
Indexing and Self-indexing sequences of IEEE 754 double

precision numbers✩

Antonio Fariña, Alberto Ordóñez, José R. Paramá∗

Departamento de Computación, Facultade de Informática, Universidade da Coruña, Campus de A

Coruña, 15071 A Coruña, Spain

Abstract

Succinct data structures were designed to store and/or index data with a relatively small

alphabet size, a rather skewed distribution and/or, a considerable amount of repetitive-

ness. Although many of them were developed to handle text, they have been used with

other data types, like biological collections or source code. However, there are no appli-

cations of succinct data structures in the case of floating point data, the obvious reason

is that this data type does not usually fulfill the aforementioned requirements.

In this work, we present four solutions to store and index floating point data that

take advantage of the latest developments in succinct data structures.

The first one is based on the well-known inverted index. It consumes space around the

size of the source data, providing appealing search times. The other three solutions are

based on self-indexing structures. The first one uses a binary Huffman-shaped wavelet

tree. It is never the winner in our experiments, but still yields a good balance between

space and search performance. The second one is based on wavelet trees on bytecodes,

and obtains the best space/time trade-off in most scenarios. The last one is based on

Sadakane’s Compressed Suffix Array. It excels in space at the expense of less performance

at searches.

Including a representation of the original data, our indexes occupy from around 70%

to 115% of the size of the original collection, and permit fast indexed searches within it.

Keywords: Indexing, Compact structures, Real numbers.

✩A preliminary version of this paper was published in (Fariña et al., 2012).
∗Corresponding author. Tel. +34981167000 Fax. +34981167160.
Email addresses: fari@udc.es (Antonio Fariña), alberto.ordonez@udc.es (Alberto Ordóñez),

Preprint submitted to Elsevier June 27, 2014

1. Introduction

Although the web continues to attract much research activity, the spread of the in-

formation technology to all aspects of life implies that other fields deserve also attention.

Among others, stock exchange markets, geographic information systems or the forthcom-

ing electrical grids (SmartGrid) are fields that require addressing the problem of dealing

with large amounts of floating point data. For example, the forthcoming electrical grids

will produce huge amounts of floating point data, given that any electricity consumer or

producer will continuously report information in form of streams of real numbers (Zicari,

2012; IBM Software, 2012).

The use of compression techniques allows to reduce both the flow of information

through the network and the storage needs. Furthermore, once the data are stored, in

many scenarios it is mandatory to access these data efficiently to help real-time decision-

making processes, which, in turn, requires the development of suitable indexing tech-

niques.

Existing indexes provide adequate performance for most classical computer applica-

tions. However, these techniques require additional space that, when dealing with large

amounts of information, might become prohibitive. Compression has become a so com-

mon solution that even commercial database management systems have included it to

save space and to increase I/O performance (Garmany et al., 2008). A more evolved

solution is to use compression techniques that permit random decompression from any

position (Moura et al., 2000), this both saves space and permits indexes to be built over

the compressed data.

Unfortunately, compression techniques specifically designed for floating point data

(Burtscher and Ratanaworabhan, 2009; Ratanaworabhan et al., 2006), or general pur-

pose techniques that obtain reasonable compression values with this type of data (like

P7zip), require decompression to start at the beginning of the compressed data, thereby

preventing the indexation of such data.

Therefore, we have a trade-off between space and performance. On the one hand, to

obtain sub-linear search time over sequences of real numbers, we have to store the data

parama@udc.es (José R. Paramá)

2

uncompressed in order to be able to build an index over them, thus increasing the space

requirements. On the other hand, if we need to save space, we have to store the data in

a compressed form and then, to perform searches, we must first decompress such data,

and then run a linear-time search algorithm.

The outbreak of the web has promoted the development of data structures that have

several appealing characteristics to store and/or index text. Their success is based on a

relatively small alphabet, a quite skewed data distribution, and data that do not suffer

from frequent changes. However, floating point data have a large alphabet (a real number

hardly ever repeats twice) and a low biased distribution, yet many scenarios can hold the

last requirement, since it is usual to produce data that never change and are only stored

to, for example, run decision-making processes. In this work, we aim at applying those

data structures to the floating point data scenario, trying to keep their good features as

much as possible.

In recent years, the research community has worked extensively on inverted indexes

(Knuth, 1973) due to their use to index text and more specifically to index the web. The

main problem of this structure is the consumption of space, since it spends considerable

amounts of space in addition to the original information.

At the same time, a new family of data structures, called self-indexes, have merged

compression with indexing. They require space proportional to the compressed text, re-

place it, and permit fast indexed searches on it without any additional structure (Navarro

and Mäkinen, 2007). They are able to extract any text substring and locate the occur-

rence positions of a pattern string in a time that depends on the pattern length and the

output size (number of occurrences), but not on the text size (that is, the search process

is not sequential). Most of them are also able to count the number of occurrences of a

pattern string much faster than just locating them.

In this work, we present four contributions. First, we study the adaptation of inverted

indexes to the indexation of real numbers. In our experiments, we will show that a

structure whose size (including the original data plus the whole index) is between 10%

smaller and 20% larger than the original sequence, obtains locate times that are up to

around 8,000 times faster than the sequential search. Second, we study the use of self-

indexes to index and store sequences of real numbers. The first index of this family is

3

based on the classical wavelet tree (WT), (Grossi et al., 2003), which is a very flexible

structure that allows both to store and index data. Our second proposal based on

self-indexes uses a wavelet tree on bytecodes (WTBC), (Brisaboa et al., 2012), which

can be seen as a variation of the WT that showed a better performance in previous

scenarios. The third self-index is based on the recent integer-based Compressed Suffix

Arrays (iCSA) (Fariña et al., 2012). iCSA is a variation of the well-known Compressed

Suffix Array (CSA) (Sadakane, 2003) that permits to successfully handle large alphabets,

as those that arise when indexing real numbers. In our experiments, the self-index based

on the classical WTs occupies around the same size as the original collection (from 10%

less to around 10% more), whereas the locate times are up to 12 times faster than the

sequential search. However, in the case of the WT the extract operation, needed to recover

a portion of the original sequence, requires some computational effort, whereas that time

is negligible in the case of inverted indexes. Nevertheless, we expect that displaying the

whole original data will be a rather infrequent operation, whereas checking if a data

source surpassed a certain threshold will be the usual case. In a general scenario the best

space/time trade-off of our study is achieved by using an index based on the WTBC,

which obtains locate times up to 100 times faster than the sequential search with a

structure up to 15% smaller. Yet, when one aims at saving as many space as possible,

the iCSA-based self-index becomes the best choice. It permits to save up to 30% of the

size of the collection and permits to count the occurrences of a given search pattern up to

108 times faster than a sequential search, but the performance at locating them is poor.

The capabilities of these structures can be useful in different scenarios, for example,

assume that the measures of the electricity consumption of end consumers are stored

in one or multiple arrays, or simply, they are stored consecutively. Those values are

measures taken at different time points, that is, they are time series (Engelson et al.,

2000). One of the main targets of the SmartGrid is to determine the production of the

power plants over time, since the electricity cannot be stored, and therefore an excess

of production represents a waste of money. Consider the time series of the aggregated

consumption of a certain region, the SmartGrid could be interested in the past periods

where the consumption was within a certain range, assuming that when the consump-

tion is between the boundaries of that range, this requires a particular configuration

4

of the system, including that certain power plants should be on while others must be

disconnected from the network and turned off. The study of the conditions of those past

periods, like the hour of the day and the weather conditions, helps to determine which

is the suitable configuration for the current conditions.

In most scenarios, like in a SmartGrid system, we expect that exact searches of

floating point values will be unlikely, and we expect that range queries will be the usual

ones. However, our indexes can search for exact values if it is required. We also expect

functionalities like “retrieve all the measures taken at a particular time point”, that is,

we have to be able to access a given position of the sequence in sublinear time as well.

The outline of this paper is as follows. Section 2 presents some related work and

Section 3 discusses the 64-bits IEEE 754 format and a preliminary study of the char-

acteristics of real numbers. Section 4 presents our first contribution, showing how to

adapt inverted indexes to successfully index sequences of real numbers. In Section 5,

we describe how we adapted three well-known self-indexing structures (a classical WT,

a WTBC, and an iCSA) to deal with real numbers. Section 6 shows our experiments.

Finally, our conclusions and directions for future work are shown in Section 7.

2. Related Work

2.1. Inverted indexes

Inverted indexes (Knuth, 1973) are composed of two elements: a list of search keys

and a collection of posting lists. The list of search keys is the set of all different indexed

key values. For each key value, the index contains a posting list that stores the positions

in the original sequence where that particular key can be found.

Original sequence

Posting lists

L
is

t
o
f

k
e
y
s

1 2 6 6 5 3 4 0 2 1 3 7 6
1 2 3 4 5 6 7 8 9 10 11 12 13

1
2
3
4
5
6
7

0
1

2

6

7

5

3

12

8

10

9

11

4 13

Inverted Index

Figure 1: An inverted index over the sequence 〈1, 2, 6, 6, 5, 3, 4, 0, 2, 1, 3, 7, 6〉.

The inverted index is the most common structure to index text. Its importance for

5

the web has increased the interest of the investigation of this structure. The focus of the

research community is in the main problem of the inverted index, it requires too much

space. Observe that, as a classic index, it is an auxiliary structure that should be added

to the data. To attenuate this problem, two strategies can be followed: to compress the

source data and to compress the posting lists.

In the case of text, several compression techniques have been used to compress the

source data. Among them, the word-oriented Huffword is a well-known alternative (Wit-

ten et al., 1999) that combines good compression and performance. Other more recent

techniques such as Tagged Huffman (Moura et al., 2000) or the Dense codes (Brisaboa

et al., 2007) own also another interesting feature as they permit random access ; that

is, they permit to start the decompression from any point of the compressed data. For

repetitive data, grammar-based compressors (Larsson and Moffat, 2000) proved also to

be successful.

Observe that a posting list is a sequence of increasing numbers, therefore incremental

encoding is the obvious choice to obtain compression. Additional savings are obtained

using different techniques to encode the gaps, like for example, Byte codes (Williams and

Zobel, 1999), δ-codes (Elias, 1975), Rice codes (Rice, 1979), or more recently PforDelta

(Zukowski et al., 2006). Another approach to save space is that the values within the

posting lists point to blocks instead of pointing to exact positions (Manber and Wu,

1993). If a block contains several occurrences of a searched key, then the corresponding

posting list has fewer pointers. However, now the index is only useful to filter out blocks

and then, a sequential scan within those blocks is needed to obtain the exact positions

of the searched key.

2.2. Self-indexing structures

Self-indexes are a more recent approach to both store and index sequences of symbols

S[1, n] over an alphabet Σ of size σ, which were developed for relatively small alphabets

and for sources with a rather skewed distribution. They efficiently support three basic

operations: counting and locating all the occurrences of a given pattern in S, as well as

extracting any subsequence S[i, j] from S. Therefore, they enable indexed searches within

S, and provide an implicit (and typically smaller) representation of S, since S[1, n] can

be recovered via extract operation.
6

In the sequel we focus on two well-known self-indexing structures such as the wavelet-

tree (Grossi et al., 2003) and Sadakane’s Compressed Suffix Array (Sadakane, 2003).

We also describe two variations of them that were shown to successfully handle large

alphabets such as the Wavelet Tree on Bytecodes (Brisaboa et al., 2012) and the Word

Compressed Suffix Array (Fariña et al., 2012). These structures are the basis of our

self-indexes to handle sequences of floating point numbers.

2.2.1. Wavelet trees

The Wavelet Tree (WT) (Grossi et al., 2003) is a well-know structure that permits to

self-index a given sequence S[1, n] of symbols drawn from an alphabet Σ of size σ. Al-

though such alphabets were usually small, WTs have succeeded at dealing with sequences

composed of words (Brisaboa et al., 2012), and also at managing sequences built over

even larger alphabets (Mäkinen and Navarro, 2008; Navarro and Russo, 2011; Navarro,

2012). As a self-index, a WT replaces S since it allows to extract the symbol at any

given position. Besides, it is capable of obtaining all the positions of S where a given

symbol is located.

WTs were firstly proposed for solving rank and select queries over sequences on large

(non-binary) alphabets. Given a sequence of symbols S, rankb(S, i) = y if the symbol b

appears y times within S[1, i], and selectb(S, j) = x if the jth occurrence of the symbol

b in the sequence S appears at position x.

The original WT is a balanced binary tree, that requires n log σ(1+o(1)) bits of space

and O(log σ) query time. At each node v, only a bitmap is stored. It is denoted by B(v).

When v is the root node, Σ is divided into two halves Σ0 and Σ1. The symbols S(v)[i]

from S that belong to Σ0 go to the left child of v and B(v)[i] is set to 0 to keep track

of this. In the same way, if S(v)[i] belongs to Σ1, B(v)[i] is set to 1. Recursively, each

child v′ handles in the same way the part of S it received, denoted as S(v′). That is,

B(v′)[i] ← 0 iff S(v′)[i] is sent to the left-child of v′, and B(v′)[i] ← 1 otherwise. The

sequence of labels obtained when traversing the tree from the root down to a node v is

the binary label of v, which is denoted as L(v). The node that handles the symbols of

S that have the binary label L(v) is denoted as VL(v). The binary labels of the leaves

correspond to the binary representation of the symbols of Σ.

The WT has been used for different purposes, and with different shapes. For instance,
7

if the frequency of each symbol is known, we can build a WT with the shape of a Huffman

tree (Grossi et al., 2003). In this case, the number of bits stored in the bitmaps of

the WT is the same as the number of bits output by a Huffman compressor. This is

upper bounded by n(H0(S) + 1), being H0(S) the zero-order empirical entropy defined

asH0(S) = −
∑

c∈Σ,fc>0
nc

n
log nc

n
, where nc is the number of occurrences of each symbol.

Using an uncompressed bitmap representation that takes n + o(n) bits, the total

space of the WT is at most n(H0(S)+1)(1+o(1))+O(σ logn) bits. Using the technique

by Raman et al. (2002) to compress the bitmaps, the space is reduced to nH0(S) +

o(n log σ) bits. The advantages of using a Huffman shaped WT are not only regarded

to compression effectiveness but also to access time. Grossi et al. (2004) showed that if

symbols are accessed with a frequency proportional to their number of occurrences in

the sequence S, then the average access time is improved from O(log σ), for a plain WT,

to O(H0(S) + 1) in a Huffman shaped WT, holding H0(S) ≤ log(σ).

Over the alphabet 〈0, 1, . . . , 7〉, Figure 2 shows a WT storing/indexing the sequence

of symbols 〈1, 2, 6, 6, 5, 3, 4, 0, 2, 1, 3, 7, 6〉. The shaded numbers are not actually stored

in the WT, and are only displayed for illustration purposes. In this example, the WT

is a balanced binary tree, since the coding used to shape the WT consists in the 3-bits

binary representation of each symbol.

Original sequence (S)
1 2 6 6 5 3 4 0 2 1 3 7 6

0 0 1 1 1 0 1 0 0 0 0 1 1
Vø

=[0..7]

1 2 3 0 2 1 3

0 1 1 0 1 0 1

6 6 5 4 7 6

1 1 0 0 1 1
V0

 0=[0..3]

V1

 1=[4..7]

1 0 1 3

1 0 1 1
V00

 00=[0,1]

2 3 2

0 1 0
V01

 01=[2,3]

5 4 6

1 0 0
V10

 10=[4,5]

6 6 7

0 0 1
V11

 11=[6,7]

0 1 1 3 32 2 54

0 0 1 1 1 0 1 0 0 0 0 1 1

 =[0..7]

0 1 1 0 1 0 1 1 1 0 0 1 1

1 0 1 10 1 0 1 0 00 0 1

Real WT Conceptual WT

76 66

Figure 2: A WT over the sequence 〈1, 2, 6, 6, 5, 3, 4, 0, 2, 1, 3, 7, 6〉.

The WT reduces both recovering the original data and searching for a given symbol to

rank and select operations on the bitmaps respectively. For example, in order to recover

(extract) the symbol S[4] from the WT, we access the 4th position of the bitmap in the

root node (B(V∅)[4]), obtaining a 1. Now we have to check which is the order of that

8

1 among all the 1′s of that node, in our case, it is the second occurrence of a 1 (that

is, rank1(B(V∅), 4) = 2). Next, we have to access the second position of the bitmap of

the node V1, that is, the node handling the symbols of the second half of the alphabet

(those whose binary representation starts with 1). We obtain again a 1 (B(V1)[2] = 1),

and that this is the second occurrence of a 1 in node V1 (rank1(B(V1), 2) = 2). Finally,

we move to node V11 and access the second position of its bitmap (B(V11)[2]), where we

obtain the bit value 0. Therefore, the binary representation of S[4] is 110, and we recover

symbol 6.

We can also search for the position in S of the jth occurrence of a symbol. First, we

have to obtain the codeword of the symbol using the same encoder used to shape the

WT. Then, we must reach the leaf that contains such codeword by traversing the tree

downwards, that is, at level i, if the ith bit of the codeword is 1 we move to the right

child, whereas we move to the left child otherwise. Once the leaf is reached, we start an

upward transversal using the nodes that are already in the recursion stack filled in the

downward traversal. The algorithm is as follows: being initially pos← j, if at level i the

current node is the left child of its parent, we set pos ← select0(B, pos); otherwise we

set pos ← select1(B, pos), where B is the bitmap of the current node. Once we reach

the root, the sought position of the jth occurrence of the symbol is pos.

If we want to retrieve all the positions where a symbol occurs, the process is similar

but once we reach the leaf, we have to carry out an upward transversal for each occurrence

of the symbol (the number of occurrences is known once we reach the leaf).

2.2.2. Wavelet trees on bytecodes

Wavelet trees on bytecodes (WTBC) (Brisaboa et al., 2012) are based on a family

of compression codes known as bytecodes (Moura et al., 2000; Brisaboa et al., 2007;

Culpepper and Moffat, 2005). These codes use bytes, rather than bits, as the target

alphabet (that is, the codewords that replace the original symbols are sequences of one

or more bytes). This change yields compression ratios1 around 5% worse in large texts,

when using a word-based modeler (Moffat, 1989). The target was to obtain faster times at

1From here on, compression ratio (cr) is shown as the size of the compressed file (c) as a percentage

of its original size (n). That is: cr ← c/n× 100.

9

compression and especially at decompression. The first technique, called Plain Huffman

(PH), is just a Huffman code assigning byte rather than bit sequences to the codewords,

that is, this is just the d -ary Huffman code that appears in Huffman’s original paper

(Huffman, 1952), with d=256.

More recently, Brisaboa et al. (2012) proposed reordering the bytes in the codewords

from a text compressed with a given bytecode following a wavelet-tree-like strategy. At

the expense of a small space overhead over the text compressed with that bytecode, such

a reorganization turns the compressed data into a self-index: the WTBC structure. In

particular, the WTBC with PH shape was shown to perform the best.

In WTBC, instead of representing the compressed data as a sequence of codewords,

each one representing one original symbol, the data is represented with a wavelet tree

where the different bytes of each codeword are placed at different nodes. The root of

the wavelet tree contains the first byte of all codewords, following the same order as the

original symbols. That is, the ith byte of the root node is the first byte of the codeword

corresponding to the symbol at the ith position of the original sequence. The root has

as many children as different bytes can be the first byte of a codeword. In the second

level, the node corresponding to the xth child of the root handles the second byte of

those codewords whose first byte is x. That is, the byte at position i in node Vx is the

second byte of the codeword corresponding to the ith original symbol whose codeword

starts with the byte x. The same procedure is followed in the lower levels of the tree.

Original sequence (S)
1 2 6 6 5 3 4 0 2 1 3 7 6

b2 b3 b1 b1 b3 b3 b4 b4 b3 b2 b3 b3 b1

Vø

2 5 3 2 3 7

b1 b3 b2 b1 b2 b3

4 0

b2 b1

Vb3 Vb4

5 7

b1 b2
Vb3b3

2 2

75

40

Real WTBC Conceptual WTBC

b3 b4

b1 b2

3 3

b3 b1 b2

b1 b2

6 b1

1 b2

2 b3b1

3 b3b2

0 b4b1

4 b4b2

5 b3b3b1

7 b3b3b2

Symbol Codeword

Encoding

b2 b3 b1 b1 b3 b3 b4 b4 b3 b2 b3 b3 b1

b1 b3 b2 b1 b2 b3 b2 b1

b1 b2

b3 b4

b3

Figure 3: A WTBC over the sequence 〈1, 2, 6, 6, 5, 3, 4, 0, 2, 1, 3, 7, 6〉.

We use again L(v) to denote the sequence of labels obtained when traversing the tree

from the root down to a node v, yet in this case is a byte label. Also, we use VL(v) to

10

denote the node that handles the symbols whose byte label starts by L(v) and B(v) to

denote the sequence (in this case) of bytes in the node v.

An example of a WTBC storing/indexing the sequence 〈1, 2, 6, 6, 5, 3, 4, 0, 2, 1, 3, 7, 6〉

is shown in Figure 3. Again the shaded elements are not stored and are only included

for clarity. The process starts by computing the codeword corresponding to each original

symbol using a given bytecode. After that, the tree is built as explained. The root

contains the first byte of the codewords representing the symbols in the ordering of the

original sequence. The second byte of those codewords is contained in the corresponding

child. For example, since in the 8th position of the root node we have the byte b4, the

second byte of S[8] is in the child corresponding to the codewords that have b4 as first

byte (Vb4). S[8] is the second symbol of the original sequence that has b4 as the first byte

of its codeword, therefore in the second position of Vb4 we find the second byte of S[8].

Since the codeword representing 0 (the symbol in S[8]) only has two bytes, the process

ends here.

Now, suppose that we want to recover the symbol S[5] from the WTBC. We start at

the 5th position of the root node, and we obtain the byte b3. This is the second occurrence

of that byte in the root node (we know that by performing rankb3(B(V∅), 5) = 2).

Therefore, we access the second position of Vb3 , where we obtain a b3. This is the first

occurrence of that byte value in Vb3 , since rankb3(B(Vb3), 2) = 1). Then, we access the

first position of Vb3b3 , and we finally obtain the byte value b1. Therefore, the symbol S[5]

is represented by the codeword b3b3b1. Now, we search for that codeword in the table

containing the correspondence between the original symbols and the codewords and we

obtain that S[5] is a 5.

We can also search for the positions in the original sequence of a given symbol as in a

binary WT. Hence, in a first step, we use the bytes from the codeword of that symbol to

traverse the WTBC downwards by performing rank operations. Once the corresponding

leaf is reached, we search for the positions of the occurrences of that symbol by traversing

the WTBC upwards performing select operations.

The sum of the space needed by the WTBC is the same as the size needed by the

codewords of the bytecode used to encode the symbols, plus a negligible amount of extra

space to store the pointers that keep the shape of the WTBC.

11

2.2.3. The Compressed Suffix Array: Sadakane’s CSA

Given a sequence S[1, n] built over an alphabet Σ of length σ, the suffix array (Manber

and Myers, 1993) A[1, n] built on S is a permutation of [1, n], so that for all the suffixes

S[i, n], 1 ≤ i < n, it holds S[A[i], n] ≺ S[A[i + 1], n], being ≺ the lexicographic ordering

(as S typically contained text).

Since A points to all the suffixes of S in lexicographic order, this structure permits to

search for any pattern P [1,m] in time O(m log n) by simply binary searching the range

A[l, r] that contains pointers to all the positions in S where P occurs. The m term

appears because at each step of the binary search, one could need to compare up to m

symbols from P with those in the suffix S[A[i], A[i] + m − 1]. Unfortunately the space

needs of A are high.

To reduce these space requirements, Sadakane’s CSA (Sadakane, 2003) uses another

permutation Ψ[1, n] defined in (Grossi and Vitter, 2000). For each position j in S pointed

from A[i] = j, Ψ[i] gives the position z such that A[z] points to j + 1 = A[i] + 1.

There is a special case when A[i] = n, in this case Ψ[i] gives the position z such that

A[z]=1. In addition, we could set up an array E[1, σ′] with all the different symbols

that appear in S, and a bitmap D[1, n] aligned with A so that D[i] ← 1 if i = 1 or if

S[A[i]] 6= S[A[i − 1]] (D[i] ← 0 otherwise). Basically, a 1 in D marks the beginning of

a range of suffixes pointed from A such that the first symbol of those suffixes coincides.

That is, if the ith and (i + 1)
th

one in D ocurr in D[l] and D[r] respectively, we will have

E[rank1(D, l)] = E[rank1(D, x)]∀x ∈ [l, r − 1]. Note that rank1(D, i) can be computed

in constant time using o(n) extra bits (Jacobson, 1989; Munro, 1996).

By using Ψ, D, and E it is possible to perform binary search without the need

of accessing A nor S. Note that, the symbol S[A[i]] pointed by A[i] can be obtained as

E[rank1(D, i)], and we can obtain the following symbols of the source sequence S[A[i]+1]

as E[rank1(D,Ψ[i])], S[A[i] + 2] as E[rank1(D,Ψ[Ψ[i]])], and so on. Recall that Ψ[i]

basically indicates the position in A that points to the symbol S[A[i] + 1]. Therefore, by

using Ψ, D, and E we can obtain the symbols S[A[i], A[i] +m − 1] that we could need

to compare with P [1,m] in each step of the binary search.

However, in principle, Ψ would have the same space requirements as A. Fortunately,

since Ψ is formed by σ subsequences of increasing values (Grossi and Vitter, 2000), those

12

subsequences can be compressed by encoding the differences with δ-codes or γ-codes

(Elias, 1975). In practice, absolute sampled positions Ψ[1 + i · tΨ] are also explicitly

kept to permit fast access to Ψ values. Further research showed that coupling Huffman

and run-length coding of gaps succeeded at reduce Ψ size (Navarro and Mäkinen, 2007;

Fariña et al., 2012).

As said before Ψ, D, and E are enough to simulate the binary search for the interval

A[l, r], where pattern P occurs, without keeping A nor S. Being r − l + 1 the number

of occurrences of P in S, this permits to solve the count operation. However, if one is

interested in locating those occurrences in S, A is still needed as we need to recover the

values A[l, r). In addition, to be able to extract any subsequence S[i, j] we also need to

keep A−1[1, n] so that we know the position in A that points to S[i] (A−1[i]) from which

we could start the extraction mechanism using Ψ, E, and D showed above. In practice,

only sampled values of A and A−1 are stored. In the former case, the source sequence S

is sampled at positions t, 2 · t, . . . , n, and an array AS [1, n/t] records the values of A (in

suffix array order) pointing to those sampled positions. In addition, a bitmap BA is set

to mark the sampled positions from A. Therefore, sampled values A[i] are computed as

A[i] ← AS [rank1(BA, i)], whereas non-sampled values A[i] can be retrieved by starting

with i′ ← i and then applying i′ ← Ψ[i′] k times (k ≤ t) until a sampled position A[x]

is reached (that is, BA[x] = 1). At this point we compute A[i] ← A[x] − k. Similarly,

samples of A−1 are taken at positions 1 + j · t and stored (in S order) into an array

A−1
S [1, n/t]. Therefore, when we want to extract a subsequence S[b, e], we move to last

sampled position 1 + j · t before b (j ← (b − 1)/t + 1). From here on we know that

S[1 + j · t] is pointed from A[i], i ← A−1
S [1 + j]. Therefore, we use the usual extraction

mechanism to recover the subsequence S[1 + j · t, e] which contains S[b, e].

From this point, the CSA is a self-index built on S that replaces S (as any substring

S[i, j] could be extracted) and does not need A anymore to perform searches.

Note that different sampling values t can be used for A (tA), A
−1 (tA−1), and for Ψ

(tΨ). Yet, in practice, on a large alphabet of size σ = Θ(nβ), t = O(log n) is a reasonable

sampling rate. For example, in (Fariña et al., 2012) t = 32 showed a good space/time

trade-off for a 1GB text. In this case, a CSA requires nH0 +O(n log logn) bits of space,

yet in practice the space is closer to 2nHk + O(n). In our experiments we will use

13

several values t = tΨ = tA = tA−1 hence leading to different space/time trade-offs in the

CSA-based indexes. Figure 4 shows a description of the structures needed in a CSA.

AS

Conceptual CSA Real CSA

1 2 6 6 5 3 4 0 2 1 3 7 6S

14 8 1 10 9 2 6 11 7 5 13 4 3A

$

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14

3 6 13 12 10 7 9 2 5 4 8 14 11A-1 1

3 5 6 8 4 13 9 14 2 7 1 10 12� 11

1 1 0 0 0 0 0 0 0 0 0 1 0BA 1

$ 0 1 2 3 4 5 6 7E

1 1 1 0 1 0 1 0 1 1 1 0 0D 1

14 8 4 12AS

1 2 3 4 5 6 7 8 9 10 11 12 13 14

3 10 5 11
-1

3 C+2 C+1 C+2
4 C+9 C-4 C+5

2 C+5 C-6 C+9
12� C-1

1 1 0 0 0 0 0 0 0 0 0 1 0BA 1

$ 0 1 2 3 4 5 6 7E

1 1 1 0 1 0 1 0 1 1 1 0 0D 1

Figure 4: A CSA self-index over the sequence 〈1, 2, 6, 6, 5, 3, 4, 0, 2, 1, 3, 7, 6〉.

2.2.4. The Word-based Compressed Suffix Array: WCSA and iCSA

The original CSA was designed to typically index characters within a text sequence,

so that CSA was able to count, locate, and extract any substring of the indexed text.

Fariña et al. (2012) modified CSA to index words rather than characters and created the

so called Word-based CSA (WCSA). It allows to perform the same operations, but in a

word-wise fashion. That is, WCSA is able to search only for sequences of words rather

than any text substring. Yet, since in a text of size n there are only around n/5 words,

WCSA has to index less symbols than a character-based CSA. This permits it to greatly

reduce space needs.

To build a WCSA, each different word in the original text T is firstly mapped to an

integer identifier (id), and then replaced by its corresponding id to make up the sequence

S that is actually self-indexed with an integer-based CSA (iCSA). Note that, the original

CSA handles an alphabet of at most 256 values (characters), whereas the number of

different words in a text is much larger. Therefore, iCSA is just an adaptation of CSA

that handles integers, hence allowing us to deal with very large alphabets.

3. The IEEE 754 format: Basics and preliminary analysis

We consider the double precision 64-bits IEEE 754 format (IEEE Std 754-200, 2008).

This standard divides the floating point numbers into three components (see Figure 5):

(i) 1 bit to indicate the sign of the number (1 for negative and 0 for positive numbers),
14

(ii) 11 bits to represent the exponent of the number, and (iii) 52 bits to represent the

mantissa.

64 bits

1 bit 11 bits 52 bits

sign exponent mantissa

Figure 5: IEEE 754 64-bits format.

Using the following expression we can transform a binary floating point representation

into the real number representation:

−1sign × 2exponent−bias × 1.mantissa

where constant bias equals 1023 (in the case of 64-bits double precision numbers).

The exponent indicates the magnitude of the number while the mantissa contains the

integer part (if it has one) and the decimal part. This format usually normalizes the

number to a number such that 1 ≤ mantissa < 2, where the 1 is not represented and

the bits that are closer to the decimal point are stored in the leftmost bits reserved for

the mantissa.

When we have a collection of double precision real numbers it is likely that most

of those numbers are unique, and very few repetitions would be found. That is, the

alphabet size typically increases linearly with the size of the collection. This is because

most decimal numbers could not be represented since the format is designed for discrete

machines, while the nature of the decimal numbers is purely continuous. Hence, the

arithmetic algorithms must deal with rounding problems that can generate very different

representations for similar numbers.

However, collections of floating point numbers are usually measures or results of

some computational process or real phenomenon. Therefore, we expect that, despite the

numbers could be significantly different, their magnitude can be similar (Engelson et al.,

2000). In such a case, in a sequence of real numbers, the number of different exponents

is usually smaller than the 211 possibilities. This can be also the case of the leftmost

bits of the mantissa as previous works suggest (Burtscher and Ratanaworabhan, 2009;

Ratanaworabhan et al., 2006). Hence, the first bits are the most compressible part of

each number.
15

The question is now how many bits must we index to achieve a compact representa-

tion? As explained, since it is rare that a real number appears twice in a sequence, if we

index all the bits in each real value, the index will have an entry for each number in the

sequence, and therefore the index will be even larger than the original data.

Fortunately, the nature of most data and the characteristics of the IEEE 754 format

permit us to appreciate a biased distribution if we consider only the first bytes of those

numbers. This will allow us to create a more compact index or self-index over those

initial bytes.

To show this, we studied six collections of real numbers downloaded from Martin

Burtscher’s site.2

The collection named brain contains results from a numeric simulation of a velocity

field of a human brain during a head impact. The rest, named lu, bt, sp, sppm, and

sweep3d, contain numeric messages sent by a node in a parallel system running NAS

Parallel Benchmark. Table 1 shows the characteristics of these collections.

Name SIZE(MB) number of doubles Unique doubles

bt 254.0 33,298,679 92.88%

brain 135.3 17,730,000 94.94%

lu 185.1 24,264,871 99.18%

sp 276.7 36,263,232 98.95%

sppm 266.1 34,874,483 10.24%

sweep3d 119.9 15,716,403 89.80%

Table 1: Properties of the IEEE754 floating point datasets.

Table 2 shows a study of the zero-order empirical entropy of those collections. We do

not tackle larger orders, given that the cost of storing the contexts limits the character-

oriented compressors with kth-order modelers to small values of k (not usually larger

than 16). Therefore, if we deal with larger alphabets this cost is much worse and then

prohibitive in space terms.

In the table, columns from the second to the sixth show the entropy (in bits/symbol)

of the first x bytes. That is, when displaying the entropy of the first byte, we consider

the first byte of each number in the collection as an input symbol, and we compute the

2http://www.csl.cornell.edu/~burtscher/research/FPC/datasets.html

16

entropy of those symbols. When we show the entropy of the first 2 bytes, the symbols

are 2-byte numbers, and so on.

The last five columns give a lower bound of the compression achieved if we compress

only the first x bytes and leave the other 8 − x bytes in plain form. That is, in the

column corresponding to the first byte, we consider the entropy of the first byte plus the

remaining 7 bytes verbatim. For example in collection bt, the entropy of the first byte is

2.38 bits/symbol, if the rest of bytes are stored verbatim, we need 7 additional bytes, in

total, 58.38 bits/symbol to represent each number.

Entropy of the first x bytes (bits/symbol) Space including the remainders (bits/symbol)

Name 1 byte 2 bytes 3 bytes 4 bytes 8 bytes 1 byte 2 bytes 3 bytes 4 bytes 8 bytes

bt 2.38 8.57 15.61 21.92 23.67 58.38 56.57 55.61 53.92 23.67

brain 0.05 6.74 14.73 22.23 23.97 56.01 54.74 54.73 54.23 23.97

lu 1.31 8.41 16.39 23.43 24.47 57.31 56.41 56.39 55.43 24.47

sp 1.92 6.79 14.34 21.65 25.03 57.92 54.80 54.34 53.65 25.03

sppm 2.30 4.74 7.12 8.37 11.24 58.30 52.74 47.12 40.37 11.24

sweep3d 0.18 6.89 14.61 19.19 23.41 56.18 54.89 54.61 51.19 23.41

Table 2: Study of the zero-order entropy.

However, the previous study gives an unrealistic level of compression, since any sta-

tistical compressor would require an additional table to hold the correspondence between

the original numbers and the codewords representing them. The size of such table might

also give us an idea of the size of an index over that collection, as an index should have

to handle all the different values of the collection plus some extra space over the size of

those values. We can estimate the size (in bits) of that table as:

(m× ((x ∗ 8) + log(m))

where m is the number of unique values in the collection and x the number of bytes

being compressed from those numbers. That is, we estimate that for each entry, we

need (x ∗ 8) bits to store the original number and log(m) bits to store the codeword

representing the original symbol in the compressed text. Recall that we only compress

the first x bytes, and the rest are stored verbatim.

Table 3 includes our estimation of the size of the table that maps original numbers

and codewords, as well as the estimation of the size of the compressed data including the

17

First k bytes compressed

1 byte 2 bytes 3 bytes 4 bytes 8 bytes

bt 91.22% 88.39% 87.40% 89.52% 165.97%

brain 87.51% 85.53% 85.69% 113.21% 168.00%

lu 89.55% 88.13% 88.60% 136.14% 175.40%

sp 90.50% 85.61% 85.29% 115.30% 176.86%

sppm 91.10% 82.42% 74.10% 68.10% 31.29%

sweep3d 87.78% 85.77% 85.64% 90.93% 159.70%

Table 3: An estimation of the lower bound of the compression ratio that could be achieved by a zero-order

statistical compressor by compressing the first x bytes and leaving the rest verbatim.

remainders from Table 2. We can see that the best average compression ratio is achieved

by compressing 3 bytes and leaving the rest uncompressed. As expected, the exception

is in highly repetitive collections, in our example sppm. In our tests, this combination of

compressed bytes and non-compressed bytes is the most suitable one to meet the two basic

requirements to obtain good compression with a statistical compressor: i) the distribution

of the source data must be biased enough to take advantage of the repetitiveness, and ii)

the number of different values cannot be excessively large, otherwise the table that maps

the original symbols to codewords would be too large, hence spoiling the compression.

Observe that if we compress fewer bytes, the distribution is less biased, whereas if we

compress more bytes, the number of different values increases significantly.

A more realistic way to check the correctness of our study is to use a Huffman3

compressor. We have run that compressor over the first byte, over the first two bytes,

over the first three bytes, and over the first four bytes of the numbers. As in the previous

study, we measured the compression achieved taking also into account the remainders,

which are not compressed. Table 4 shows the results, that are in general very similar to

the bounds obtained in Table 3. When the table holding the correspondence between

original symbols and codewords is large, the real Huffman compressor gives better values.

The reason could be that our Huffman compressor compresses that table with a char-

based bit-oriented Huffman, hence obtaining additional compression.

However, the general idea does not change. Except in collection sppm, which is

3We used a version from http://ww2.cs.mu.oz.au/~alistair/mr_coder/shuff-1.1.tar.gz based on

Moffat and Turpin (1997).

18

highly repetitive, compressing the first 3 bytes and leaving the other 5 bytes uncom-

pressed achieves the best balance between compression ratio and indexing as many bytes

as possible. Therefore, this is our choice for our further data structures. Finally, we also

include the compression ratio of P7zip4 and Shkarin’s PPMd5 as two representative base-

line compressors. We can see that, except in very repetitive collections, the compression

of P7zip is rather poor and not far from that of the simpler Huffman. Also it is notice-

able that a powerful compressor such as PPMd is not able to deal with real numbers

successfully and is clearly overcome in most cases by zero-order Huffman. Therefore, in

a general scenario we do not expect self-indexes (including those achieving high-order

compression as well as grammar-based or Lempel-Ziv-based self-indexes) to be successful

in space in a general scenario.

Of course, if the domain is totally different from our datasets, the optimal number of

bits to index could change, but, in any case, our proposals can be adapted with no effort

to index any number of bits.

Huffman Compression P7zip PPMd

Name 1 byte 2 bytes 3 bytes 4 bytes

bt 91.33% 88.44% 87.22% 112.28% 72.09% 89.58%

brain 89.06% 85.56% 85.65% 100.98% 83.57% 93.03%

lu 89.84% 88.18% 88.45% 115.15% 78.04% 96.66%

sp 90.74% 85.67% 85.17% 101.96% 74.23% 91.64%

sppm 91.26% 82.49% 73.98% 66.19% 9.01% 13.20%

sweep3d 89.11% 85.80% 85.56% 86.64% 27.90% 59.70%

Table 4: Compression achieved by: a Huffman compressor over the first x bytes (x = 1, . . . , 4), as well

as P7zip and PPMd run on the whole data.

4. Inverted Indexes for sequences of real numbers

As explained in the previous section, if we build an inverted index over a sequence of

real numbers, it is likely that the inverted index will be composed by posting lists having

in most cases only one value. This implies that the problem of space is even worse, since

the inverted index needs 64 bits for each key value (each different value in the indexed

4http://www.7-zip.org
5We run PPMd with options -r1 -m256 -o16. It is available at http://www.compression.ru/ds/.

19

data) to store the key in the list of keys plus, around ⌈log(n)⌉ bits per occurrence6 (being

n the size of the collection) in the posting lists.

Therefore, the main problem is the list of keys, that could have a number of entries

close to n. To solve this issue, we index only the first x bytes of each number (the more

compressible ones), that is, the list of keys contains key values of x bytes.

The idea is to reduce the number of entries in the list of keys from a value that could

be close to 2(8·8), to a value that is at maximum 2(x·8). Obviously, this implies that the

posting lists will be longer, but it is expected that the incremental encoding coupled with

the gap encoding will be able to reduce the space.

In addition, we expect that the search times would not suffer too much since it is

likely that the search of exact real numbers will be rare, whereas the issue of range

queries will be the usual case. With our approach, a range search can be solved first

accessing the index, which implies a search that involves the sign, the exponent and the

first (x ∗ 8)− 12 bits of the mantissa (from left to right), since as explained, the leftmost

bits hold the most significant part of the number. Obviously, this is not enough if the

query includes more than first x bytes. In such case the index is used to filter out all

the candidate positions, and then those positions must be inspected. For this sake, we

store the remaining 8 − x bytes of each number in the source sequence in an array of

fixed length numbers. Finally, if the index holds more than the bits needed to answer

the query, all the posting lists associated with each entry of the list of keys that matches

the query bits will belong to the result.

Recall that the inverted index is an auxiliary structure, then the original data must

be kept. However, the array of fixed length numbers storing the remaining 8 − x bytes

of each number already store part of the original data. Yet, we still have to store the

first x bytes of each number, just those indexed. Again those bytes are stored in another

fixed length array, but using only the bits that are strictly necessary to represent all

the possible values, since, as seen, these data are compressible. That is, if there are m

different values, we use ⌈log(m)⌉ bits per number. This still gives fast direct access to

6Since posting values point to the position of each key in the sequence of real numbers, they would

require up to ⌈log(n)⌉ bits in the case of a positional inverted index. For a block-addressing inverted

index, where each block contains B real numbers, the size of each pointer would be ⌈log(n/B)⌉ bits.

20

any position and saves space.

3 bytes 5 bytes

4 1023

3 bytes 5 bytes

4 2347

3 bytes 5 bytes

12 2311

3 bytes 5 bytes

12 3435

3 bytes 5 bytes

15 3788

3 bytes 5 bytes

14 9001

1st number 2nd number 3rd number 4th number 5th number 6th number

Original

sequence

4 4 12 12 15 14 1023 2347 2311 3435 3788 9001

RemaindersIndexed Sequence

0 0 1 1 3 2

Indexed Sequence (sequence of IDs)

3-byte keyID

40

121

142

153L
is

t
o

f
k
e

y
s 1 2

3 4

6

5

Posting lists

Figure 6: Indexing real numbers with an inverted index.

Figure 6 shows the final structure. The shaded part is not really stored and it is

included only for illustration purposes. In this case, we indexed the first 3 bytes of each

number. To do this, we extract the first 24 bits of each real number, and then we treat

those 24 bits and the remaining 40 bits as integers. In the center-right part of the figure,

it is shown the array of fixed length remainders (5 bytes each). In the lower part, we

can see the inverted index, formed by the list of keys, that is, the different values found

in the first 3 bytes of each number (sorted increasingly), and their corresponding posting

lists.

Finally, the first 3 bytes of each number are stored in a k-bit array. In our example,

there are only four different values 〈4, 12, 14, 15〉. They are assigned the IDs 〈0, 1, 2, 3〉

sequentially. Therefore, only two bits are needed to represent them. Finally, to compress

the posting lists, we encoded the gaps of the incremental values with Rice codes.

4.1. Tunning the Inverted indexes

Using the same experimental framework described in Section 6, we present a brief

study where we compare the space/time trade-off obtained by our inverted indexes when

we use Rice codes7 with the results obtained by using either γ-codes or δ-codes (Elias,

1975) for encoding the gaps in the posting lists. We consider two variants of our inverted

7For Rice codes, the optimal parameter b for each posting list is locally computed accord-

ing to Witten et al. (1999). Given a list of nl gaps from a posting list l, we compute b ←

⌊(log
2
(0.69

∑nl

i=1
(gap[i]))/nl))⌋. Such a value is kept along with each term in the inverted index.

21

 0.01

 0.1

 1

 10

 100

 90 95 100 105 110 115 120 125 130 135

m
se

c/
oc

c

Compression ratio (%)

II-rice
II-blocks-rice

II-γ
II-blocks-γ

II-δ
II-blocks-δ

(a) Non-repetitive scenario.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 90 95 100 105 110 115 120

m
se

c/
oc

c

Compression ratio (%)

II-rice
II-blocks-rice

II-γ
II-blocks-γ

II-δ
II-blocks-δ

(b) Repetitive scenario.

Figure 7: Space/time trade-offs at locating patterns of 5.5 bytes. The y axis is in logarithmic scale.

indexes: i) a positional inverted index (II); and ii) a block-addressing inverted index

(II-blocks) tuned to use blocks of 512, 2048, 8192, and 32768 bytes. We present results

for a non-repetitive scenario (left) and a repetitive one (right). Space is shown in the

x-axis and y-axis shows average time needed to locate patterns of 5.5 bytes. Results

show that among this three encoding methods Rice is the technique obtaining the best

compression whereas the time performance is quite similar in all of them. That is the

reason why we will use Rice codes in advance in our inverted indexes.

5. Self-indexing sequences of real numbers

In this section, we present how we have adapted the three self-indexing structures

described in Section 2.2 to successfully deal with sequences of real numbers. We follow

the same guidelines presented in the previous section, that is, splitting the real numbers

into an indexable and a non-indexable part (x and 8− x bytes respectively), and briefly

describe the resulting structures.

5.1. Using Wavelet Trees

A WT is a binary tree that self-indexes a sequence of symbols S = 〈s1, s2, . . . , sn〉 of

a given alphabet Σ of size σ, in our case, numbers of x bytes. We use WTs with Huffman

shape, that is, the represented values in the WT are the codewords that the (binary)

Huffman algorithm assigns to each original symbol in S.

22

We used Francisco Claude’s libcds library (Claude, 2012). libcds includes several

compressed data structures, including an implementation of a WT with Huffman shape

that occupies nH0(S) + o(n log σ).

libcds uses pointers to build the structure of WTs with Huffman shape and stores at

each leaf the number of occurrences of its corresponding code. The pointers represent

an overhead given that they can be avoided if canonical Huffman (Schwartz and Kallick,

1964) is used. In that case, the tree structure can be simulated by placing the values

of the nodes consecutively and performing the navigation through the tree by means of

rank and select operations, yet this slows down the searches.

To allow the WT to store and index real numbers, we apply the same idea used for

the inverted indexes: we only index the first 3 bytes of each real number, and store the

remaining bytes in a fixed length array. Yet in this case, the indexed bytes do not need

to be stored separately in an array of x-bytes numbers, since as we are using a self-index,

those bytes are already implicitly stored within the WT.

Furthermore, if we only index the first 3 bytes, there are chances of finding runs of

equal consecutive numbers in S. To avoid representing those repeated values several

times and to avoid a WT traversal for each repeated symbol at those runs, instead of

indexing the original sequence 〈sa, sa, sa, sb, sb, sa, sa, sa, sa〉, our WT only represents

the sequence 〈sa, sb, sa〉. That is, it only stores a number when a change in the original

sequence is found. Obviously, this would lose information. Yet, to maintain the runs,

we also store a bitmap R with one bit per each number in S to mark the changes in S.

That bit is set to 1 if that number is different from the previous one, and 0 if it is the

same. In our example, the bitmap R is set to 〈1, 0, 0, 1, 0, 1, 0, 0, 0〉.

At search time, once we found a match, for example the second element (sb) in the

sequence stored in the WT 〈sa, sb, sa〉, to know its exact position in S, we first compute

select1(R, 2) = 4, which gives the position of the first sb of that run. Then, the number

of repetitions of that run is obtained as select1(R, 3)− select1(R, 2) = 6− 4 = 2.

To further reduce the space we compress the bitmaps using the technique in Raman

et al. (2002). It represents a bitmap B[1, n] using nH0(B)+o(n) bits and answers count,

select, and access in constant time. The additional o(n) bits store intermediate values at

fixed intervals to speed up these operations, so that the shorter the interval, the faster

23

the operations. However, shorter intervals require more space, yielding a trade-off. The

size of those intervals is usually known as sampling gap.

3 bytes 5 bytes

4 1023

3 bytes 5 bytes

4 2347

3 bytes 5 bytes

12 2311

3 bytes 5 bytes

12 3435

3 bytes 5 bytes

15 3788

3 bytes 5 bytes

14 9001

1st number 2nd number 3rd number 4th number 5th number 6th number

Original

sequence

4 4 12 12 15 14 1023 2347 2311 3435 3788 9001

RemaindersIndexed Sequence

4 12 15 14

Indexed Sequence (no runs)

0 1 1 1 =[0..15]

1 1 1 1

0

0

4

0 1 1

0 1 0

12 14 15

1 0 1 0 1 1

 =[0..7] =[8..15]

 =[4..7]

 =[4,5]

 =[12..15]

 =[14,15] =[11,12]

Bitmap marking runs (R)

Wavelet tree

Figure 8: Indexing real numbers with a WT.

Figure 8 depicts the final structure, again only the non-shaded areas are the data

structures actually stored, whereas the shaded areas are only included for illustration

purposes. For simplicity, we represent the WT with regular shape (rather than using a

Huffman-shaped WT) and assume that each indexed number has only 4 bits (instead of

the 24 bits of a 3-byte number). That is, Σ = {0, 1, . . . , 15}. Next to each node of the

WT, we indicate the part of the alphabet handled by that node. In case of using a WT

with Huffman shape, an additional table storing the correspondence between the original

symbols and the corresponding codewords is also needed.

5.2. Using Wavelet Trees on Bytecodes

The idea is basically the same as in previous cases. We index only the first x bytes

of the numbers and we store the remainders in verbatim. Even though any bytecode

could be used in our experiments to create the WTBC, we chose a Plain-Huffman-based

WTBC, which is known to be the best one (Brisaboa et al., 2012).

As in the previous section, by using Plain Huffman, we obtain a wavelet tree with

Huffman shape, and therefore the space consumption is related to the zero-order entropy.

As explained, by using bytes rather than bits as the target alphabet the compression

worsens. This is easy to see since Huffman encoders, as any statistical method, need a

model of the source data to gather the frequency of each original symbol, in our case,

each of the x−byte values present in the original sequence. Then, statistical methods

give shorter codewords to the most frequent original symbols and larger codewords to
24

the least frequent ones. Therefore, the classical Huffman code might assign a codeword

of just 1 bit to the most frequent symbol, whereas Plain Huffman code would assign a

codeword of at least 1 byte to that symbol. This could become an important drawback

if we were dealing with small alphabets, yet it is attenuated in the scenario for which

Plain Huffman was designed, large texts. By using a word-based modeler and by the

Heaps’ law, that implies that the frequency of words is much more biased than that of

characters (Moura et al., 2000), the byte-oriented Huffman compresses only around 10%

worse than the bit-oriented Huffman.

Yet, let us recall what was the target of bytecodes. The use of bytes as target alphabet

was proposed to obtain better compression and (mainly) decompression times. In this

work, our target is different. As explained, the search time over a classical WT with

Huffman shape is O(H0(S) + 1) on average, but this measure is in target symbols, that

is, in bits. For example, let us assume the worst case with x = 3; a source data where the

data distribution is completely uniform and the 224 values are present. This would give a

completely balanced tree and H0 would be 24 target symbols (bits) per original symbol.

Assuming the same scenario using Plain Huffman, H0 would be 3 target symbols (bytes)

per original symbol.

We can make the reasoning in another way. As any other index tree, like a B-tree, the

bigger fan-out, the lower the tree, and therefore the faster the search. The WTBC with

Plain Huffman has a 256-ary Huffman shape, having a fan-out of 256, with three levels,

we could keep the 224 values, whereas a classical WT would need 24 levels. Therefore,

the traverals during the searches in WTBC would have length O(3 + 1), while those

traversals in the classical WT with Huffman shape would have length O(24 + 1).

The assumption above is very close to reality in most of our real numbers collections.

For example, considering the first 3 bytes of each number of the lu collection (presented

in Section 3), a search for a number in a binary Huffman shaped WT requires to traverse

O(16.39+1) levels on average, whereas the same search in a WTBC using Plain Huffman

requires to traverse O(2.05 + 1) levels on average. Even in the other extreme case of a

highly repetitive collection like sppm, the searches move from the O(7.12 + 1) levels of

the binary WT to the O(0.89 + 1) levels of the WTBC.

To sum up, the WTBC would have search times related to the zero-order entropy,

25

considering bytes as target alphabet. On the other hand, since the classical WT with

Huffman shape is a binary tree, it would have search times related to the zero-order

entropy considering bits as the target alphabet.

3 bytes 5 bytes

4 1023

3 bytes 5 bytes

4 2347

3 bytes 5 bytes

12 2311

3 bytes 5 bytes

12 3435

3 bytes 5 bytes

15 3788

3 bytes 5 bytes

14 9001

1st number 2nd number 3rd number 4th number 5th number 6th number

Original

sequence

4 4 12 12 15 14 1023 2347 2311 3435 3788 9001

RemaindersIndexed Sequence

Wavelet tree4 b1

12 b2b5

14 b2b6

15 b3b5

Symbol Codeword

b1 b1 b2 b2 b3 b2

b5 b5 b6 b5

b2 b3

Figure 9: Indexing real numbers with a WTBC.

The structure of the WTBC follows the same guidelines showed in Section 5.1. Yet,

the small height of WTBC makes it unnecessary to use bitmap R in order to avoid

traversals during searches. Even though including R could help to slightly improve space

requirements in very repetitive collections, the expected search performance would be

similar. Note that the most frequent symbols will be given a 1-byte codeword that will

be located in the root node of the WTBC. Consequently no traversal will be needed

when searching for them, what nullifies the benefits of handling runs. In addition, in

non-repetitive collections using R would even worsen space needs. Figure 9 shows an

example with the final structure of WTBC.

5.3. Using Integer-based Compressed Suffix Arrays

As in the previous sections, we used the iCSA to index the sequence of integers

formed by the first x bytes of each number, and we stored the remainders verbatim.

The success of this self-index will depend, in part, on the repetitiveness present in the

sequence of integers, since the space consumed by this structure is close (in practice)

to 2nHk + O(n) bits, although restricted to low values of k. To be successful, the kth

order entropy requires the presence of sequences of symbols that repetitively appear

throughout the sequence being indexed. The other factor that affects the compression

achieved by the iCSA is the sampling (tΨ, tA, tA−1) chosen. With a dense sampling, the

iCSA obtains worse compression and better search times, as the number of applications

26

of the Ψ function to solve searches is smaller. On the contrary, with a sparse sampling

the compression is better, but obviously, the searches are slower.

6. Experimental evaluation

In our tests, an isolated Intel R©Xeon
R©-E5520@2.26GHz with 72 GB DDR3@800 MHz

RAM was used. It ran Ubuntu 9.10 (kernel 2.6.31-19-server), using gcc version 4.4.1 with

-O9 options. Time results refer to cpu user time. We used the datasets presented in

Section 3.

Our experiments focus on showing the memory utilization and search performance of

our indexes at search time. Yet, in Section 6.4, we also compared their construction time

and memory usage at indexing.

We include experiments8 for count, locate, extract, and range queries for: i) a WT-

based index with Huffman shape (WTH), with four different configurations obtained by

setting up the sampling gap in the bitmaps to s = {5, 11, 21, 44}; ii) a WTBC-based

index (WTBC) with five different setups obtained by varying the parameters (s,b) of the

two-level structure that speeds up rank and select operations on the bytemaps.9 Actually,

we set (s,b) to (50000,10), (25000,8), (2500,8), (1500,8), and (500,8); iii) an integer-CSA-

based self-index (iCSA) with five different configurations where the sampling parameters

for Ψ, A, and A−1 structures are set to tΨ = tA = tA−1 = {8, 16, 32, 64, 256, 1024}; iv)

a full positional inverted index (II); v) and a block-addressing inverted index (IIB) with

blocks containing b = {512, 2048, 8192, 32768, 131072, 524288} numbers. We use Rice

codes for compressing the posting lists of the inverted indexes.

We performed count and locate for 1,000 numbers and show average times. That

is, we count the number of occurrences of a given pattern or also locate them within

each structure. We randomly chose patterns of 3 bytes (those indexed) and 5.5 bytes (3

indexed plus 2.5 bytes). The former patterns can be directly searched for by the index,

whereas the latter force a further search over the array of fixed length remainders, using

the candidate positions provided by the index.

8Source code available at http://vios.dc.fi.udc.es/ieee64.
9More details are provided in (Brisaboa et al., 2012).

27

For range queries we took a randomly chosen 3-byte indexed value and we search for

all the patterns that start by that value or by the next three consecutive (3-byte) indexed

values. In our experiments we show the average times of performing 100 range-queries.

We also show the time needed to: i) extract all the numbers of the original collection

S[1, n]; and ii) extract only a portion of 200 consecutive elements from the collection

S[p − 99, p + 100] centered at a random position p such that 100 ≤ p < n − 100. By

providing average extraction time per number, the latter experiment permits us to show

the cost of random access plus extraction, in comparison with extract all operation.

6.1. Comparison on space needs

Compressors Indexes Self-Indexes

Name Huff-3b p7zip II IIB WTH WTBC iCSA

– – – 512 524288 5 44 (500,8) (50000,10) 8 1024

bt 87.22 72.09 118.31 103.84 91.94 114.88 104.49 127.11 91.67 104.82 84.18

brain 85.65 83.57 113.28 98.71 87.86 102.62 92.53 120.14 88.21 106.43 86.45

lu 88.45 78.04 119.30 104.80 91.68 117.28 106.25 125.79 91.12 110.02 90.32

sp 85.17 74.23 115.94 99.82 91.46 106.11 95.86 120.75 88.80 102.78 81.70

sppm 66.19 9.01 106.39 93.85 91.49 88.02 84.46 101.27 80.44 90.96 68.36

sweep3d 85.56 27.90 114.70 99.92 89.60 108.14 97.99 120.26 88.50 90.21 68.27

average 82.61 57.47 114.65 100.16 90.67 106.18 96.93 119.22 88.12 100.87 79.88

Table 5: Compression ratio (%).

Table 5 includes the space needs of two baseline compressors and those of the proposed

indexes built on the described datasets. Even though the datasets are rather heteroge-

neous, we also include an average row to summarize the behavior of each technique. For

the parameterizable structures (IIB, WTH, WTBC, and iCSA) we include two different

setups obtained by tuning their parameters respectively with both the most dense and

sparse sampling configurations described above, so that we achieve either a larger (and

faster) or a more compact (and slower) index.

The baseline compressors included are: i) Huff-3b, a Huffman compressor run over

the 3 first bytes of each number and leaving the rest verbatim, and ii) P7zip run over the

whole sequence. In the compression ratio of our indexes we consider all the structures

that each index requires at query time (including the original data in the case of II and

IIB).
28

The II occupies around 15% more than the original collection, whereas IIB yields

values that range from around the same size as the original collection when the block

size (b) is set to 512, to a size around 10% smaller when using b = 524, 288. WTH

typically obtains a compression around 5 percentage points worse than IIB. Yet, in

the highly repetitive collection (sppm) the R bitmap leads to an improvement around

6% over IIB. This backs our hypothesis that WT-based indexes would have a better

behavior in the more stable collections, as it could be the case of the data coming from

an electricity meter or a stock market. WTBC yields better compression than II and

clearly overcomes WTH in most scenarios. These values are not too far from those

achieved by the Huffman compressor, and even in the non-repetitive collections, they

are not exaggeratedly far from those achieved by P7zip, being the values of the WTBC

only around 10 percentage points worse. Finally, we can see that a lightweight setup of

iCSA makes it the smaller indexing structure in all scenarios. In addition, it behaves

particularly well in the repetitive datasets, yielding compression ratios under 70%.

6.2. Comparison on searching performance

We compared the searching performance of our indexes in both a non-repetitive and

a repetitive scenario. In the former we included results for datasets bt, brain, lu, and sp,

whereas in the latter one we included results for both sppm and sweep3d datasets. Note

that we tried to capture de average behavior for each scenario by summing the times

obtained over the (either 4 or 2) datasets that compose it.

In addition, a sequential search (SS) over the original sequence of real numbers is

included as a baseline.

6.2.1. Searching performance: count and locate

Figures 10(a) and 10(b) show the average times for counting the occurrences of 1,000

patterns of 3 bytes, which consist in the first 3 bytes of the indexed numbers. A similar

behavior is observed in both the repetitive and non-repetitive scenarios.

As expected, iCSA obtains by far the best space/time trade-off (count takes O(log n)

time). WTs perform also fast at counting as it consists only in a top-down traversal

followed by 2 rank operations to count the occurrences of the searched symbol in the

29

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 85 90 95 100 105 110 115

m
ic

ro
se

c/
oc

c

Compression ratio (%)

SS
II

II-blocks
WTH

WTBC
iCSA

(a) Count with patterns of 3 bytes.

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 70 75 80 85 90 95 100 105 110

m
ic

ro
se

c/
oc

c

Compression ratio (%)

SS
II

II-blocks
WTH

WTBC
iCSA

(b) Count with patterns of 3 bytes.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 85 90 95 100 105 110 115

m
se

c/
oc

c

Compression ratio (%)

SS
II

II-blocks
WTH

WTBC
iCSA

(c) Locate with patterns of 3 bytes.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 70 75 80 85 90 95 100 105 110

m
se

c/
oc

c

Compression ratio (%)

SS
II

II-blocks
WTH

WTBC
iCSA

(d) Locate with patterns of 3 bytes.

 0.01

 0.1

 1

 10

 100

 1000

 85 90 95 100 105 110 115

m
se

c/
oc

c

Compression ratio (%)

SS
II

II-blocks
WTH

WTBC
iCSA

(e) Locate with patterns of 5.5 bytes.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 70 75 80 85 90 95 100 105 110

m
se

c/
oc

c

Compression ratio (%)

SS
II

II-blocks
WTH

WTBC
iCSA

(f) Locate with patterns of 5.5 bytes.

Figure 10: Different space/time trade-offs for count and locate operations of 1000 patterns. Non-

repetitive scenario (left). Repetitive scenario (right). Note that the y axis is in logarithmic scale.

corresponding leaf. Among the WT-based techniques, WTBC is not only smaller than

WTH, but also clearly overcomes WTH by around 10 times at count operation.

The count time in II and IIB is proportional to the number of occurrences. This

makes them slower than the self-indexing structures. Yet, II still obtains times close

to those of WTH. In the case of IIB searching times worsen as the block-size increases.

30

In particular, when using very large blocks (containing more than 218 numbers) IIB is

actually slower than a sequential search over the uncompressed sequence. Yet it also

requires only around 85% of its space.

Figures 10(c) and 10(d) show that II locates patterns formed by the first 3 bytes very

efficiently. As for count, locate operation can be solved directly with the index which

only has to find the relevant vocabulary entries and then fetch all the values within the

corresponding posting lists. As shown, the price is a structure around 15% larger than

the original sequence.

IIB shows different space/time trade-offs. When using small blocks IIB is around

10-20 times faster than the sequential search (with similar space usage). WTH is also

around 10 times faster than the sequential search. In the non-repetitive scenario WTH

is slightly overcome by IIB. However, in repetitive datasets WTH overcomes IIB when

we tune the indexes so that they use less than 98% of the space of the original data.

As shown before, iCSA is the most compact self-index. This makes it the best choice in

the repetitive scenario when we want a small index (it is the only one yielding compression

ratios under 80%). However, when we allow the indexes to use space over 85% of the

original collection, WTBC is the clear winner.

In a non-repetitive scenario WTBC obtains the best space/time trade-off (only II

improves its search times). iCSA is still a good choice (particularly as space decreases)

but its locate times are around 5-10 times worse than those of WTBC for compression

ratios over 95%.

Figures 10(e) and 10(f) show the performance when the indexes locate patterns

formed by the first 5.5 bytes (2.5 bytes more than those indexed). We can observe

similar results to those obtained when searching for just the 3 indexed bytes. Yet, the

displayed search times are around 100-1000 times slower. Note that this huge difference

is mainly in part due to the fact that we show time per occurrence, and now the number

of occurrences is much smaller. For example, in the repetitive scenario, in datasets lu

and sp we find 391,232 and 23,466,182 occurrences when searching for 3-byte patterns

and respectively only 2,500 and 3,435 when searching for 5.5-byte patterns. Therefore,

our indexes have to pay for locating all 3-byte patterns, and then also filter out those

occurrences that do not match the array of fixed-length remainders.
31

 0.01

 0.1

 1

 10

 100

 1000

 80 90 100 110 120 130

m
se

c/
oc

c

Compression ratio (%)

12

16

20

24

28

12

16

20

24

28

12

16

20

24

12

16

20

24

28

II
II-blocks

WTH
iCSA

(a) Non-repetitive scenario.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 80 85 90 95 100 105 110 115

m
se

c/
oc

c

Compression ratio (%)

12

16

20

24

28

12

16
20

24

28

1216

20

24

12

16
20

24

28

II
II-blocks

WTH
iCSA

(b) Repetitive scenario.

Figure 11: Space/time trade-offs at locating patterns of 5.5 bytes when we vary the number of indexed

bits. The y axis is in logarithmic scale.

In terms of overall time needed to locate all the occurrences of a given pattern, the

gap between locating either a 3-byte pattern or a 5.5-byte pattern is negligible. That is,

the cost of verifying an occurrence over the array of fixed-length remainders is small.

Dependency on the number of bits indexed:

We also present an experiment where we show how the number of bits indexed de-

termines the space-time trade-off obtained by our indexes. In this case, we set the block

size of our IIB to 512 bytes; we tuned the sampling gap in WTH to 11; and we set the

sampling rate in the iCSA to t ← 8. Figure 11 shows the results obtained when we

index x′ ∈ {12, 16, 20, 24, 28} bits respectively (such values are depicted along with the

marks in the figure), and then perform locate searches for 5.5 byte patterns. In general

terms, indexing more bits leads to faster indexes, yet space usage also increases. The

main exception to this is iCSA in the repetitive scenario, where the more bits are in-

dexed the more repetitiveness is found and better compression is obtained. We can see

that (particularly in the non-repetitive scenario) indexing 3-bytes (24 bits) is typically a

reasonable choice.

6.2.2. Searching performance: dealing with range queries

Our next experiment focuses on performing range queries. Recall that now our indexes

must retrieve all the occurrences of four consecutive 3-byte indexed numbers. That is,

it is expected that we have around four times the cost as for locate, but also around
32

 1e-05

 0.0001

 0.001

 0.01

 0.1

 85 90 95 100 105 110 115

m
se

c/
oc

c

Compression ratio (%)

SS
II

II-blocks
WTH

WTBC
iCSA

(a) Non-repetitive scenario.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 70 75 80 85 90 95 100 105 110

m
se

c/
oc

c

Compression ratio (%)

SS
II

II-blocks
WTH

WTBC
iCSA

(b) Repetitive scenario.

Figure 12: Space/time trade-offs at performing range queries. The y axis is in logarithmic scale.

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 85 90 95 100 105 110 115

m
se

c/
nu

m
be

r

Compression ratio (%)

Extract sequences of 200 consecutive numbers

SS
II

II-blocks
WTH

WTBC
iCSA

(a) Extracting 200 numbers.

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 85 90 95 100 105 110 115

m
se

c/
nu

m
be

r

Compression ratio (%)

Extract all numbers

SS
II

II-blocks
WTH

WTBC
iCSA

(b) Extracting all the numbers.

Figure 13: Space/time trade-offs for extract operation. The y axis is in logarithmic scale.

four times its number of occurrences. Therefore, the average time per occurrence should

be similar in both cases. This is exactly what we can see if we compare the results in

Figures 12(a) and 12(b) with those in Figures 10(c) and 10(d).

6.3. Recovering the original data: Extract operation

We measured the time needed to recover the original data (extract). We only present

results for the non-repetitive scenario, as the results obtained were exactly the same as

in the repetitive case. Firstly, we show the time required to extract a subsequence of 200

numbers from 1,000 random positions. Figure 13(a) displays the average time needed

to extract each number (in msec/number). II and IIB require a small amount of time

to merge the first x bytes and the other 8 − x bytes to make up the final numbers.

Therefore, it is around 10 times slower than the straightforward extraction of the plain

33

representation. WTBC, which is known to be a fast technique at extraction (Brisaboa

et al., 2012), shows up as the fastest self-indexing structure at extract being around

10 times faster than iCSA. WTH is the slowest technique. Figure 13(b) shows exactly

the same behavior. This implies that the random access does not hurt significantly the

extraction speed, showing that this important requirement is nicely handled by all the

indexes.

Our IIs obtain the best space/extract time trade-off. They recover around 7.5× 107

numbers per second. Yet, extract in the WTs is more expensive, as the WTs have to

perform rank operations from the root to the leaves to recover the original numbers (the

current implementation in libcds library takes no advantage of extracting values in con-

secutive positions 1..n, to recover S[1..n]). WTH recovers around 0.25 × 106 numbers

per second and, due to its lower tree height and a more refined implementation, WTBC

around 107 numbers per second. Finally, iCSA with a regular sampling (i.e. a compres-

sion ratio around 90%) recovers around 106 numbers per second, showing the cost of

accessing to a compressed Ψ (plus a rank operation over D).

6.4. Memory usage and time at indexing

We present additional information to show the construction cost of our indexes. We

tuned the indexes in their fastest (and most space consuming) configuration, and mea-

sured both cpu user-time (in seconds) and peak memory usage10 (in MB).

Figure 14 presents the results for each dataset. The x axis shows the size of the

datasets (sorted increasingly). Note that our indexing programs were not heavily op-

timized to minimize memory utilization and construction time. Yet, we can see that,

except WTH, which requires around 100 seconds, all the other structures are built in less

than 15 seconds. Regarding memory consumption, our indexes use around 2-4 times the

size of the source dataset.

7. Conclusions

In this work, we have presented succinct indexes for collections of IEEE 754 double

precision floating point numbers. The main idea is simple. We split each real number

10Memory usage was obtained from file /proc/<pid>/status.

34

 1

 10

 100

 119 135 185 254 266 276

C
on

st
ru

ct
io

n
tim

e
(s

ec
.)

Size of the collections (MB)

sw
ee

p3
d

br
ai

n

lu bt sp
pm

sp

II
II-blocks

WTH
WTBC

iCSA

(a) Construction time.

 0

 200

 400

 600

 800

 1000

 119 135 185 254 266 276

P
ea

k
m

em
or

y
us

ag
e

(M
B

)

Size of the collections (MB)

sw
ee

p3
d

br
ai

n

lu bt sp
pm

sp

II
II-blocks

WTH
WTBC

iCSA

(b) Memory usage.

Figure 14: Construction time (y axis in logarithmic scale) and peak memory usage for our indexes.

into two parts: an incompressible part (the last 5 bytes) that are stored apart, and

a compressible part (the first 3 bytes) that can be indexed with any general purpose

integer-based indexing technique. By doing so, we have presented five different indexing

alternatives from three well known families of indexes. Two of them are based on inverted

indexes (II and IIB), WTH and WTBC are based on wavelet trees, and finally we also

included a variant based on Compressed Suffix Arrays (iCSA). Yet, note that any integer-

based indexing structure from the state-of-the-art can be used. Apart from indexing,

this approach is applicable to compression. Indeed, following the ideas in Brisaboa et al.

(2013), we are working in a new method to compress sequences of real numbers that will

permit direct access to any position.

The size of the resulting structures (including both the data and the index) is between

30% shorter and 20% larger than the original sequence. As expected, the improvements in

search time are remarkable in the case of inverted indexes with full positional information,

being up to around 8,000 times faster than sequentially scanning the original collection.

The more compact indexes, such as the block addressing IIs, the wavelet-trees, and iCSA

yield different interesting space/time trade-offs.

According to the results of our experiments in the most repetitive collection, we

expect that the WTBC-based indexes will obtain better results when applied to rather

stable collections, as expected in the case of SmartGrid or stock exchange markets. This

repetitive scenario is also good for iCSA in terms of space needs, but its performance at

searches degrades in excess.

35

To sum up, if one aims at obtaining a good search speed with reasonable (high) space

consumption, the II is the clear winner. Obviously, it is only beaten by the plain repre-

sentation in the extract operation. However, if one is mainly concerned about space, the

choice should be the iCSA. It occupies up to 30% less space than the original collection

and still obtains fast locate times (being the fastest technique at count by far), partic-

ularly in non-repetitive collections. For those mainly interested in fast extraction of the

original data, and reasonably good space requirements and searches, the block-addressing

IIs are a good choice. Finally, considering a general scenario, WTBC, is probably the

best choice. It obtains good compression (10-15% less space than the original data), it

yields fairly good performance in search operations, and is reasonably fast at extract

operation.

8. Acknowledgments

This work was partially supported by Xunta de Galicia (co-founded with FEDER)

[GRC2013/053]; Ministerio de Economı́a y Competitividad [TIN2013-46238-C4-3-R and

TIN2013-47090-C3-3-P]; CDTI, AGI, and Ministerio de Economı́a y Competitividad

[CDTI-00064563/ITC-20133062]; and (for Alberto Ordóñez) by Ministerio de Ciencia

e Innovación [AP2010-6038 (FPU Program)].

References

Brisaboa, N., Fariña, A., Ladra, S., Navarro, G., 2012. Implicit indexing of natural language text by

reorganizing bytecodes. Information Retrieval 15 (6), 527–557.

Brisaboa, N., Fariña, A., Navarro, G., Paramá, J., 2007. Lightweight natural language text compression.

Information Retrieval 10 (1), 1–33.

Brisaboa, N., Ladra, S., Navarro, G., 2013. DACs: Bringing direct access to variable-length codes.

Information Processing and Management (IPM) 49 (1), 392–404.

Burtscher, M., Ratanaworabhan, P., 2009. Fpc: A high-speed compressor for double-precision floating-

point data. IEEE Transactions on Computers 58 (1), 18–31.

Claude, F., Oct. 2012. libcds compact data structures library. http://libcds.recoded.cl/.

Culpepper, J. S., Moffat, A., 2005. Enhanced byte codes with restricted prefix properties. In: Proc. 12th

Int. Symp. on String Processing and Information Retrieval (SPIRE 05). LNCS 3772. Springer, pp.

1–12.

Elias, P., 1975. Universal codeword sets and representations of the integers. Information Theory, IEEE

Transactions on 21 (2), 194–203.

36

Engelson, V., Fritzson, D., Fritzson, P., 2000. Lossless compression of high-volume numerical data from

simulations. In: Proceedings of Data Compression Conference (DCC 00). pp. 574–586.

Fariña, A., Brisaboa, N., Navarro, G., Claude, F., Places, A. S., Rodŕıguez, E., 2012. Word-based

self-indexes for natural language text. ACM Transactions on Information Systems 30 (1), article 1.

Fariña, A., Ordóñez, A., Paramá, J. R., 2012. Indexing sequences of IEEE 754 double precision numbers.

In: Proc. Data Compression Conference (DCC 12). pp. 367–376.

Garmany, J., Karam, S., Hartmann, L., Jain, V. J., Carr, B., 2008. Oracle 11g New Features Get started

fast with Oracle11g enhancements. Shroff Publishers/Rampant.

Grossi, R., Gupta, A., Vitter, J. S., 2003. High-order entropy-compressed text indexes. In: Proc. Sym-

posium on Discrete Algorithms (SODA 03). pp. 841–850.

Grossi, R., Gupta, A., Vitter, J. S., 2004. When indexing equals compression: experiments with com-

pressing suffix arrays and applications. In: Proc. Symposium on Discrete Algorithms (SODA 04). pp.

636–645.

Grossi, R., Vitter, J., 2000. Compressed suffix arrays and suffix trees with applications to text indexing

and string matching. In: Proc. 32nd ACM Symposium on Theory of Computing (STOC 00). pp.

397–406.

Huffman, D. A., 1952. A Method for the Construction of Minimum-Redundancy Codes. Proc. of the

IRE 40 (9), 1098–1101.

IBM Software, May 2012. Managing big data for smart grids and smart meters.

URL ftp://public.dhe.ibm.com/software/pdf/industry/IMW14628USEN.pdf

IEEE Std 754-200, 2008. IEEE Standard for Floating-Point Arithmetic.

Jacobson, G., 1989. Space-efficient static trees and graphs. In: Proc. 30th IEEE Symp. on Foundations

of Computer Science (SFCS 89). pp. 549–554.

Knuth, D. E., 1973. The Art of Computer Programming. Vol. 3: Sorting and Searching. Addison-Wesley.

Larsson, J., Moffat, A., 2000. Off-line dictionary-based compression. Proceedings of the IEEE 88 (11),

1722–1732.

Mäkinen, V., Navarro, G., 2008. On self-indexing images - image compression with added value. In:

Proc. Data Compression Conference (DCC 08). pp. 422–431.

Manber, U., Myers, G., 1993. Suffix arrays: a new method for on-line string searches. SIAM Journal on

Computing 22 (5), 935–948.

Manber, U., Wu, S., Oct. 1993. GLIMPSE: A tool to search through entire file systems. Technical Report

93–34, Dept. of Computer Science, University of Arizona.

Moffat, A., 1989. Word-based text compression. Software Practice and Experience 19 (2), 185–198.

Moffat, A., Turpin, A., oct 1997. On the implementation of minimum redundancy prefix codes. Com-

munications, IEEE Transactions on 45 (10), 1200–1207.

Moura, E., Navarro, G., Ziviani, N., Baeza-Yates, R., 2000. Fast and flexible word searching on com-

pressed text. ACM Transactions on Information Systems 18 (2), 113–139.

Munro, J. I., 1996. Tables. In: Proc. 16th Conf. on Foundations of Software Technology and Theoretical

Computer Science (FSTTCS 96). LNCS 1180. Springer, pp. 37–42.

37

Navarro, G., 2012. Wavelet trees for all. In: Proc. 23rd Annual Symposium on Combinatorial Pattern

Matching (CPM). LNCS 7354. Springer, pp. 2–26.

Navarro, G., Mäkinen, V., 2007. Compressed full-text indexes. ACM Computing Surveys 39 (1), article

2, 61 pages.

Navarro, G., Russo, L., 2011. Space-efficient data-analysis queries on grids. In: Proc. 22nd Annual

International Symposium on Algorithms and Computation (ISAAC 11). LNCS 7074. Springer, pp.

323–332.

Raman, R., Raman, V., Rao, S. S., 2002. Succinct indexable dictionaries with applications to encoding

k-ary trees and multisets. In: Proc. Symposium on Discrete Algorithms (SODA 02). pp. 233–242.

Ratanaworabhan, P., Ke, J., Burtscher, M., 2006. Fast lossless compression of scientific floating-point

data. In: Proc. Data Compression Conference (DCC 06). pp. 133–142.

Rice, R. F., 1979. Some practical universal noiseless coding techniques. Tech. rep., Jet Propulsion Lab-

oratory.

Sadakane, K., 2003. New text indexing functionalities of the compressed suffix arrays. Journal of Algo-

rithms 48 (2), 294–313.

Schwartz, E. S., Kallick, B., 1964. Generating a canonical prefix encoding. Communications of the ACM

7 (3), 166–169.

Williams, H. E., Zobel, J., 1999. Compressing integers for fast file access. The Computer Journal 42 (3),

193–201.

Witten, I. H., Moffat, A., Bell, T. C., 1999. Managing gigabytes (2nd ed.): compressing and indexing

documents and images, 2nd Edition. Morgan Kaufmann Publishers Inc.

Zicari, R. V., Aug. 2012. Big data: Smart meters – interview with markus gerdes.

URL http://www.odbms.org/blog/2012/06/big-data-smart-meters-interview-with-markus-gerdes/

Zukowski, M., Heman, S., Nes, N., Boncz, P., 2006. Super-scalar ram-cpu cache compression. In: Proc.

22nd International Conference on Data Engineering (ICDE 06). pp. 59–70.

38

Curriculums

Antonio Fariña

Antonio Fariña obtained his PhD in Computer Science in 2005 at the University of A

Coruña. Today, he is an associate professor in the same university. His research is mainly

focused on text compression and indexing, compact data structures, and Geographic

Information Systems.

Alberto Ordóñez

Alberto Ordóñez received his M.S. degree in Computer Science in 2009 and a Master

degree in 2011 both from the University of A Coruña. He is currently a PhD student at

the same university under the supervision of Nieves R. Brisaboa (Univ. of A Coruña) and

Gonzalo Navarro (Univ. of Chile). His areas of interest are compressed text retrieval,

metric spaces and persistent data structures.

José R. Paramá

José R. Paramá obtained his PhD in Computer Science in 2001 at the University

of A Coruña. He is currently associate professor in the same university. His areas of

interest are digital libraries, compressed text retrieval, deductive databases and spatial

databases.

39

