
A Compressed Suffix-Array Strategy for

Temporal-Graph Indexing ⋆

Nieves R. Brisaboa2, Diego Caro1, Antonio Fariña2, and M. Andrea
Rodŕıguez1

1 Dept. Comp. Sci., University of Concepción, Chile. {diegocaro;andrea}@udec.cl
2 Database Lab., University of A Coruña, Spain. {brisaboa;fari}@udc.es

Abstract. Temporal graphs represent vertexes and binary relations that
change over time. In this paper we consider a temporal graph as a set of
4-tuples 〈vs, ve, ts, te〉 indicating that an edge from a vertex vs to a ver-
tex ve is active during the time interval [ts, te). Representing those tuples
involves the challenge of not only saving space but also of efficient query
processing. Queries of interest for this graphs are both direct and reverse
neighbors constrained by a time instant or a time interval. We show how
to adapt a Compressed Suffix Array (CSA) to represent temporal graphs.
The proposed structure, called Temporal Graph CSA (TGCSA), was ex-
perimentally compared with a compact data structure based on com-
pressed inverted lists. Our experimental results are promising. TGCSA

obtains a good space-time trade-off. It owns wider expressive capabili-
ties than other alternatives, it obtains reasonable space usage, and it is
efficient even when performing the most complex temporal queries.

1 Introduction

There is an increasing need to handle large graphs that change over time
and where not only the current state but also the past state is of inter-
est. For example, consider the evolution of friendship relations when a
user adds or removes friends in online social networks, how the citation
network grows when new scientific articles are published, how connectiv-
ity between mobile devices evolves through time when their base station
changes, or how links appear and disappear on the Web graph. The com-
pact representation of temporal graphs is then a relevant problem since
direct/reverse-neighboring queries constrained by time instant/interval
could benefit from keeping as much data as possible in main memory.

A temporal graph can be seen as a set of 4-tuples of the form 〈vs, ve, ts, te〉,
indicating that an edge from a vertex vs to a vertex ve is active during the

⋆ Founded in part by Fondef [D09I1185] and Fondecyt [1140428] (for the
Chilean group); and, for the Spanish group, by MINECO (PGE and FEDER)
[TIN2013-46238-C4-3-R, TIN2013-47090-C3-3-P]; CDTI, AGI, MINECO [CDTI-
00064563/ITC-20133062]; ICT COST Action IC1302; and by Xunta de Galicia (co-
founded with FEDER) [GRC2013/053].

interval [ts, te). A compact representation for this set of 4-tuples, called
EdgeLog uses an adjacency list to represent edges and lists of time points
marking when each edge is turned on and off. EdgeLog can use existing
compact representations for inverted lists [16], d-gaps, or k2-trees [3].

This paper proposes Temporal Graph CSA (TGCSA), a novel compact
data structure based on the Compressed Suffix Array (CSA) [14]. We
discuss how TGCSA opens new opportunities for the application of suffix
arrays that are worth exploring both for temporal and general graphs.

Previous work in this area is still incipient. In [7], they represented a
temporal graph as several static graphs (or snapshots), storing the active
edges for each time point in the lifetime of the graph. Its main drawback
is the amount of space used even if edges state (active or not) does not
vary for a long time. Storing differences between some snapshots (care-
fully chosen) saves space but requires processing them at query time [13,
9]. This has the advantage of storing only what changes between consec-
utive time points and of answering queries about the active direct and
reverse neighbors of a vertex. Data structures for temporal graphs based
on adjacency lists [4] and on distributed environments [8, 10] exist; how-
ever, they have focused on improving time performance neglecting space
cost. Recently, we found a preliminary effort to define efficient compact
structures for temporal graphs [2]. However, their results apply only to
medium size graphs and show that there is much work to do in this area.

The structure of this paper is as follows. Section 2 presents preliminary
concepts and the EdgeLog as a baseline to compare with the proposed
structure. Section 3 describes TGCSA, which is followed in Section 4 by
the experimental evaluation using real and synthetic data. Conclusions
and future research directions are given in Section 5.

2 Preliminary concepts

Temporal graph definition. Formally, a temporal graph is a set C
of contacts between a set of vertexes V during a set of time points T
representing the lifetime of the graph. A contact of an edge (u, v) ∈ E ⊆
V ×V is a 4-tuple c = (u, v, t, t′), where [t, t′) ⊂ T ×T is the time interval
when the edge (u, v) is active [11]. We say that an edge (u, v) is active at
time t if there exists a contact (u, v, ts, te) ∈ C such that t ∈ [ts, te). We
refer to an aggregated graph as the static graph composed by all edges
that are active at a time point t within the lifetime of the temporal graph.

For the purpose of this paper, we define four operations on the tem-
poral graph for a given time point t: (1) Edge existence at t checks if an
edge is active at t. (2) Direct neighbors at t returns the adjacent active

neighbors at a given time point t. (3) Reverse neighbors at t gives the
active inverse adjacent vertexes at time t. (4) Snapshot at t returns all
active edges at a time point t. For example, given Figure 1a, the snapshot
at t = 5 corresponds to the edges {(b, c), (b, e), (d, b), (e, d)}.

a b

a d

b c

b e

d b

e d
0 1 2 3 4 5 6 7

(a) Set of contacts

b d /
1 4 / 3 4 6 7 /

c e /
4 7 / 4 6 /

Time Interval
b /

0 7 /
d /

4 6 /

a

b

c /

d

e

(b) EdgeLog representation

Fig. 1. A temporal graph of 5 vertexes. The dashed line corresponds to time point
t = 5. Reverse aggregated graph is omitted in (b). (Figure adapted from [11]).

EdgeLog: Baseline representation. A simple temporal graph repre-
sentation [4] stores the aggregated graph as |V | adjacency lists, one per
vertex, with a sorted list of time intervals attached to each neighbor indi-
cating when that edge is active. Figure 1b shows a conceptual example.

To check if an edge (u, v) is active at time t, we first check if v appears
within the adjacency list of vertex u. If the edge is found, then we need
to check if t falls into one of the time intervals related to (u, v) that are
represented in the time-point list of that edge. Direct neighbors of vertex
u at time t are recovered similarly. For each neighbor v in the adjacency
list of u we check if t is within the time intervals of the edge (u, v).

This simple representation has two main drawbacks: (1) it uses much
space; and (2) reverse neighbors operation requires traversing all adja-
cency lists. Both issues are overcome in what we call EdgeLog. (1) Since
both the adjacency lists and the time-interval lists are sorted (i.e., they
are of the form 〈t1, t2, t3, ..., tl〉, with ti ≤ ti+1, they can be represented as
d-gaps 〈t1, t2−t1, t3−t2, ..., tl−tl−1〉 and compressed using variable-length
encoding for the differences (e.g., PForDelta [17], S16 [15]). Also, (2) to
avoid traversing all adjacency lists in reverse-neighbor queries, EdgeLog
stores the reverse aggregated graph containing an adjacency list with the
reverse neighbors of each vertex. Therefore, to get the reverse neighbors
of vertex v at time t, we first use the reversed adjacency list to obtain
the candidate reverse neighbors of v. Then, for each candidate reverse
neighbor u, we move to v in its adjacency list and finally check if the edge
(u, v) is active at time t (using the time-interval list of the edge).

Strong and weak points in EdgeLog. Although EdgeLog is a simple
structure using well-known technology, it is expected to be extremely
space-efficient when the temporal graph has a low number of edges per
vertex and a large number of contacts per edge. In the opposite way,
a low number of contacts per edge will have a negative impact on the
compression achieved by EdgeLog (as d-gaps become large). Note also
that, even with the reverse aggregated graph to find reverse neighbors,
the performance is expected to be poor if the number of edges per vertex
is high because all their adjacency lists will have to be checked.

EdgeLog is designed to be efficient for queries of the type Edge exis-
tence at t and Direct and Reverse neighbors at t, but it could not answer
efficiently queries such as: “Find all the edges that have active contacts at
time t” or “Find all the edges that have only been active once”. Finally,
it must be pointed out that the applicability of the EdgeLog is limited to
temporal graphs where edges can not have overlapping contacts in time.

3 CSA for Temporal graphs (TGCSA)

Our Temporal Graph CSA (TGCSA) is an adaptation of Sadakane’s Com-
pressed Suffix Array (CSA)[14]. More precisely, it is based on the integer-
based CSA (iCSA) that allows CSA to deal with large (integer-based)
alphabets (see [6] for details). Recall that CSA consists of three main
elements to support searches: i) The symbols of the source alphabet S;
ii) a bitmap D of size n to mark the positions of the suffix array A where
the first symbol of the suffixes pointed to changes; and iii) an array Ψ

such that Ψ [i] marks, for each position i in A the position z = Ψ [i] such
that A[z] points to the position A[i] + 1.

There is an important difference between the standard CSA and our
implementation that we conceptually describe here. Let us assume that
all the terms in a contact are made up from four disjoint alphabets
Σ1, Σ2, Σ3, and Σ4 such that Σ1 ≺ Σ2 ≺ Σ3 ≺ Σ4 (≺ indicates lexi-
cographic order). Our procedure starts by creating an ordered list of n
contacts, so that the contacts are sorted by their first term, then (if they
have the same first term) by the second component, and so on. Now, those
sorted contacts are regarded as a sequence with 4n elements, and a suffix
array A[1, 4n] is built over it. Since the values from Σi ≺ Σj (∀i < j),
the first 25% entries in A (A[1, n]) will point to the first terms of all the
contacts, the next n entries (A[n+1, 2n]) to the second terms, and so on.
Consequently, the first 25% entries of Ψ (Ψ [1, n]) will point to a position
in the range [n + 1, 2n], because in the indexed sequence each symbol
u ∈ Σ1 is followed by a symbol v ∈ Σ2, and so on.

Note that, in the standard CSA, if A[i], (i ∈ [3n + 1, 4n]) points to
the last term of the jth contact, then Ψ [i] would store the position in A

pointing to the first term of the following (j+1)th contact in the ordered
list (A[i] + 1 = A[Ψ [i]]), that would be in the range [1, n]. However,
we modified those pointers in the last 25% of Ψ , because we want that,
instead of pointing to the position x = A[Ψ [i]] corresponding to the first
term of the following contact, we want them to point to first term of the
same contact. That is, A[Ψ ′[i]] = x− 1, or A[Ψ ′[i]] = n if x = 1.

By starting at any entry i in Ψ and following the pointers Ψ [Ψ [Ψ [Ψ [i]]]],
all the elements of the current contact can be retrieved, but no entry from
any other tuple will be reached. With our modification, it is not possible
to traverse the whole CSA just using Ψ because consecutive applications
of Ψ will cyclically obtain the four elements of the same contact.

3.1 Detailed construction of the TGCSA

As indicated above, the first step to build a TGCSA is to create a se-
quence S with the ordered n contacts from C. Hence we obtain, S[1, 4n] =
〈u1, v1, t1s, t

1
e, u

2, v2, t2s, t
2
e, . . . , u

n, vn, tns , t
n
e 〉.

3

Let us assume we have ν = |V | different vertexes and τ = |T | periods
of time. It is possible to define a reversible mapping function that maps the
terms of any original contact c = (u, v, ts, te) into c′ = (u, v+ν, ts+2ν, te+
2ν + τ). To achieve this, we define an array gaps[1, 4] ← [0, ν, 2ν, 2ν + τ]
and c′[i]← c[i] + gaps[i] ∀i = 1 . . . 4. This mapping defines four ranges of
entries in an alphabetΣ′ for both vertexes and times such that |Σ′| = 2ν+
2τ . Note that vertex i is mapped to either the integer i or i+ν depending
on whether it is the source or target vertex of an edge. Similarly, the time
instant t is mapped to either t+gaps[3] or t+gaps[4]. This will permit us
to distinguish between starting/ending vertexes/times by simply checking
the range where their value falls in.

Note that even though vertex i always exists in the temporal graph,
either source vertex u′ = i+ gaps[1] = i or target vertex v′ = i+ gaps[2]
may not actually be used. Similarly a time t′ could not occur as an initial
or as an ending time of a contact, yet we could be interested in retrieving
all the edges that are active at that time t′.

To overcome the existence of holes in the alphabet Σ′, a bitmap
B[1, 2ν + 2τ] is used. We set B[i] ← 1 if the symbol i from Σ′ occurs
in a contact, and B[i] ← 0 otherwise. Therefore, each of the four terms

3 Note that the ordering is not relevant as we have a set of contacts. Therefore, we
will assume contacts are sorted by the first term, then by the second one, and so on.

within a contact (u, v, ts, te) will correspond to a 1 in B. Now an alpha-
bet Σ of size σ = rank1(B, 4n)4 is created containing the positions in B

where a 1 occurs. For each symbol i ∈ Σ′ a mapID(i) function is defined
that assigns it an integer id ∈ Σ, so that id← mapID(i) = rank1(B, i) if
B[i] = 1, and 0←mapID(i) if B[i] = 0. The reverse mapping is provided
via a unmapID(id) = select1(B, id) function5.

At this point, a sequence of ids Sid[1, 4n] can be created by setting
Sid[i]←mapID(S[i] + gaps[((i− 1) mod 4) + 1])∀i = 1 . . . 4n.

Indeed, being type = 1, 2, 3, 4, respectively, the types of source ver-
texes, target vertexes, starting times and ending times from the source
sequence S, any source symbol i from S can be mapped into Sid as
id =getmap(i, type)←rank1(B, i+gaps[type]). Similarly, the reverse map-
ping obtains i = getunmap(id, type) ←select1(B, id)− gaps[type].

Finally, an iCSA is built over Sid.6 Note that since the vocabularies
of the ids associated with the four terms of any contact are disjoint,
the corresponding suffix array A will have four ranges of length n so that
A[(j−1)n+1, jn], j = 1..4. Pointers in each range point to suffixes starting
with a source vertex, a target vertex, a starting time, or an ending time,
respectively. Similarly, values in Ψ [1, n] in the range of source vertexes,
will point to the range of target vertexes [n+1, 2n]. Values in Ψ [n+1, 2n]
will point to the range of initial times [2n+1, 3n]. Those in Ψ [2n+1, 3n]
will point to the range of ending times [3n + 1, 4n]. And finally, those in
Ψ [3n + 1, 4n] will point to the range of source vertexes [1, n]. Indeed, if
A[3n + 1] points to the ending time of the kth contact of the collection,
z ← Ψ [3n + 1] will indicate the position such that A[z] points to the
source vertex (first term) of the (k + 1)th contact. This is how Ψ works
in a regular iCSA.

As discussed above, we modified the Ψ array in our TGCSA to allow
Ψ to move circularly from one term to the next one within the same
contact. To do this, we simply have to modify the values in the regular
Ψ so that, ∀i = 3n + 1 . . . 4n, Ψ [i]← ((Ψ [i] − 2) mod n) + 1. This small
change brings the interesting property of enabling to perform a query
for any term of a contact in the same way. We use the iCSA to binary
search for any term of a contact obtaining a range A[l, r], and then by
circularly applying Ψ up to three times, we can retrieve the other terms
of the answered-contacts.

4 rank1(B, i) returns the number of 1s in B[1, i].
5 select1(B, i) computes the position of the ith 1 in B.
6 We actually added four integers set to zero that make up a dummy contact (0,0,0,0)
at the beginning of Sid. This is required to avoid limit-checks at query time.

16

0

1 3 1 8 1 4 5 8 2 1 1 5 4 3 7 8 4 5 5 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

S

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1 2 3 4 5 vertexes 1 2 3 4 5 6 7 8 times 0 5 10 18
1 2 3 4

gaps

1 1 0 1 0 1 0 1 1 1 1 0 0 0 1 0 1 0 0 0 0 0 1 0 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

B

+gaps[0] +gaps[1] +gaps[2] +gaps[3]

shaded symbols do
not actually occur in

a contact

Target vertexesSource vertexes ending timesstarting times

Sid 1 5 8 13 1 6 9 13 2 4 8 11 3 5 10 13 3 7 9 12

A 1 5 9 13 17 10 2 14 6 18 11 3 19 7 15 12 20 4 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

D 1 0 1 1 0 1 1 0 1 1 1 0 1 0 1 1 1 1 0

7 9 6 8 10 11 12 15 14 13 16 18 17 19 20 4 1 2 3 5

7 9 6 8 10 11 12 15 14 13 16 18 17 19 20 3 5 1 2 4

reg

Original sequence

original alphabets for
vertexes and times

new alphabet
(after gaps)

bitmap to avoid holes

indexable sequence

iCSA is
build on Sid

Fig. 2. Structures involved in the creation of a TGCSA for the graph in Example 1.

Example 1. Let us assume we have a temporal graph with |ν| = 5 ver-
texes numbered 1 . . . 5 and |τ | = 8 time instants numbered 1 . . . 8. The
graph contains the following five contacts: (1, 3, 1, 8), (1, 4, 5, 8),(2, 1, 1, 5),
(4, 3, 7, 8), and (4, 5, 5, 7). Figure 2 depicts all the structures involved in
the creation of a TGCSA that represents the temporal graph. ⊓⊔

To sum up, the TGCSA representation consists of bitmap B, and the
structures D and Ψ from the iCSA. B is compressed with Raman et al.
strategy [12]. For D we used a faster bitmap from [6] using 1.375|D| bits.

3.2 Performing queries in TGCSA

We can take advantage of the iCSA capabilities at search time to solve
all the typical queries in a temporal graph regarding direct and reverse
vertexes from contacts that are active at a given time point t. Basically,
we binary search the range in A[l, r] for the given source or target vertex,
and for each position i ∈ [l, r], we apply Ψ circularly up to the third or four
ranges where we can check if starting-time and ending-time constraints
either hold or not. In Figure 3 we show the pseudocode of the algorithm
to obtain direct neighbors.

Edge operations consisting in checking if an edge (u, v) is active at time
t are expected to be faster than direct neighbor queries as we can binary
search for a phrase u· v rather than by a unique vertex u, hence returning
a much shorter initial range. Finally, to solve snapshot queries returning
the set of active contacts (u, v, t1, t2) such that t1 ≤ t < t2, we can
binary search [lts, rts] ← CSA binSearch(getmap(t, 3)) and [ltf , rtf] ←
CSA binSearch(getmap(t, 4)). All the contacts pointed by A[2n + 1, rti]
hold ts ≤ t, and those in A[rtf + 1, 4n] hold t2 > t. Therefore, ∀i ∈
[2n + 1, rts], if Ψ [i] > rtf we recover the source and target vertexes as
Ψ [Ψ [i]] and Ψ [Ψ [Ψ [i]]]. The original values are obtained via getunmap().

DirectNeighbors (vrtx, t) //neighbors of vrtx in contact (vrtx,v,t1 ,t2) s.t. t1 ≤ t < t2
(1) u ← getmap(vrtx, typeV ertex = 1); // map into final alphabet without holes
(2) if u = 0 then return ∅; // vertex does not appear as a source vertex
(3) neighbors ← ∅;
(4) ts ← getmap(t, typeStartT ime = 3); te ← getmap(t, typeEndT ime = 4);
(5) [lu, ru] ← CSA binSearch(u); // range A[lu, ru] for vertex u
(6) [lts, rts] ← CSA binSearch(ts); // range A[lts, rts] for starting time ts
(7) [lte, rte] ← CSA binSearch(te); // range A[lte, rte] for ending time te
(8) for i← lu to ru // checks time intervals for each occurrence of u
(9) x ← Ψ [i]; y ← Ψ [x];
(10) if (y ≤ rts) then
(11) z ← Ψ [y];
(12) if (z > rtf) then
(13) neighbors ← neighbors ∪ {getunmap(x, typeRevV ertex = 2)};
(14) return neighbors;

Fig. 3. Obtaining the direct neighbors of a vertex in a contact that is active at time t.

3.3 Strengths and weak points in TGCSA

One advantage of TGCSA with respect to other representations such
as those in [2], or our baseline EdgeLog is that it actually represents the
whole set of 4-tuples. Therefore, it has the same (strong) expressive power
as if the set is stored in a database. Note that TGCSA can represent
temporally overlapping contacts for one edge with no limitations.

Another important property is that TGCSA can answer queries over
any component of a contact with the same mechanism. That is, searching
for the contacts of a source vertex u is done in the same way as searching
for the contacts starting at a specific time t. Note that other data struc-
tures are designed to answer efficiently some types of queries but they are
not efficient at others, whereas TGCSA has a more regular behavior.

Note also that inside the section devoted to any given symbol, in
any of the four sectors of Ψ , all the pointers are always growing, which
is a good property to allow compression. Unfortunately, this becomes a
weakness of TGCSA when the vocabularies are huge and symbols occur
few times. In this case, Ψ will not be highly compressible. As shown in our
experiments, compression in some synthetic datasets we created is poor
when the relative number of contacts per time instant is low, or when the
number of edges per vertex is low. In those cases, the increasing areas of
Ψ are small and the gaps between pointers are compressed poorly.

4 Experimental evaluation

We evaluated TGCSA7 on real and synthetic datasets. We compared its
space needs with gzip compressor and with the baseline EdgeLog.8 We

7 We used three different settings of TGCSA that differ in the sample-rate for Ψ .
8 EdgeLog was configured to use PForDelta with b = {32, 128}.

also included a comparison in both space and time for some query types.
Table 1 describes the experimental datasets. The “base size” is the size
of all the uncompressed graphs, representing terms in the contacts with
32-bit integers (128 bits/contact).

The real Flickr-Days and Flickr-Seconds datasets are well-known tem-
poral graphs where contacts indicate the time-points when two people
become friends. Note that each edge has only one contact that ends at
the end of the lifetime of the temporal graph. Flickr-Days [5] has a granu-
larity of time in days, with a lifetime of 135 days. Flickr-Seconds captures
time in seconds.

For the synthetic datasets we created an aggregated graph with a
uniform degree distribution (following Erdõs-Rényi model [1]), and then
assigned a fixed number of contacts to each edge. We used different com-
binations of the parameters (number of edges per vertex and number of
contacts per edge and per instant time) to understand how they affected
the compression and behavior of both TGCSA and EdgeLog. We present
a summary of our results.

Dataset Vertexes Edges Lifetime Contacts avg.contacts/ edges/ contacts/ Base size
(×1000) (×1000) (×1000) (×1000) vertex vertex edge (MB)

Flickr-Seconds 6,204 71,346 167,944 71,346 12 12 1 1,089
Flickr-Days 2,586 33,140 0.135 33,140 13 13 1 506
Erdos1 1,000 10,002 1,000 10,002 10 10 1 153
Erdos5 1,000 10,002 1,000 50,008 50 10 5 763
Erdos50 1,000 10,002 1,000 500,079 500 10 50 7,631
Erdos50R10 1,000 50,001 1 500,079 500 50 10 7,631

Table 1. Temporal graph datasets.

The tests were run on a machine with processors Intel(R) Core(TM)
i7-3820 CPU @ 3.60GHz, quad-core, and 64GB DDR3 RAM. The oper-
ating system was Ubuntu 12.04 and the compiler gcc 4.6.3 (option -O3).

4.1 Space comparison

In Table 2, we show three configurations of TGCSA (Ψ16 corresponds
to a dense sampling and Ψ256 to a sparser one) and compare them with
gzip as a baseline to show the compressibility of the source dataset. Even
tough an iCSA-based self-index built on English text typically reached
the compression of gzip [6], the compressibility of temporal graphs is not
so good. Actually, the large number of 1-runs that appeared in Ψ when
dealing with text, is now much smaller in the TGCSA, and we are not
able to reach the compression levels of gzip.

Dataset gzip Edgelog Edgelog TGCSA TGCSA TGCSA
default Pfor32 Pfor128 Ψ16 Ψ64 Ψ256

FlickrSecs 61.51 161.57 161.53 96.30 87.65 85.48
FlickrDays 30.19 102.06 101.13 60.34 51.06 48.71
Erdos1 83.43 185.91 187.63 105.29 99.07 97.51
Erdos5 63.02 70.32 82.09 94.09 86.52 84.63
Erdos50 53.71 36.76 35.67 89.87 80.93 78.65
Erdos50R10 38.37 24.69 24.10 72.62 62.67 60.19

Table 2. Comparison on space usage. Space in bits per contact.

Focusing in EdgeLog, we see that it is completely unsuccessful when
the number of contacts per edge is very small. However, when there are
few edges and the number of contacts per edge grows, it becomes very
successful as its inverted lists become highly compressible. TGCSA shows
a more regular behavior, and reasonable space needs in most cases. It does
not require as much space as EdgeLog when the number of contacts per
edge is small, but it cannot cope with many contacts per edge because Ψ
is irregular, as discussed above.

4.2 Performing queries

We chose the real Flickr-Secs and the synthetic Erdos50R10 datasets
to show the main features of TGCSA when answering typical temporal-
graph queries such as retrieving the active direct and reverse neighbors
at a given time t, checking if an edge is active at time t,9 and recovering
all the source contacts that are active at a given time instant.

Dataset Edgelog Edgelog TGCSA TGCSA TGCSA
Pfor32 Pfor128 Ψ16 Ψ64 Ψ256 contactsReported

FlickrSecs.DirNei 0.02 0.02 1.48 4.26 9.44 960,364
FlickrSecs.RevNei 9.03 8.50 0.91 1.35 3.35 799,273
FlickrSecs.Edge 5.43 5.17 8.12 13.49 43.20 2,000
FlickrSecs.Snapshot 0.02 0.02 1.22 1.63 3.64 71,345,977
Erdos50R.DirNei 0.61 0.57 49.76 112.23 350.18 10,973
Erdos50R.RevNei 21.61 19.24 23.41 43.47 126.22 9,847
Erdos50R.Edge 4.24 4.12 3.48 5.32 14.48 2,000
Erdos50R.Snapshot 0,45 0.41 3.67 4.53 7.90 5,437,058

Table 3. Comparison on query performance. CPU-user times in µsec/contact reported.

Results in Table 3 show that TGCSA is very fast at retrieving direct-
neighbors, and the time to recover a contact is close to 1 µsec when
using a dense sampling in Ψ (Ψ16) and many contacts are retrieved. Yet,
snapshot time per contact reported degrades if many contacts (to check)
start before the last time but only a few of them are active at that instant.
Note that EdgeLog is much faster when answering direct-neighbors as it

9 We used average times for 2000 queries with random values of t.

is designed for these queries. It is also very fast at the snapshot operation.
However, its advantage is reduced drastically on edge operations (where
the TGCSA is able to binary search directly the interval where the queried
edge occurs in A).

As expected, reverse neighbors is the worst case for EdgeLog. In par-
ticular, its performance degrades when many reverse neighbors need to
be checked. Yet, even for this type of queries, in the synthetic collection
with less that 50 edges per node, EdgeLog was still faster than TGCSA.

It is interesting to point out that TGCSA is faster when performing
reverse neighbor queries than at the direct ones. For reverse queries, we
binary search A for a target vertex v (the second term of the contact), and
a single application of Ψ permits us to reach the corresponding starting
time of that contact (the third term of the contact). With an additional
access to Ψ , we can also obtain the ending time. However, when we per-
form direct-neighbor queries, we start at the first term of the contact,
and we need to access Ψ twice and three times to reach the starting and
ending time of the contact respectively.

Flexibility to support special queries. TGCSA can give support to
other query types that could be interesting in some domains. In particular,
those queries including exact time-instants or edges, can benefit from
searching more than one term in the initial binary search in the TGCSA.
For example, in a temporal graph representing phone calls from a given
user to another, starting and ending at a given time, it could be interesting
to perform queries such as: i) “who phoned user A exactly at time ts?”,
or ii) “who received a phone call from B that started at time ts and ended
at te?”. They could be implemented in the TGCSA as an initial binary
search for (A · ts) and (ts · te · B), respectively. Then, for the entries in
the returned ranges A[l, r], two or one accesses to Ψ , respectively, would
be needed to retrieve the caller for the first query, and the receiver in the
latter one. Note also that, in the second query, the initial binary search
would report a unique entry in A, hence the query is answered almost
instantaneously.

5 Conclusions and future work

The experimental results showed that TGCSA has reasonable space usage,
and succeeds when performing queries that filter out many contacts from
the dataset with a single binary search in the TGCSA. This avoids the
need for sequentially checking a large number of contacts. In particular,

our best trade-off between space and query performance was obtained in
the real Flicker-Days dataset. In general, space needs are between 50-100
bits per contact, and most queries are solved in less than 1 millisecond
per contact reported.

As future work, we want to try more Ψ compression alternatives to
those in [6]. Since Ψ represents around 80-90% of the size of TGCSA, it
is almost the only way to reduce space needs. We are also interested in
studying the applicability of other self-indexes to the scope of this paper.

References

1. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod-
ern Physics 74, 47–97 (2002)

2. Bernardo, G.D., Brisaboa, N.R., Caro, D., Rodriguez, M.A.: Compact Data Struc-
tures for Temporal Graphs. In: Proc. DCC’13. p. 477 (2013)

3. Brisaboa, N., Ladra, S., Navarro, G.: Compact representation of web graphs with
extended functionality. Inf. Systems 39(1), 152–174 (2014)

4. Buin-Xuan, B.M., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost
journeys in dynamic networks. Int. J. Found. Comput. Sci 14(02), 267–285 (2003)

5. Cha, M., Mislove, A., Gummadi, K.P.: A measurement-driven analysis of informa-
tion propagation in flickr social network. In: Proc. WWW’09. pp. 721–730 (2009)

6. Fariña, A., Brisaboa, N., Navarro, G., Claude, F., Places, A., Rodŕıguez, E.: Word-
based self-indexes for natural language text. ACM TOIS 30(1), article 1 (2012)

7. Ferreira, A., Viennot, L.: A Note on Models, Algorithms, and Data Structures
for Dynamic Communication Networks. Tech. rep., MASCOTTE - INRIA Sophia
Antipolis / Laboratoire I3S , HIPERCOM - INRIA Rocquencourt (2002)

8. Khurana, U., Deshpande, A.: Efficient snapshot retrieval over historical graph data.
In: Proc. ICDE’13. pp. 997–1008 (2013)

9. Labouseur, A.G., Birnbaum, J., Olsen, P.W., Spillane, S.R., Vijayan, J., Hwang,
J.H., Han, W.S.: The G* graph database: efficiently managing large distributed
dynamic graphs. Distributed and Parallel Databases (2014)

10. Labouseur, A.G., Olsen, Jr, P.W., Hwang, J.H.: Scalable and Robust Management
of Dynamic Graph Data. The VLDB Journal pp. 1–6 (2013)

11. Nicosia, V., Tang, J., Mascolo, C., Musolesi, M., Russo, G., Latora, V.: Graph
metrics for temporal networks. In: Temporal Networks, pp. 15–40. Springer (2013)

12. Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applications
to encoding k-ary trees and multisets. In: Proc. SODA’12. pp. 233–242 (2002)

13. Ren, C., Lo, E., Kao, B., Zhu, X., Cheng, R.: On querying historical evolving graph
sequences. PVLDB 4(11), 726–737 (2011)

14. Sadakane, K.: New text indexing functionalities of the compressed suffix arrays.
Journal of Algorithms 48(2), 294–313 (2003)

15. Zhang, J., Long, X., Suel, T.: Performance of compressed inverted list caching in
search engines. In: Proc. WWW’08. pp. 387–396 (2008)

16. Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Computing Sur-
veys 38(2) (Jul 2006)

17. Zukowski, M., Héman, S., Nes, N., Boncz, P.A.: Super-scalar ram-cpu cache com-
pression. In: Proc. ICDE’06. p. 59 (2006)

