Abstract Both Geographic Information Systems and Information Retrieval have been

very active research �elds in the last decades. Lately, a new research �eld called Geo-

graphic Information Retrieval has appeared from the intersection of these two �elds.

The main goal of this �eld is to de�ne index structures and techniques to e�ciently

store and retrieve documents using both the text and the geographic references con-

tained within the text. We present in this paper two contributions to this research

�eld. First, we propose a new index structure that combines an inverted index and a

spatial index based on an ontology of geographic space. This structure improves the

query capabilities of other proposals. Then, we describe the architecture of a system

for geographic information retrieval that de�nes a work�ow for the extraction of the

geographic references in documents. The architecture also uses the index structure

that we propose to solve pure spatial and textual queries as well as hybrid queries

that combine both a textual and a spatial component. Furthermore, query expansion

can be performed on geographic references because the index structure is based in an

ontology.

Keywords geographic information retrieval · spatial index · textual index · ontology ·
system architecture

1 Introduction

Although the research �eld of Information Retrieval [1] has been active for the last

decades, the growing importance of Internet and the World Wide Web have made it
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one of the most important research �elds nowadays. Many di�erent index structures,

compression techniques, and retrieval algorithms have been proposed in the last few

years. More importantly, these proposals have been widely used in the implementation

of document databases, digital libraries, and web search engines.

Another �eld that has received much attention during the last years is the �eld of

Geographic Information Systems [2]. Recent improvements in hardware have made the

implementation of this type of systems a�ordable for many organizations. Furthermore,

a cooperative e�ort has been undertaken by two international organizations (ISO [3]

and the Open Geospatial Consortium [4]) to de�ne standards and speci�cations for

interoperable systems. This e�ort is making possible that many public organizations

are working on the construction of spatial data infrastructures [5] that will enable them

to share their geographic information.

During the last decades these two research �elds have advanced independently.

However, many of the documents stored in digital libraries and document databases

include geographic references within their texts. For example, news documents reference

the place where the event happened and often the place where the document has been

written. Furthermore, the information in a spatial data infrastructure often includes

documents with geographic information such as construction licences or urban planning

information. Finally, geographic references can also be attached to web pages by using

information from the text, the location of the web server, and many other information

elements.

Even though it is very common that textual and geographic information occur

together in information systems, the geographic references of documents are rarely

used in information retrieval systems. Few index structures or retrieval algorithms take

into account the spatial nature of geographic references embedded within documents.

Pure textual techniques focus only on the language aspects of the documents and pure

spatial techniques focus only on the geographic aspects of the documents. None of them

are suitable for a combined approach to information retrieval because they completely

neglect the other type of information. As a result, there is a lack of system architectures,

index structures, and query languages that combine both types of information.

Some proposals have appeared recently [6�8] that de�ne new index structures that

take into account both the textual and the geographic aspects of a document. How-

ever, there are some speci�c particularities of geographic space that are not taken into

account by these approaches. Particularly, concepts such as the hierarchical nature

of geographic space and the topological relationships between the geographic objects

must be considered in order to fully represent the relationships between the documents

and to allow new and interesting types of queries to be posed to the system.

In this paper, we present an index structure that takes these issues into account.

We �rst describe some basic concepts and related work in Section 2. Section 3 presents

some conceptual ideas about our index structure. Then, in that same section, we de-

scribe the types of queries that can be answered with this system and we sketch the

algorithms that we use to solve these queries. In Section 4, we present the general

architecture of the system and describe how the index structure has been integrated in

it. Some implementation details about the index structure are sketched in this section

as well. Furthermore, Section 5 presents some experiments that we made to compare

our structure with other ones that use a pure spatial index. Finally, Section 6 presents

some conclusions and future lines of work.
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2 Related Work

Inverted indexes are considered the classical text indexing technique. An inverted index

associates to each word in the text (organized as a vocabulary) a list of pointers to the

positions where the word appears in the document. The set of all those lists is called

the occurrences [1]. The main drawback of these indexes is that geographic references

are mostly ignored because place names are considered words just like the others. If

the user poses a query such as hotels in Spain, the place name Spain is considered a

word, and only those documents that contain that word are retrieved. A document

containing only names of cities of Spain but not the exact word Spain is not retrieved

by the system because it does not ful�l the textual query.

Regarding indexing geographic information, many di�erent spatial index structures

have been proposed along the years. A good survey of these structures can be found

in [9]. The main goal of spatial index structures is improving access time to collections

of geographic data objects. One of the most popular spatial index structures, and a

paradigmatic example, is the R-Tree [10]. The R-Tree is a balanced tree derived from

the B-tree which splits space in hierarchically nested, possibly overlapping, minimum

bounding rectangles. The number of children of each internal node varies between a

minimum and a maximum. The tree is kept in balance by splitting over�owing nodes

and merging under�owing nodes. Rectangles are associated with the leaf nodes, and

each internal node stores the bounding box of all the rectangles in its subtree. The

decomposition of space provided by an R-Tree is adaptive (dependent on the rectangles

stored) and overlapping (nodes in the tree may represent overlapping regions).

A drawback of spatial index structures is that they do not take into consideration

the hierarchy of space. Internal nodes in the structure are meaningless in the real world,

they are just meaningful for the index structure. For example, imagine that we want

to build an index for a collection of countries, provinces, and cities. These objects are

structured in a topological relationship of containment, that is, a city is contained

within a province that is itself contained within a country. If we build an R-Tree

with these geographic objects, the containment hierarchy will not be maintained. The

internal nodes of the R-Tree do not represent provinces nor countries, and therefore,

the hierarchy of space is not maintained in the index. It is not possible to associate some

information to the node of a province and have the cities belonging to this province

inherit this information because there is no relation at all between a province and its

cities in the R-Tree index structure.

Some work has been done to combine both types of indexes. Finding geographical

references in text is a very di�cult problem and there have been many papers that

deal with di�erent aspects of this problem and describe complete systems such as

Web-a-where [11], MetaCarta [12], and STEWARD [6]. The papers about the SPIRIT

(Spatially-Aware Information Retrieval on the Internet) project [13�17] are a very good

starting point. In [16], the authors conclude that keeping separate text and spatial

indexes, instead of combining both in one, results in less storage costs but it could lead

to higher response times. More recent works can be broadly classi�ed into two categories

depending on how they combine textual and spatial indexes. On the one hand, some

proposal have appeared that combine textual and spatial aspects in an hybrid index [18,

19]. On the other hand, some proposals de�ne structures that keep separate indexes

for spatial and text attributes [6�8]. Our index structure is part of this second group

because this division has many advantages [8]. First of all, all textual queries can

be e�ciently processed by the text index, and all spatial queries can be e�ciently
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processed by the spatial index. Moreover, queries combining textual and spatial aspects

are supported. Updates in each index are handled independently, which makes easier

the addition and removal of data. Finally, speci�c optimizations can be applied to each

individual indexing structure. After that research, in [7,8], the authors survey the work

in the SPIRIT project and propose improvements to the system and the algorithms

de�ned. In their work they propose two naive algorithms: Text-First and Geo-First.

Both algorithms use the same strategy: one index is �rst used to �lter the documents

(textual index in Text-First and spatial index in Geo-First), the resulting documents

are sorted by their identi�ers and then �ltered using the other index (spatial index in

Text-First and textual index in Geo-First). Nevertheless, none of these approaches take

into account the relationships between the geographic objects that they are indexing.

A structure that can properly describe the speci�c characteristics of geographic

space is an ontology, which is a formal explicit speci�cation of a shared conceptual-

ization [20]. An ontology provides a vocabulary of classes and relations to describe a

given scope. In [21], a method is proposed for the e�cient management of large spatial

ontologies using a spatial index to improve the e�ciency of the spatial queries. Further-

more, in [14,17] the authors describe how ontologies are used in query term expansion,

relevance ranking, and web resource annotation in the SPIRIT project. However, as far

as we know, nobody has ever tried to combine ontologies with other types of indexes to

have a hybrid structure that captures both the topological and the spatial relationships

between the geographic objects indexed.

3 Index Structure

There are two main requirements that must be ful�lled by the design of the index

structure:

1. It must provide a description of the hierarchical nature of the geographic space in

order to be able to associate information to the elements in the hierarchy.

2. It must be possible to use the index to solve e�ciently pure textual and spatial

queries as well as queries that combine both types of information.

In this section, we describe how the design of our index structure supports these re-

quirements.

In order to support the �rst requirement, we base the design of the index struc-

ture on an ontology [20,22] of the geographic space that describes the concepts in

our domain and the relationships that hold between them. There are di�erent on-

tology languages that provide di�erent formal and reasoning facilities. OWL [23] is

a W3C standard language to describe ontologies and can be categorised into three

species or sub-languages: OWL-Lite, OWL-DL, and OWL-Full. Our spatial ontol-

ogy is described in OWL-DL and it can be downloaded from the following URL:

http://lbd.udc.es/ontologies/spatialrelations. OWL classes can be interpreted

as sets that contain individuals (also known as instances). Individuals can be considered

instances of classes. Our ontology describes eight classes of interest: SpatialThing, Geo-

graphicalThing, GeographicalRegion, GeopoliticalEntity, PopulatedPlace, Region, Coun-

try, and Continent. In our ontology there are hierarchical relations among SpatialThing,

GeographicalThing, GeographicalRegion, GeopoliticalEntity because:

� GeopoliticalEntity is subclass of GeographicalRegion
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� GeographicalRegion is subclass of GeographicalThing and

� GeographicalThing is subclass of SpatialThing.

That is, these four classes are organised into a superclass-subclass hierarchy, which

is also known as taxonomy. Subclasses specialise (are subsumed by) their superclasses.

GeopoliticalEntity has four subclasses: PopulatedPlace, Country, Continent, and Re-

gion. All the individuals are members of these subclasses. These four subclasses have

an additional necessarily asserted condition regarding their relations with each other.

They are connected by the property spatiallyContainedBy that describes the existence

of an spatial relationship among them. For instance, all the individuals of class Popu-

latedPlace are spatiallyContainedBy individuals of class Region (described in OWL as

PopulatedPlace spatiallyContainedBy only (AllValuesFrom) Region). Fig. 1 shows an

example of these relationships. Ontology classes are represented as circles, individuals

as rectangles, and the relationships as labelled lines.

EUROPE

ASIA

GERMANY

SPAIN

MADRID

GALICIA

Madrid

Vigo

SpatiallyContainedBy

SpatiallyContainedBy

SpatiallyContainedBy

SpatiallyContainedBy

SpatiallyContainedBy

SpatiallyContainedBy

Fig. 1 Ontology instances

After having de�ned this ontology, we can de�ne an spatial index structure based

on it. This structure is a tree with four levels, one for each of the subclasses of Geopo-

liticalEntity. The top-most level contains a node for each of the instances of the class

Continent. Each node in this level references the instances of the class Country that

are connected by the spatiallyContainedBy relationship. The levels of Region and Pop-

ulatedPlace are built using the same strategy. That is, the structure of the tree follows

the taxonomy of the ontology. Fig. 2 shows the spatial index structure built from the

instances shown in Fig. 1.

Each node contains, in addition to the list of child nodes that are spatiallyCon-

tainedBy the node, the following information: (i) the keyword (a location name), (ii)

the bounding box of the geometry representing this location, and (iii) a list with the
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GERMANY SPAIN

GALICIAMADRID
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A Coruña

ROOT
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Country
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PlaceVigo

Fig. 2 Ontology tree

document identi�ers of the documents that include geographic references to this loca-

tion. Therefore, this tree structure can be used as a spatial index structure because,

given a query point, a top-down traversal of the structure can be performed discarding

those branches of the tree that do not contain the query point. The nodes in the tree

that remain after the traversal are those that contain the query point.

The main advantage of this spatial index structure over other alternatives is that

intermediate nodes in the structure have a meaning in the geographic space and they

can have additional information associated. For instance, we can associate a list of doc-

uments that reference a given Country and use this list of documents to solve combined

textual and spatial queries. Moreover, given that there is a superclass-subclass relation-

ship between the levels, the bottom levels can inherit the properties of the top levels.

Particularly, the documents associated to a node in the structure also refer to all nodes

in its subtree. Furthermore, the index structure is general in the sense that the ontol-

ogy of geograhic space can be adapted to each particular application. For example, if a

particular application uses a restricted area of the geographic space where the classes

Continent and Country are not necessary and, on the other hand, the classes Province,

Municipality, City, and Suburb are needed, we could de�ne a di�erent ontology of space

and base the index structure on it as long as the relationship spatiallyContainedBy still

holds between the classes. Finally, we could de�ne additional spatial relationships in

the ontology such as spatiallyAdjacent and mantain these relationships in the index

structure to improve the query capabilities of the system.

The second requirement is met through the de�nition of two additional components

in the index structure: a textual index and a place name hash table. The textual index

is an inverted index that associates to each word a list of documents that contain it.

Finally, the place name hash table stores for each location name its position in the

spatial index structure and it is used to optimize the resolution of a particular type of

very common queries.

Fig. 3 shows an example of the complete index structure with the inverted index,

the place name hash table, and the spatial index structure. We use this example to

explain how our index is built. In order to index documents in our structure, each

document is analyzed to obtain and geo-reference place names cited in it (a detailed

description of this process can be read in Section 4.3). In the example, the document

D1 cites the place name Germany, the document D2 cites the place name Madrid, etc.

Our structure is dynamically built using the information obtained in the geo-reference

process of those place names. This information contains data necessary to include each

place in the structure. For example, when the �rst document (e.g. D1 ) is indexed
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the structure is empty, and the nodes EUROPE and GERMANY are created. Then,

when the document D2 is indexed, the node EUROPE is not created again, but nodes

SPAIN, MADRID, and Madrid are created. No nodes are created when the document

D3 is indexed, but its document identi�er is added to the lists associated with the nodes

GERMANY and MADRID. Each time that a new node is created, a new element is

added to the place name hash table with the name associated with the new node and a

pointer to it. In parallel, documents are indexed in the inverted index, which stores for

each word the document identi�ers where it is contained. For example, the document

D2 contains the words hotel and sunny.

SPAIN ...GERMANY

...MADRIDGALICIA

Place Name 
Hash Table

EUROPE
SPAIN

GALICIA

D1, D3, …, DK

D2, D3

D4
...

......

hotel: D2, D3...
place: D1, D4,...
sunny: D2, D4,...

Inverted Index
EUROPE ASIA

MadridVigo
... D2, D5

ROOT

QUERY: “sunny places in Spain”
TEXTUAL RESULT
SPATIAL RESULT
QUERY RESULT

D4, D1, D2,...
D2, D3, D4, D5,...

D2, D4,..

Fig. 3 Example of the index structure

The most important characteristic of an index structure is the type of queries

that can be solved with it. The following types of queries are relevant in a geographic

information retrieval system:

� Pure textual queries. These are queries such as �retrieve all documents where the

words hotel and sea appear �.

� Pure spatial queries. An example of this type of queries is �retrieve all documents

that refer to the following geographic area�. The geographic area in the query can

be a point, a query window, or even a complex object such as a polygon.

� Textual queries with place names. In this type of queries, some of the words are

place names. For instance, �retrieve all documents with the word hotel that refer to

Spain�.

� Textual queries over a geographic area. In this case, a geographic area of interest is

given in addition to the set of words. An example is �retrieve all documents with

the word hotel that refer to the following geographic area�.

Pure textual queries can be solved by our system because a textual index is part

of the index structure. Similarly, pure spatial queries can also be solved because the

index structure is built like a spatial index. Each node in the tree is associated with the

bounding box of the geographic objects in its subtree. Therefore, the same algorithm

that is used with spatial indexes can be used with our structure.

Furthermore, the index structure that we propose can be used to solve queries that

involve a textual and a spatial component. In this case, the textual index is used to

retrieve the list of documents that contain the words and the spatial index structure is

used to compute the list of documents that reference the geographic area. The result
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to the query is computed as the intersection of both lists. In the case of queries such

as �sunny places in Spain� (see Fig. 3), our system uses the place name hash table to

retrieve the index node that represents Spain. Thus, we save some time by avoiding a

tree traversal.

Another improvement over text and spatial indexes is that our index structure can

easily perform query expansion on geographic references because the index structure is

built from an ontology of the geographic space. Consider the following query �retrieve

all documents that refer to Spain�. The query evaluation service will discover that Spain

is a geographic reference and the place name index will be used to quickly locate the

internal node that represents the geographic object Spain. Then, all the documents

associated to this node are part of the query result. Moreover, all the children of this

node are geographic objects that are contained within Spain (for instance, the city

of Madrid). Therefore, all the documents referenced by the subtree are also part of

the result of the query. The consequence is that the index structure has been used to

expand the query because the result contains not only those documents that include

the term Spain, but also all the documents that contain the name of a geographic

object included in Spain (e.g., all the cities and regions of Spain).

4 System Architecture

Fig. 4 shows our proposal for the system architecture of a geographic information

retrieval system. The architecture can be divided into three independent layers: the in-

dex construction work�ow, the processing services, and the user interfaces. The bottom

part of the �gure shows the index construction work�ow, which, in turn, consists of

three modules: the document abstraction module (described in Section 4.1), the index

construction module (the textual part of this process is described in Section 4.2 and

the spatial part of this process is described in Section 4.3), and the index structure

itself (described also in Section 4.3).

The processing services are shown in the middle of the �gure. On the left side, the

Geographic Space Ontology Service used in the spatial index construction is shown.

This service is used extensively in the index construction module, and therefore it

is described in Section 4.3. On the right side, one can see the two services that are

used to solve queries. The rightmost one is the query evaluation service, which receives

queries and uses the index structure to solve them. The types of queries that can be

solved by this service, as well as the algorithms that are used to solve these queries

have been presented in Section 3. In Section 4.4 we present how the query evaluation

service uses these algorithms to create the relevance ranking of the results. The other

service is aWeb Map Service following the OGC speci�cation [24] that is used to create

cartographic representations of the query results. This service is not described in this

paper. On top of these services a Geographic Information Retrieval Module is in charge

of coordinating the task performed by each service to respond to the user requests.

The topmost layer of the architecture shows the two user interfaces that exist in the

architecture: the Administration User Interface and the Query User Interface. These

user interfaces are described in Section 4.5.
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Text, place 
name, text

Geographic Space Ontology Service

Fig. 4 System Architecture

4.1 Document Abstraction

Given that the system must be generic, it must support indexing several kinds of

documents. These documents will be di�erent not only because they may be stored

using di�erent �le formats (plain text, XML, etc.), but also because their content

schema may be di�erent. A document collection may have a set of attributes that have

to be stored in the index (such as document id, author, and document text), whereas

other document collection may have a di�erent set of attributes (such as document id,

summary, text, author, and source).

To solve this problem, we have de�ned an abstraction that represents a document

as a set of �elds, each one with a value that is extracted from the document text. Each

�eld can either be stored, indexed, or both. If a �eld is stored, its contents are stored in

the index structure and they can be retrieved by a query. If a �eld is indexed, then this

�eld is used to build the index structure. Furthermore, a �eld can be indexed textually,

spatially, or in both indexes. The de�nition of a document as a set of �elds is similar to

the one used in the Lucene text search engine [25]. We have extended this idea adding

the spatial indexing possibility.

In order to support di�erent types of documents and di�erent �le formats, the

document abstraction is exposed by the system as a programming interface that can

be extended with particular implementations for di�erent con�gurations of �le formats

and document schemas. In order to support a new con�guration, a developer only has

to implement the interface DocumentFactory that de�nes the operations that must be

implemented in order to create Documents.

As an example for the validation of the system, we have indexed documents from

the Financial Times collection [26]. The document collection is marked up in SGML

(Standard Generalized Markup Language). Each document has a <DOCNO> tag in-

cluding the TREC document identi�er string and a <TEXT> tag including the main
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content of the document. Fig. 5 shows a partial example of a document in this collec-

tion.

<DOC>
<DOCNO>FT941-6371</DOCNO>
<TEXT>

Senior European company executives are being invited to 'vote'
for Europe's Most Respected Companies . . .

</TEXT>
</DOC>

Fig. 5 Financial Times (TREC) example

To support this document collection, we de�ned a TRECFTDocumentFactory that

builds documents with two �elds. The �rst �eld contains the tag DOCNO content and

it is stored but not indexed. The second �eld contains the tag TEXT content and it is

not stored but indexed in both indexes.

4.2 Textual Indexing

As we said before, the index structure at the core of the system architecture contains

both a textual index and a spatial index. We use Lucene [25] to implement the textual

index. Lucene is a high-performance, full-featured text search engine library written

entirely in Java. It is an open source project part of the Apache project. Lucene uses an

object representation of the indexable documents. A Document in Lucene contains sev-

eral Fields. A Field in Lucene is a pair (name, value) and information about whether it

is stored and/or indexed. Field values are set using Analyzers. These analyzers imple-

ment several classical information retrieval techniques to reduce the number of indexed

words and to improve the index performance such as removing stopwords, stemmers,

etc. StandardAnalyzer is the most sophisticated analyzer built into Lucene's core. It is

a parser with rules for email addresses, acronyms, hostnames, �oating point numbers,

as well as converting the value to lowercase and removing stop words.

In this stage of the work�ow process, the system builds a Lucene index. Each of the

documents built in the previous stage is inserted into the textual index. The document

identi�er is stored but not indexed in the textual index, and each �eld marked to be

indexed in the textual index or in both indexes is indexed tokenized in the Lucene

index but not stored.

4.3 Spatial Indexing

After building the textual index, the spatial index must be built. The spatial indexing

is the most complex stage, and it comprises three steps. First, the system analyses the

document �elds that are marked as spatially indexable and extracts candidate location

names from the text. In a second step, these candidate locations are processed in or-

der to determine whether the candidates are real location names, and, in this case, to

compute their geographic locations. There are some problems that can happen at this
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point. First, a location name can be ambiguous (polysemy). For instance, �London� is

the capital of the United Kingdom and it is a city in Ontario, Canada too. Second,

there can be multiple names for the same geographic location, such as �Los Ange-

les� and �LA�. Finding geographical references in text is a very di�cult problem and

there have been some papers that deal with di�erent aspects of this problem [6,11,12].

Web-a-where [11] uses �spatial containers� in order to identify locations in documents,

MetaCarta (the commercial system described in [12]) uses a natural language process-

ing method, and STEWARD [6] uses an hybrid approach. It is not the aim of this paper

to deal with this problem but we describe how we obtain geographic references in order

to complete the architecture description. Finally, the third step consists in building the

spatial index with the geo-referenced locations computed in the previous step together

with references to the documents containing them. We describe these three steps and

the spatial index structure below.

4.3.1 Discovery of Location Names

Unlike geographic information systems, information in GIR systems is not structured.

It is not possible to know a priori where geographic references are stored, nor their

categories (e.g. city, state, country, etc.). In this kind of systems, geographic references

are contained in the text of the indexed documents. Therefore, these texts have to be

analyzed in order to discover the geographic references.

In this analysis, all the spatially indexable �elds are processed in order to discover

the place names contained within. There are two Linguistic Analysis techniques that

are widely used for this: Part-Of-Speech tagging and Named-Entity Recognition. On

the one hand, Part-Of-Speech tagging is a process whereby tokens are sequentially

labelled with syntactic labels, such as �verb� or �gerund�. On the other hand, Named-

Entity Recognition is the process of �nding mentions of prede�ned categories such as

the names of persons, organizations, locations, etc. Combine both techniques is a good

solution to discover possible place names contained in the text of documents.

Our Location Names Discovery module uses the Natural Language Tool Ling-

Pipe [27] to �nd locations. It is a suite of Java libraries for the linguistic analysis of

human language free for research purposes that provides both Part-Of-Speech tagging

and Named-Entity Recognition. LingPipe involves the supervised training of a statis-

tical model to recognize entities. The training data must be labelled with all of the

entities of interest and their types. In the system validation with the Financial Times

collection, we use LingPipe trained with the MUC6 corpus (http://www.ldc.upenn.edu)

labelled with locations, people, and organizations. After the LingPipe processing, the

module �lters the resultant named entities selecting only the locations, and discarding

people and organization names.

For each spatially indexable �eld of each document, the result of this analysis is

a set of possible place names cited in its text. In the next step, all these candidates

must be analyzed again to discard false positives because the performance of the used

linguistic techniques is not complete.

4.3.2 Geo-referenciation of Location Names

After discovering a collection of candidate location names, the system must distinguish

false candidates and geo-reference the real ones. In this context, geo-referencing a

location name implies not only to obtain its coordinates in a particular coordinate
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system, but also to obtain all the data needed to include the location name in the

spatial index. We have developed a system based on an ontology of the geographic

space that is built using a Gazetteer and a Geometry Supplier.

A Gazetteer is a geographical dictionary that contains, in addition to location

names, alternative names, populations, location of places, and other information re-

lated to the location. In our test implementation we use Geonames [28] that pro-

vides a geographical database available under a creative commons attribution license.

This database contains more than two million populated places over the world with

their latitude/longitude coordinates in WGS84 (World Geodetic System 1984 ). All the

populated places are categorized so that it is possible to classify them into di�erent

administrative division levels (continents, countries, regions, etc.).

However, Geonames (and Gazetteers in general) does not provide geometries for

the location names other than a single representative point. But for our spatial in-

dex we need the real geometry of the location name (for example, the boundary of

countries). Hence, we de�ned a Geometry Supplier service to obtain the geometries

of those location names. As a base for this service we used the Vector Map (VMap)

cartography [29]. VMap is an updated and improved version of the National Imagery

and Mapping Agency's Digital Chart of the World. It supplies geometries and infor-

mation for the �rst and the second level of administrative divisions of the World. Even

though the information is in a proprietary format, there are free tools that can create

shape�les from that format, such as FWTools [30]. We have created a PostGIS [31]

spatial database with these shape�les and we have done several corrections and im-

provements over this database. Although our test implementation uses Geonames and

VMAP, it has been designed so that these components are easily exchangeable. All ac-

cesses to these components are performed through generic interfaces that can be easily

implemented for other components.

Both services are used to obtain the information necessary to include each location

name in the spatial index structure. That is, for each location name, the services must

return the path in the tree from the root node to the leaf node that represents the

location name. As we noted at the beginning of the section, several problems, such as

polysemy or ambiguity, can cause that more than one node represents a location name

in the index structure. Thus, the services must return all the possible paths.

For this task, a hierarchical structure following the design pattern Chain of Re-

sponsibility [32] was designed and implemented. Fig. 6 shows a brief class diagram of

this component. The structure is composed of four levels (continent, country, region,

and populated place); one for each level of the ontology of the geographic space used

in the system. Each level of the hierarchy has a connection with the gazetteer and with

the geometry supplier in order to retrieve the data needed by the process. Since this

hierarchy depends on the ontology of the geographic space, it must be easily extensible

to support the de�nition of new levels in the ontology.

Furthermore, an algorithm in two steps was developed to obtain all possible geo-

references of a location name. In the �rst step, each level of the hierarchy obtains

from the gazetteer all the locations with the requested name. If the gazetteer does not

return any location for a given candidate location name, the candidate is discarded.

In the second step, the system builds the complete path from bottom to top using the

gazetteer to �nd the parent element and the geometry supplier to �nd the geometry of

the object. For instance, if the requested location name was London, in the �rst step the

system obtains two locations with this name. After that, it returns the paths Europe,

United Kingdom, England, London and North America, Canada, Ontario, London.
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+obtainGeoreferences()
#useGazetteer()
#useGeometrySupplier()

AdministrativeDivision <<use>>

<<use>>

-previous 1

-next

1

Fig. 6 Geo-references module

4.3.3 Spatial Index Construction

Fig. 7 shows a class diagram of the index structure. The design and implementation of

this structure are based on the conceptual ideas presented in Section 3. Therefore, the

main component of the index structure is a tree composed by nodes (IndexStructureN-

ode) that represent location names. These nodes are connected by means of spatially-

ContainedBy relationships and in each one we store the location name, the bounding

box of the geometry representing this location, and the list with the identi�ers of the

documents that include geographic references to this location. Finally, an R-Tree is

used to improve the access performance to the child nodes. Many child nodes can be

accessed from each node (for example, there are hundreds of regions in each country

and thousands of populated places in each region) and compare sequentially the bound-

ing box of each child node with a query is a very expensive process. Therefore, we use

an R-tree to reduce the number of comparisons performed to access the next level from

each node.

+indexPath()
+executeQuery()

-placeNameHashTable : Map
IndexStructure

+executeQuery()

«interfaz»
TextualIndex <<use>>

+index()
+executeQuery()

-placeName
-geometry

IndexStructureNode-rootNode

1

-children*

Document RTree
<<use>>

Fig. 7 Class diagram of the index structure

Two auxiliary structures are used in the index. First, a place name hash table that

stores for each location name its position in the index structure. This provides direct

access to a single node by means of a keyword that is returned by the Gazetteer Service
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if the word processed is a location name. The second auxiliary structure is the textual

index with all the words in the documents that is used to solve textual queries (this

index is described in section 4.2).

Keeping separate indexes for text and geographical scopes has many advantages,

which were described in Section 2. As a summary, both pure textual and spatial queries

can be e�ciently processed by each index, queries combining textual and spatial aspects

are supported, updates in each index are handled independently, and speci�c optimiza-

tions can be applied to each individual indexing structure. However, this structure has

two main drawbacks. First, the tree that supports the structure is possibly unbalanced

penalizing the e�ciency of the system. We present some experiments in Section 5. Our

intention is to prove that it is not a very important problem. Second, ontological sys-

tems have a �xed structure and thus our structure is static and it must be constructed

ad-hoc.

Access to the main databases of the system is allowed to the index structure.

There are two main databases in our system: a document database where documents

are stored to be consulted by the users and a geographic database. The geographic

database stores geographic data used in the system. Although the access to these data

is centralized in the index structure, all the modules of the architecture can access this

information by means of the geographic information retrieval module. Share the infor-

mation between all modules allows us to easily improve the performance of the whole

system improving the base cartography. For example, when the VMap cartography is

improved both the geo-reference process and the web map service are improved. The

same happens when gazetteer data are corrected.

Finally, the index construction is a time-expensive process but it is similar to other

index structures proposed for GIR systems. Although insert a new node in our structure

is an easy task, obtain all the data necessary to perform this task is much more complex.

As we noted before, all the documents are analyzed to obtain cited place names and all

these place names are geo-referenced. The main di�erence between our index structure

and other proposals is that we have to obtain for each node all the information of the

nodes in the path from the root to it. However, this process is optimized by means

of a cache that stores the nodes already obtained. Therefore, for example when the

geo-reference process of the place name Madrid is performed after the geo-reference

process of the place name Barcelona, the data about Spain and Europe is contained

in the cache and it have not to be retrieved from the gazetteer and from the geometry

supplier.

4.4 Query Evaluation Service

We presented in Section 3 the di�erent types of queries that can be solved using this

index structure, and we sketched brie�y the algorithms used to solve the queries. The

Query Evaluation Service is the component in charge of using the index structure to

answer the queries posed by the users. Moreover, in order to return a useful result, this

service must also provide a relevance ranking of the results. In this section, we describe

the equations used to compute the relevance of the result for each type of queries: pure

textual queries, pure spatial queries, and hybrid queries.
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4.4.1 Pure textual queries

Pure textual queries are solved by the textual index that is part of the index structure.

We use Lucene to implement this textual index, and thus the relevance ranking depends

on its scoring. Lucene scoring uses a combination of the vector space model and the

boolean model of information retrieval [1]. All scores are guaranteed to be 1.0 or less.

More information about the Lucene scoring can be found in [33,34].

4.4.2 Pure spatial queries

Pure spatial queries are solved using the spatial index structure. Given that a document

in the result set of a query can include geographic references to one or more location

names relevant to the query, we have to compute the relevance of the document d

with respect to the query q due to each location name l. We denote this relevance as

toponymRelevanceq,d,l. We guarantee that this value is 1.0 or less in order to make

the integration of both spatial and textual relevances easier. In [35] both spatial and

textual relevances are also normalized to values between 0 and 1. Finally, we compute

the relevance of the document d with respect to the query q as the maximum relevance

due to any location name (Equation 1).

spatialRelevanceq,d = max{toponymRelevanceq,d,l} (1)

Some papers [36,18] present quantitative measures for the spatial relevance using

the area of the bounding boxes, overlap areas, distances, and other spatial-based mea-

sures. Furthermore, authors of [8,37] de�ne equations to calculate the spatial relevance

when an ontology is used in the system. In [38], a proposal to combine spatial-based

measures and ontology-based measures is presented. In our system, the computation

of toponymRelevanceq,d,l depends on whether the user speci�es the spatial context for

the query using a location name, selecting a node in the spatial index, or using a query

window. We study all these cases and de�ne equations based on previous works.

In the case of queries speci�ed using a location name, the query result contains all

the documents in the nodes that have the location name as the node keyword plus all

the documents in the respective subtrees. Considering that there may be more than one

node in the index structure for a given location name (due to polysemy), we associate

to each node in the spatial index structure an attribute importance that represents the

importance of a node relative to the other nodes that represent locations with the same

name. Population, size, level in the ontology of geographic space, and other intrinsic

values are used to calculate the importance. For each location name, this attribute

always has the value 1.0 for the most important nodes and values higher than 1.0 for

the rest. Equation 2 combines this attribute with the tree distance from the root of the

subtree to the node where the document is associated to compute the spatial relevance

of each document d due to the location name l.

toponymRelevanceq,d,l =
0.5distance

importance
(2)

The computation of toponymRelevanceq,d,l for queries speci�ed selecting a node in

the spatial index is a simpli�cation of the previous one because in this case we have the

certainty that the query refers to a speci�c node in the tree. Therefore, the documents

associated to this node have relevance 1.0. The relevance of a document associated to
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the nodes in the subtree is computed using the previous equation. This is re�ected in

Equation 3.

toponymRelevanceq,d,l =


1 if l is speci�ed in the query

0.5distance

importance otherwise

(3)

The sketch of the index structure shown in Fig. 8 is useful to understand the

di�erence between both types of queries. Each node in the �gure is annotated with

its importance between parenthesis. On the one hand, when the user speci�es a query

using the location name England, the relevance of a document due to England (an

important city of Arkansas) will be higher than the relevance due to England (a small

city of Oppland Fylke), and lower than the relevance due to England (a part of the

United Kingdom). Concrete values of relevance are 0.5 for England in Arkansas, 0.33

for England in Oppland, and 1.0 for England in the United Kingdom. Moreover, the

relevance of the document due to important cities of England (UK) like London or

Liverpool is 0.5. This value is high enough to be taken into consideration. On the

other hand, when the query is speci�ed selecting the node for England in Arkansas the

relevance of a document due to this node is 1.0 because the user explicitly indicates

the interest about documents with geographic references to that location.

NORWAYUSA

NORTH 
AMERICA

ROOT

EUROPE

UNITED 
KINGDOM

OPPLAND

England

ENGLAND

London Liverpool

ARKANSAS

England

(1)

(1)

(1)

(2)

(1)

(1)

(1)

(3)

(1)

(1)

(1) (1)

Fig. 8 Queries speci�ed using a location name vs queries speci�ed selecting a node

Finally, in the case of queries speci�ed using a query window the nodes are se-

lected using the classical algorithm of spatial indexes. Therefore, the computation of

toponymRelevanceq,d,l must be performed using the distance (dcq,l) and the overlap

area (oaq,l) between the query window and the location name. Equation 4 de�nes this

computation. We use parameters wdc and woa to weight the relevance of each factor

and we use the importance of the location name to assign more relevance to the most

important nodes that reference the location name.

toponymRelevanceq,d,l =
wdc ∗ dcq,l + woa ∗ oaq,l

importance
(4)

Equation 5 de�nes how to calculate the relevance due to the distance to the query

window. centerDistanceq,l represents the Euclidean distance between the location

name l and the query window q. Similarly, cornerDistanceq is a weight factor that

represents the maximum distance to the center of the window.

dcq,l = 1−
centerDistanceq,l
cornerDistanceq

(5)
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The relevance due to the overlap area with the query window is calculated according

to Equation 6. When the geometry stored in the node is a point (leaf node), the overlap

area is not signi�cant. Thus, we use 1
[area(q)+1]0.15

. This value depends only on the

query window and is inversely proportional to its area. The concrete equation has been

constructed based on the average area of the nodes in each level of the ontology of

geographic space.

oaq,l =


1

[area(q)+1]0.15
if l is a point

max{0, area(l∩q)
area(q)

− area(l⊗q)
area(l)

} otherwise
(6)

Fig. 9 uses an example query window in central Italy to clarify the aforementioned

equations. The bounding boxes of two regions, Umbria and Abruzzi, and a populated

place, Rome, are shown in this �gure. These bounding boxes as well as the query

window, q, are used to compute the area of their respective entities (i.e. area(Umbria),

area(Abruzzi), and area(q)). The region of Umbria is used to illustrate the relevance

due to the overlap area (Equation 6). This relevance is computed using the area of

the intersection of the region with the query (i.e. area(Umbria ∩ q)) and the area in

the part of the region that does not intersect with the query (i.e. area(Umbria ⊗ q).

Moreover, three distances used to compute the relevance due the distance to the query

window (Equation 5) are shown. The weight factor corner distance is depicted as a

solid line, and the distances from Rome and Abruzzi to the center of the query window

are depicted as dotted lines.

Rome

q

Abruzzi

Umbria

centerDistanceq,Rome

centerDistanceq,Abruzzi

area( ∩ q)Umbria

cornerDistanceq

area( q)Umbria

Fig. 9 Queries speci�ed using a query window

4.4.3 Hybrid queries

Hybrid queries that involve a textual and a spatial component are solved using the

textual and spatial indexes. Hence, we use the previous equations to compute spatial

and textual relevance rankings. Equation 7 de�nes how we combine both relevance
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rankings. The weighted sum of the spatial and textual ranking values is one of the

simplest methods and is commonly used [8,18,37]. Furthermore, it is the base of more

complex ranking methods [39]. We assume wt = 1−ws and calculate wt to normalize

the di�erences between textual and spatial rankings.

relevanceq,d = wt ∗ textualRelevanceq,d + ws ∗ spatialRelevanceq,d (7)

4.5 User Interfaces

The system has two di�erent user interfaces: an administration user interface and

a query user interface. The administration user interface was developed as a stand-

alone application and it can be used to manage the document collection. The main

functionalities are: creation of indexes, addition of documents to indexes, loading and

storing indexes, etc. The main screen of this interface shows useful information about

the loaded index such as the number of documents indexed, the �elds of each of these

documents, the number of location names in the index, etc.

Fig. 10 shows a screenshot of the query user interface. This interface was developed

as a web application using the Open Layers API [40]. This API provides a number of

utilities for manipulating maps and adding content to the map.

Fig. 10 Query User Interface

In Section 3, we have sketched the types of queries that can be solved with this

system. These queries have two di�erent aspects: a textual aspect and a spatial aspect.

The query user interface allows the user to indicate both aspects. The spatial context

can be introduced in three ways that are mutually exclusive:
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� Typing the location name. In this case, the user types the location name in a text

box. This is the most ine�cient way because the system has to obtain all the

geographic references associated with the place name typed by the user, which is

a time-expensive process.

� Selecting the location name in a tree. In this case, the user sequentially selects

a continent, a country within this continent, a region within the country, and a

populated place within the region. If the user wants to specify a location name of

a higher level than a populated place, it is not necessary to �ll in all the levels.

The operation is very easy and intuitive because the interface is implemented with

a custom-developed component using the AJAX technology that retrieves in the

background the location names for the next level. When the user selects a place in

the component, the map on the right zooms in automatically to the selected place.

� Selecting the spatial context of interest in the map. The user can navigate using the

map on the right to visualize the spatial context of interest. After that, a rectangle

can be drawn over it. The system will use this rectangle as the query window if the

user did not type a place name or did not select a location name.

5 Experiments

We showed in the previous section that our structure has a qualitative advantage over

systems that combine a textual index with a pure spatial index because query expansion

can be performed directly with our index structure. Hence, our index structure supports

a new type of query that cannot be easily implemented with a pure spatial index.

However, unlike pure spatial index structures, our index structure is not balanced

and therefore, the query performance can be worse. In this section we describe the

experiments that we performed to compare our structure with other ones based on

pure spatial indexes in order to evaluate whether having an unbalanced structure would

penalize e�ciency.

We used the TREC FT-91 (Financial Times, year 1991) and the TREC FT-94

(Financial Times, year 1994) document collections. Table 1 summarizes the most rel-

evant characteristics of these collections. The �rst row of the table shows the number

of documents in each collection. The FT-94 collection has thirteen times more docu-

ments than the FT-91. We use these collections to proof the scalability of the di�erent

index structures with respect to the number of documents. The rest of the rows in this

table are closely linked with the steps of the work�ow presented in Section 4. First,

documents with candidates are those that contain at least one candidate location name

discovered at the discovery of location names step. Sometimes, these candidates can

be false location names and the system will discard them at the geo-referenciation of

location names step. Therefore, documents geo-referenced are those that contain at

least one location name correctly geo-referenced in the system. Finally, textual entries

and spatial entries are the number of entries in the textual index and in the spatial

index respectively.

Three indexes were built over these collections. The �rst one uses our index struc-

ture as described in this paper. The second one uses a textual index and an R-Tree

where each pair {document identi�er, location} is stored as a single element (e.g., {d2,

Madrid (40.26, 3.41)} means that the document d2 mentions the city of Madrid). The

last one, named Improved R-Tree, uses a textual index and an R-Tree as well, but

locations are stored only once. Therefore, each location in the index stores a list of
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Table 1 TREC document collections

FT-91 FT-94

Documents 5,368 71,489
Documents with candidates 4,652 60,823
Documents geo-referenced 4,182 54,899
Textual entries 64,711 251,057
Spatial entries 21,282 64,843

Table 2 Ontology-based index versus R-Tree

FT-91 FT-94

Query area (%) 0.001 0.01 0.1 1 0.001 0.01 0.1 1

Our index 0.013 0.017 0.052 0.360 0.016 0.035 0.228 2.938
R-Tree 0.010 0.016 0.057 0.370 0.041 0.113 0.583 4.704
Improved R-Tree 0.008 0.007 0.023 0.154 0.008 0.016 0.095 1.069

documents that mentions it. This improvement reduces the size of the index structure

and improves its performance.

Furthermore, we developed an algorithm to generate random spatial query win-

dows based on the performance comparisons of the R*-Tree in [41]. We compared the

structures with respect to four di�erent query window areas, namely 0.001%, 0.01%,

0.1%, and 1% of the world. We generated 100,000 random query windows for each

area, and we averaged the computing time of each query execution. Table 2 shows

the results of this experiment. The �rst row of the table shows the results obtained

with our structure (in milliseconds), the second one shows the results obtained with

the structure using an R-Tree, and the third one shows the results obtained with the

structure using an R-Tree improved.

In the light of the results, the index structure using an R-Tree adapted to take

into consideration the speci�c characteristics of the problem (i.e. the Improved R-

Tree) improves the query performance of our solution. As we noted before, this was

an expected result because our index structure is not balanced. However, we believe

the query performance of our solution is acceptable because di�erences are not too

signi�cant. Furthermore, our solution and the improved R-Tree present similar results

in terms of scalability. Therefore, our solution can be considered an alternative to the

use of pure spatial indexes.

Another important conclusion is about the query performance and scalability of

the solution using a pure R-Tree. This alternative presents an acceptable performance

in the FT-91 collection, but its scalability is quite worse than the scalability of the

other alternatives. The explanation resides in the number of nodes in this structure.

Both our solution and the improved R-Tree employ a list to store the documents geo-

referenced in a place. However, the solution using a pure R-Tree requires one node for

each pair {document identi�er, location}. Thus, the number of nodes is quite higher. An

unexpected result is that the performance of the pure R-Tree improves the performance

of our structure when the collection and the query window are small. In order to

discover the reason of this behaviour we performed additional experiments considering
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Table 3 Low document density vs high document density

High density Low density

Query area (%) 0.001 0.01 0.1 1 0.001 0.01 0.1 1

Our index 0.03 0.11 1.05 9.84 0.02 0.03 0.09 0.4
R-Tree 0.07 0.22 1.64 12.85 0.02 0.03 0.07 0.2

the distribution of the documents. Table 3 breaks down the general results performed

with the FT-91 collection in two zones with di�erent density of documents (zones with a

high density of documents and zones with a low density). When the document density is

low, the number of nodes in both structures is similar, but when the document density

is high the di�erence in the number of nodes is quite signi�cant. Thus, when the query

window is small the probability of that query window being in a high document density

zone is small and, therefore, the R-Tree performance is better. However, when the query

window is bigger that probability is higher and, therefore, the R-Tree performance is

lower.

6 Conclusions and Future Work

We have presented in this paper a system architecture for an information retrieval sys-

tem that takes into account not only the text in the documents but also the geographic

references included in the documents and the ontology of the geographic space. This is

achieved by a new index structure that combines a textual index, a spatial index, and

an ontology-based structure. We have also presented how traditional queries can be

solved using the index structure, and new types of queries that can be solved with the

index structure are described and the algorithms that solve these queries are sketched.

Finally, we performed some experiments that show that the performance of our struc-

ture is acceptable in comparison with index structures using pure spatial indexes.

Future improvements of this index structure are possible. We are currently work-

ing on the evaluation of the performance of the index structure, particularly we are

performing experiments to determine the precision and recall. Moreover, Toponym

Resolution techniques must be implemented to solve ambiguity problems when we

geo-reference the documents. Another line of future work involves exploring the use

of di�erent ontologies and determining how each ontology a�ects the resulting index.

Furthermore, we plan on including other types of spatial relationships in the index

structure in addition to inclusion (e.g., adjacency). These relationships can be easily

represented in the ontology-based structure, and the index structure can be extended

to support them.
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