
April 2, 2015 17:43 International Journal of Geographical Information Science ijgis˙cleaning

International Journal of Geographical Information Science
Vol. 00, No. 00, Month 200x, 1–26

RESEARCH ARTICLE

Rank-based Strategies for Cleaning Inconsistent Spatial
Databases

Nieves R. Brisaboaa, M. Andrea Rodŕıguezb, Diego Secoab, Rodrigo A. Troncosob
aDatabase Laboratory, University of A Coruña, Spain

bDepartment of Computer Science, University of Concepción, Chile

(Received 00 Month 200x; final version received 00 Month 200x)

A spatial dataset is consistent if it satisfies a set of integrity constraints. Al-
though consistency is a desirable property of databases, enforcing the satis-
faction of integrity constraints might not be always feasible. In such cases the
presence of inconsistent data may have a negative effect on the results of data
analysis and processing and, in consequence, there is an important need for
data-cleaning tools to detect and remove, if possible, inconsistencies in large
datasets. This work proposes strategies to support data cleaning of spatial
databases with respect to a set of integrity constraints that impose topological
relations between spatial objects. The basic idea is to rank the geometries in
a spatial dataset that should be modified in order to improve the quality of
the data (in terms of consistency). An experimental evaluation validates the
proposal and shows that the order in which geometries are modified affects
both the overall quality of the database and the final number of geometries to
be processed to restore consistency.

Keywords: Data cleaning; spatial inconsistency; spatial dataset; inconsistency graph

1. Introduction

Spatial databases are the core of applications such as planning, navigation, and cadastral
systems. They are typically implemented as object-relational or extended-relational mod-
els that support query languages to manipulate geo-referenced data and provide spatial
indexing and efficient algorithms for spatial query processing (Güting 1994). A database,
and therefore a spatial database, is said to be consistent if it satisfies a set of integrity

This is an Author’s Original Manuscript of an article whose final and definitive form,

the Version of Record, has been published in the International Journal of Geographi-

cal Information Science [26 Nov 2014] [copyright Taylor & Francis], available online at:

http://www.tandfonline.com/doi/abs/10.1080/13658816.2014.965711.

ISSN: 1365-8816 print/ISSN 1362-3087 online
© 200x Taylor & Francis
DOI: 10.1080/13658816.2014.965711
http://www.informaworld.com

April 2, 2015 17:43 International Journal of Geographical Information Science ijgis˙cleaning

2

constraints. These integrity constraints define valid states of the data and are usually
expressed in a language that also defines the data schema (logical representation).

Although consistency, as part of the data quality problem, is widely recognized as one
of the critical issues in the use of spatial databases (Borges et al. 2002, Davis et al. 2005,
Veregin 1999), most spatial database management systems (SDBMS) provide mecha-
nisms for enforcing only domain constraints that just validate values of spatial attributes
(e.g. a polygon is a simple closed polyline), leaving to database designers the task of
checking other types of domain-application integrity constraints. The typical enforce-
ment of database consistency is done as new data is inserted or updated in the database.
However, in many cases, mechanisms for enforcing the satisfaction of those constraints at
the time of database updates are not necessarily available or even feasible due to, among
other reasons, time lag updates, use of legacy data, technical restrictions, or integration
of different data sources. Because the presence of inconsistent data may have a negative
effect on the results of data analysis and processing, there is an important need for speci-
fying constraints tailored to spatial data, implementing efficient techniques to check their
satisfaction, and designing data-cleaning tools to remove, if possible, inconsistencies in
large datasets.

Several studies in the relational context have addressed the use of dependency con-
straints for data cleaning (Chaudhuri et al. 2006, Jin et al. 2003). In comparison to the
relational context, spatial databases offer new alternatives and challenges for the use of
integrity constraints. This is mainly due to the use of complex attributes to represent
geometries, their combination with thematic attributes, and the nature of spatial (topo-
logical) relations. Consider, for example, a database that stores data (i.e. geometry plus
others types of attributes) about land parcels and buildings. One would like to keep data
in the database that satisfy some basic topological relations between land parcels and
between land parcels and buildings. In particular, land parcels can only touch each other
or be disjoint, and a building must be within the boundaries of a land parcel. If for some
reason, the geometries stored in the database do not satisfy any of these constraints (e.g.
two geometries of land parcels overlap), we would say that the database is inconsistent.

To clean a spatial database, there may be theoretically infinite ways to modify a
geometry because the space is continuous. In a real setting, however, a data-cleaning
process of a spatial database is usually guided by orthophotos1. Technical staff in charge
of repairing an inconsistent spatial database takes one geometry at a time, compares
it with an orthophoto, and repairs the whole geometry (in case it contains any error).
Here, repair means to modify the geometry in the database such that it matches with
the corresponding geometry in the orthophoto. In consequence, the orthophoto is always
considered to be the truth that satisfies the integrity constraints imposed to the database.
The key factor in this one-geometry-at-a-time process is the order in which geometries
are checked and modified to restore consistency, which can be regarded as a ranking.

Within the spatial domain context, no much work is found addressing an automatic or
semiautomatic strategy for data cleaning. Although there exist previous efforts to define
procedures to restore consistency with respect to topological inconsistency (Servigne et al.
2000, Xie et al. 2010, Rodŕıguez et al. 2013), they are far from being systematic methods
to be applied automatically. This is not a trivial problem because there are many different
ways to transform a geometry to restore consistency, and conflicts between geometries
cannot be always treated independently. In addition, even applying a simple strategy to
restore consistency, such as the one proposed by Rodŕıguez et al. (2013) that shrinks

1Miguel R. Luaces (gisEIEL Project), personal communication.

April 2, 2015 17:43 International Journal of Geographical Information Science ijgis˙cleaning

3

geometries to eliminate conflicting regions, leads to a hard problem. In such cases, one
could use approximation algorithms or try to reduce the problem to treatable cases.

Instead of addressing the automatic modification of geometries to restore consistency
in spatial databases, this work proposes strategies to rank the geometries that should
be modified to improve the quality of a spatial database. This is important not only to
diminish the number of geometries to modify, but also to determine a subset of geometries
that can be modified to significantly improve the quality of the database. The latter is
even more important when, for some reason, it is not possible to modify all geometries
and the effort has to focus on few but relevant geometries. This work concentrates on
restoring consistency with respect to topological dependency constraints, because they
are widely used in practice and because there exist consistency measures defined for
them (Brisaboa et al. 2014). In summary, the main contributions of this work are:

• We formalize the data-cleaning process in terms of an inconsistency graph, which
shows the computational complexity of solving this problem and provides alternative
approximation approaches.

• We propose a practical approach (approximation algorithms) that ranks geometries in
terms of different measures.

• We evaluate the different ranking strategies with respect to a random-order of geome-
tries. To do so, we use datasets created from a generalization process on consistent
real data.

The organization of the paper is as follows. Section 2 revises related work concerning
spatial integrity constraints and data cleaning. Section 3 introduces the data model and
the integrity constraints upon which the proposed strategies are presented in Section 4.
The experimental evaluation is given in Section 5, and conclusions and future research
directions are addressed in Section 6.

2. Related Work

Spatial inconsistency refers to a contradiction between stored data and spatial integrity
constraints, which can be classified into domain and semantic constraints. Domain con-
straints (a.k.a. topological constraints) specify admissible values of spatial attributes,
whereas semantic constraints (a.k.a. topo-semantic integrity constraints) associate the
semantics of the modeled entities with spatial properties, in particular, with topological
relations between spatial objects (Cockcroft 1997).

In terms of the specification of spatial integrity constraints, related work addresses
the specification of topological constraints (Davis et al. 1999) and spatial semantic con-
straints (Hadzilacos and Tryfona 1992, Mäs 2007, Servigne et al. 2000). Recently, the
work by Bravo and Rodŕıguez (2009, 2012) formalizes a set of spatial integrity con-
straints and studies the satisfiability problem for these constraints. These constraints
have also been extended to deal with spatio-temporal data that represent regions that
evolve in time (del Mondo et al. 2013).

Consistency, as part of the notion of data quality, is widely recognized as one of the
critical issues in the use of spatial databases (Borges et al. 2002, Davis et al. 2005, Vere-
gin 1999). In this context, some studies have addressed strategies for data cleaning with
respect to constraints that impose topological relations. Servigne et al. (2000) defined
a methodology for spatial consistency improvement that suggests to change geometries
through translation, reshaping, removing and splitting. They proposed particular situ-

April 2, 2015 17:43 International Journal of Geographical Information Science ijgis˙cleaning

4

ations when applying these changes. Although this work is useful for showing how to
correct inconsistency, it falls short to provide a systematic way to do it. Moreover, it
does not consider interaction between inconsistencies such that making one change on a
geometry to solve a conflict may produce new conflicts between this and other geometries.

Deng et al. (2003) also used transformations of geometries to restore consistency. Their
work defines a generalized algorithm for calculating the best location of a new point cre-
ated by snapping a group of points within a fuzzy tolerance. This extends existing snap-
ping functions in commercial GIS packages by providing a related error propagation for
accuracy assessment. This algorithm was applied by Deng et al. (2005) to match vertexes
and formalize boundary inconsistency by vertical projection. Similarly, Xie et al. (2010)
proposed correcting methods of topological inconsistency based on buffer operations, De-
launay triangulation, skeleton extraction, among others. Despite the contributions made
by these previous works, there is no comparison among them and no consideration of the
interaction of different transformations when considering a set of integrity constraints.

With the objective of formalizing consistency query answers from inconsistent spatial
databases,Rodŕıguez et al. (2013) defined a repair semantics based on shrinking geome-
tries with respect to topological dependency constraints. The work defines a distance
measure to identify a new database instance that differs minimally from the original
inconsistent instance and satisfies the integrity constraints. This new instance is called
a minimal repair of the inconsistent database. In principle, one could use the concept
of minimal repair to restore consistency. This concept considers the interaction of a set
of integrity constraints, however, finding a minimal repair of an original inconsistent
database was shown to be intractable in general (Rodŕıguez et al. 2013).

Related to the data-cleaning problem, inconsistency measures can characterize the
quality of the database and provide a mechanism to prioritize conflicts to solve. Inconsis-
tency measures of databases with respect to constraints that impose topological relations
require to compare the topological relations between objects in the database with respect
to the expected topological relations between them. A qualitative approach to define sim-
ilarity measures compares topological relations using the semantic distance between re-
lations as defined by a conceptual neighborhood graph (Papadias et al. 1998). This type
of measure suffers the disadvantage that it does not distinguish pairs of objects that,
holding the same topological relation, correspond to different spatial configurations. A
quantitative approach uses the metric refinement of geometric representations to charac-
terize and, potentially compare, topological relations. In this context, the work in Godoy
and Rodŕıguez (2004) characterizes topological relations as combinations of overlapping
areas and distances between objects represented by their minimum bounding rectangles.
With the goal of studying the geometry associated with natural-language spatial terms,
the work in Egenhofer and Shariff (1998) and Egenhofer and Dube (2009) also defines
a set of metric refinements consisting of splitting measures and closeness measures to
characterize topological relations between a line and a region, or between regions. The
work in Egenhofer and Dube (2009) concludes that a combination of up to three of these
measures determines uniquely a topological relation. All these quantitative approaches
can define a similarity function by comparing relations between pairs of geometries.

Focusing on the quantification degree of consistency of spatial datasets with respect
to topological dependency constraints, the work in Brisaboa et al. (2014) and Rodŕıguez
et al. (2010) is the first to introduce formally some inconsistency measures. These mea-
sures compare the topological relation that two geometries hold with respect to the
topological relation they should hold. They are inspired by metric refinements of topol-
ogy relations and apply to any kind of geometries, that is, relations between points, lines,

April 2, 2015 17:43 International Journal of Geographical Information Science ijgis˙cleaning

5

regions, and their combinations. As the strategies presented in this paper are related with
these measures, we give more details on them in Section 3.

Although there are some attempts to define the consistency degree in relational
databases (Hunter and Konieczny 2005, Martinez et al. 2007, Ordonez et al. 2007), these
measures have not been used for data-cleaning purposes.

3. Preliminaries

Current models of spatial database systems are typically seen as extensions of the rela-
tional data model (object-relational model), with the definition of abstract data types to
specify spatial attributes. In this section, we review the spatial database model and the
integrity constraints used in this work.

Spatial databases. A database schema defines the structure of the data that can be
stored in the database. A spatio-relational database schema, in particular, is composed
of a finite set of relations, each of them with an ordered set of attributes that take values
from a specific domain. Thematic attributes take values from alphanumeric domains and
spatial attributes (i.e. geometries) take values from the power set of R2. Following current
implementations of Spatial Database Management Systems (SDBMs), spatial attributes
in the 2D1 space are defined by finite sets of points, lines, or polygons. A spatial database
schema also specifies built-in spatial predicates, in particular, topological relations (e.g.
Disjoint, Within, etc.) and spatial operators (e.g. area, length, etc.) over spatial attributes.
These spatial predicates are then used as part of spatial query languages.

A database instance is the state (content) of a database at a particular time instant.
It is composed of a set of tuples for each relation in the database schema. Each tuple is
an ordered set of values, each one taking a value from the domain of the corresponding
attribute.

Example 3.1 Consider the database whose instance is shown in Figure 1. The schema
of the database contains two relations: (1) The relation LandP, denoting land parcels,
contains thematic attributes idl and name, and a spatial attribute geometry, of data type
polygon. (2) The relation Building contains thematic attributes idb and idl, representing
the identification of a building and the identification of the land parcel it belongs to,
respectively, and a spatial attribute geometry .

Formally, the database schema is composed of the relation schemes (i.e. predicates)
LandP(idl, name, geometry) and Building(idb, idl, geometry). The database instance is
composed of tuples of the form LandP(li, ni, gi) and Building(bj , lj , gj), where li and lj
are values from the domain of the attribute idl (note that li may be equal to lj), ni is
a value from the domain of the attribute name, bj is a value from the domain of the
attribute idb, and gi and gj are values from the domain of spatial attributes.

In addition to show the database instance in the form of tables, Figure 1 visualizes the
geometries (values of the spatial attributes) of buildings represented as dark polygons,
and the geometries of land parcels represented as white polygons.

2

For data manipulation purposes, languages of spatial databases define binary topolog-
ical relations with fixed semantics. This work focuses on a subset of topological relations
for 2D objects that are currently implemented in spatial query language specifications

1It is possible to extend this work to a 3D space by considering the corresponding set of topological relations.

April 2, 2015 17:43 International Journal of Geographical Information Science ijgis˙cleaning

6

LandP
idl name geometry
idl1 n1 g1
idl2 n2 g2
idl3 n3 g3

Building
idb idl geometry
idb1 idl1 g4
idb2 idl2 g5
idb3 idl3 g6

g2

g3

g1

g5

g4

g6

Figure 1. Example of a spatial database instance

proposed by ISO (2004) and the Open Geospatial Consortium (OGC) (OpenGis 1999).
The analysis for topological relations between 3D spatial objects (Lee and Kwan 2005,
Zlatanova et al. 2004) is left as future work. The set of topological relations that we
consider here includes a subset of base relations (Egenhofer and Franzosa 1991, Randell
et al. 1992), and derived relations such as Intersects, Within, and Contains, which are
defined as a conjunction of base relations.

Table 1 provides the definitions of the topological relations used in this work, which
were extracted from the OGC Simple Feature Specification (OpenGis 1999). In this table,
given a geometry x, ∂(x) indicates its boundary, and dim(x) its dimension, where dim(x)
is equal to 0 if x is a point, 1 if it is a line, and 2 if it is a polygon.

Relation Definition

Disjoint(x, y) True if x ∩ y = ∅
Touches(x, y) True if x ∩ y ⊆ (∂(x) ∪ ∂(y))
Equal(x, y) True if x = y
Within(x, y) True if x ⊆ y
Contains(x, y) True if y ⊆ x
Overlaps(x, y) True if x ∩ y 6= ∅, x ∩ y 6= x 6= y, and dim(x ∩ y) = dim(x) = dim(y)
Crosses(x, y) True if x ∩ y 6= ∅, x ∩ y 6= x 6= y, and dim(x ∩ y) < max (dim(x), dim(y))
Intersects(x, y) True if x ∩ y 6= ∅

Table 1. Definition of topological relations by the Open Geospatial Consortium (OpenGis 1999)

Integrity constraints. Integrity constraints define valid states of a database. The work
in this paper concentrates on a subtype of spatial semantic constraints described by Bravo
and Rodŕıguez (2012), in particular, on topological dependency constraints (TDs), which
impose the topological relations that should hold between two spatial objects of particular
semantics (e.g. two land parcels should touch each other or be disjoint). Let us consider
the following example to show the kind of constraints of interest for this work.

Example 3.2 (cont. Example 3.1) Taken the database of the previous example, we
would like to enforce that attributes idl and idb are unique in both relations, and that
the idl in Building is a subset of values in idl of LandP. These are traditional dependency
constraints in relational databases. However, there are other constraints that cannot be
captured by traditional relational constraints. For example, we need integrity constraints
to ensure that land parcels with different idl cannot internally intersect (i.e. they can
only be disjoint or touch) and that building blocks must be inside their respective land
parcels. Following the notation given by Bravo and Rodŕıguez (2012), these constraints
can be expressed by topological dependency constraints. These constraints impose topo-
logical relations (Egenhofer and Franzosa 1991, Randell et al. 1992) between geometries
of spatial objects. 2

April 2, 2015 17:43 International Journal of Geographical Information Science ijgis˙cleaning

7

More formally in first-order logic, let T be a topological relation or a conjunction
of topological relations, R(x̄1, y1) and P (x̄2, y2) be relations of a database representing
types of spatial objects (e.g. land parcel or building), where x̄1 and x̄2 are non-empty
sequences of thematic attributes (i.e. non-spatial attributes), and y1 and y2 are spatial
attributes. The topological constraints (TDs) addressed in this work are of the form:

∀x̄1, x̄2, y1, y2 (R(x̄1, y1) ∧ P (x̄2, y2) ∧ φ→ T (y1, y2)), (1)

where φ is an optional conjunctive formula of the form w1 6= z1 ∧ · · · ∧ wl 6= zl with
wi ∈ x̄1 and zi ∈ x̄2, for all i ∈ [1 . . . l]. The inclusion of φ is used to express constraints
where R and P are the same predicate, and the variable must instantiate different tuples.

Example 3.3 Consider the database in Example 3.1, the following TDs express that
land parcels should not internally intersect and that buildings should be within only the
land parcel they belong to1.

∀l1, l2, y1, y2(LandP(l1, y1) ∧ LandP(l2, y2) ∧ (l1 6= l2)→ Touches(y1, y2) ∨ Disjoint(y1, y2)) (2)

∀l1, b1, y1, y2(LandP(l1, y1) ∧ Building(b1, l1, y2)→Within(y2, y1)) (3)

∀l1, l2, b1, y1, y2(LandP(l1, y1) ∧ Building(b1, l2, y2) ∧ (l1 6= l2)

→ Touches(y1, y2) ∨ Disjoint(y1, y2)) (4)

Let us consider now that instead of having geometries as illustrated in Figure 1, we have
geometries as shown in Figure 2. Then, the database instance in Figure 2 is inconsistent
due to the conflict between geometries with respect to the expected topological relations.
In particular, g1 and g2, and g2 and g3, overlap when they should touch. Also, g6 and g2

partially overlap when they should touch or be disjoint.

g2(idl2) g5(idb2)

g6(idb3)

g4(idb1)

g1(idl1)

g3(idl3)

Figure 2. Example of an inconsistent spatial database instance (hatched areas represent over-
lapping areas and g(k) denotes geometry g of tuple with key k)

2

TDs do not allow the expression of all possible forms of constraints over spatial data.
For example, we cannot express that “a building must be inside of a land parcel”, which
is a spatial referential constraint (Bravo and Rodŕıguez 2012). Consequently, there could
be a building that is not inside of any land parcel unless we impose another constraint

1This assumption might not be real in some territories, but it is just used for example purposes.

April 2, 2015 17:43 International Journal of Geographical Information Science ijgis˙cleaning

8

over the values of the attribute idl in Building. Despite the simplicity of topological de-
pendency constraints, they are useful to express many meaningful constraints and there
exist inconsistency measures with respect to these constraints in spatial databases (Bris-
aboa et al. 2014) that, as we show later, are useful to guide the data-cleaning process of
an inconsistent spatial database.

In the formalization of integrity constraints, an interesting problem is the problem
of satisfiability, that is, whether or not there exists a non-empty database instance that
satisfies a particular set of integrity constraints. This problem is not only fundamental for
spatial constraints but also for any type of integrity constraints because, before checking
if a database is consistent with respect to a set of constraints, one needs to know if those
constraints do not contradict each other.

The following example shows that for topological dependencies, a set of integrity con-
straints is not always consistent, and therefore, finding polynomial-time algorithms to
check satisfiability becomes of interest (see Bravo and Rodŕıguez (2012) for details in
checking satisfiability of topological dependency constraints).

Example 3.4 Consider the following constraint:

∀l1, l2, y1, y2(LandP(l1, y1) ∧ LandP(l2, y2)→ Touches(y1, y2) ∨ Disjoint(y1, y2))

This constraint will also be checked when idl1 = idl2 and therefore, it will not be
satisfied because a geometry cannot touch or be disjoint with itself. 2

In what follows, we will always assume to work with a satisfiable set of topological
dependency constraints.

Inconsistency measures. The work by Brisaboa et al. (2014) introduces inconsistency
measures to quantify the degree of consistency of spatial datasets with respect to topo-
logical dependency constraints. This work defines a violation degree between geometries,
which is in agreement with the concept of partial consistency (Abdelmoty and Jones
1997). In particular, given an expected topological relation between geometries of two
objects with particular semantics, a violation-degree measure quantifies how different is
the topological relation between the geometries from the expected relation expressed by
a topological dependency constraint.

In order to do that, these measures take into account the following criteria that were
previously validated by Brisaboa et al. (2011) with human subject testing: (1) The exter-
nal distance between disjoint geometries, which has an impact on conflicts risen by the
separation of geometries when they must intersect. (2) The overlapping area of geome-
tries that are internally connected (i.e. geometries for which hold any of the relations in
Table 1 but Disjoint or Touches), which has an impact on conflicts when geometries must
be externally connected (i.e. geometries that must touch). (3) The crossing length that
represents the length of the minimum segment of a curve that crosses another curve or
surface, which has an impact on conflicts when geometries must be externally connected.

As an example of these measures, consider the case when two surfaces g and g′ are dis-

joint but they should touch each other. The degree of violation is computed as
Dg,g′×Lmin

Sg
,

where Dg,g′ is the separation between g and g′, Lmin is the minimum length at the scale
of representation of the dataset, and Sg is the area of g. Note that Lmin is used to
transform a distance to an area, and Sg is used to normalize the result to the range [0, 1].

April 2, 2015 17:43 International Journal of Geographical Information Science ijgis˙cleaning

9

4. Rank-based strategies for data cleaning

In the following subsections, we introduce a formal framework for the data-cleaning
process of spatial databases based on a graph-based representation of inconsistencies and
then, a practical approximation approach to this process. Recall from the introduction
that we assume an oracle-based process in which one geometry is repaired at a time
in accordance with an orthophoto (or any other oracle assumed to be the truth). The
graph-based modeling of the problem simplifies its understanding and allows a more
formal reasoning about it. In particular, it formally shows the complexity of solving
this problem and provides alternative approximation approaches. See Appendix A for a
theoretical analysis of the problem and the proof that it is a computational hard problem.

4.1. Graph-based representation of spatial inconsistency

A database instance D violates a constraint of the form (1) when there are tu-
ples (a1, . . . , an, g1) ∈ R and (b1, . . . , bm, g2) ∈ P in D such that R(a1, . . . , an, g1) ∧
P (b1, . . . , bm, g2) ∧ φ is true but T (g1, g2) is false. We say in this case that g1 and g2

are in conflict with respect to the topological relation T . More formally, and to simplify
notation, we introduce a logical formula ConflD,R,P,ψ(t1, t2) that is true when tuples
t1 = (a1, . . . , an, g1) and t2 = (b1, . . . , bm, g2) in the database instance D are in conflict
with respect to a topological dependency ψ of the form (1) with topological relation T .

Definition 4.1: Let D be an inconsistent database instance with n tuples and Ψ be a
set of integrity constraints of the form (1). The inconsistency graph of D is an undirected
graph GD,Ψ = (V,E), where (i) V is a set of nodes that identify tuples in the database
instance; (ii) E = {{ti, tj}|ti, tj ∈ V ∧∃(ψ ∈ Ψ∧P,R ∈ D)(ConflD,P,R,ψ(ti, tj))}; and (iii)
each ti ∈ V has a degree greater or equal to 1. By imposing condition (iii), inconsistency
graphs do not have isolated nodes.

2

Each node in an inconsistency graph can be annotated with a weight assessing its
importance in the quality of the dataset. In particular, we are interested in weighting
schemes that represent the potential benefit of modifying the geometry associated with
the node in the quality of the dataset. These weights can be defined in different ways.
Without having any extra knowledge about the semantic relevance of spatial objects or
contextual information, in this paper we propose the use of the inconsistency measures
presented in Brisaboa et al. (2014). The measures in Brisaboa et al. (2014) were normal-
ized in order to obtain an overall quality measure of the database, where each geometry
counts at most up to 1.0 in the aggregation of the violation degree of all geometries in
the database. Because in this work we are not interested in an overall quality measure,
we omit the normalization of the measures.

In addition, we propose a more simple weighting schema based on the degree of the
node in the inconsistency graph. This schema relies on the idea that geometries that
participate in a larger number of conflicts should be first modified because this will
most likely eliminate more than one conflict and, in consequence, reduce the number of
geometries to be processed. Indeed, this schema is a simplification of the inconsistency
measures in Brisaboa et al. (2014).

Example 4.2 Consider the database instance and integrity constraints in Example 3.3.
All geometries in this database are polygons. This instance is inconsistent because land
parcels with geometries g1 and g2, and g2 and g3 overlap when they should touch. In

April 2, 2015 17:43 International Journal of Geographical Information Science ijgis˙cleaning

10

addition, the building with geometry g6 partially overlaps the land parcel with geometry
g2.

A graph representation of the inconsistent database instance is shown in Figure 3.
This graph contains a set V of nodes, one for each tuple that participates in one or more
conflicts.

idl1w1

idl2w2

idl3w3

idb3 w6

LandP

Building
Node Weight Degree IM
idl1 w1 1 4
idl2 w2 3 7.5
idl3 w3 1 3.5
idb3 w6 1 0.5

Figure 3. A graph-based representation of an inconsistent spatial database (left) and the weights
assigned with the two different weighting schemes: degree and inconsistency measures (right)

The variable wi next to each node can take different values depending on the type of
weights as the table on the right of Figure 3 indicates. The calculations of inconsistency
measures are given in square units represented in the underline light grid in Figure 2.
The degree is derived from the graph. For the inconsistency measures, when geometries
that overlap should touch (e.g. land parcels), the area of overlapping between geome-
tries in conflict is the violation degree of inconsistency. When a geometry that partially
overlaps should be within another geometry (e.g. a building within a land parcel), non-
included area is then the violation degree of inconsistency1. More precisely, the weight
w2 associated with idl2 is calculated (using inconsistency measures) as:

wIM
2 = |g2 ∩ g3|+ |g2 ∩ g1|+ |g6| − |g2 ∩ g6|,

with | | denoting the area of a geometry and ∩ the spatial intersection of geometries.
2

Let D be a database instance with a TD ψ of the form (1) such that R
and P are relational predicates in ψ constrained by a topological relation T . If
ConflD,R,P,ψ((ū1, g1), (ū2, g2)) is true, it is possible to restore the consistency of D by
modifying g1, g2, or both to make T (g1, g2) true. Instead of studying the geometric trans-
formations needed to restore consistency, we propose strategies that guide the cleaning
process of a database by defining an ordered sequence of geometries that should be
modified to totally or partially restore the consistency of a spatial database.

1Table 4 in Brisaboa et al. (2014) summarizes all the inconsistency measures for surfaces. Recall that, unlike Bris-
aboa et al. (2014), in this work we do not normalize inconsistency measures to the range [0, 1].

April 2, 2015 17:43 International Journal of Geographical Information Science ijgis˙cleaning

11

4.2. Practical-approximation approach to the cleaning process

In the data-cleaning process, we have to find a minimum ordered set of geometries whose
modification restores the consistency of the database. This is a one-geometry-at-a-time
process, where the order in which geometries are taken is considered to be a ranking.

In Appendix A we formalize the problem of determining a minimum set of geometries
that restore consistency and show that this is a NP -Complete problem1 via a reduction
of the vertex cover problem to our problem. As consequence, we should apply approxima-
tion algorithms. Next we propose practical heuristics inspired by well-known theoretical
approximation algorithms for the vertex cover problem.

For our problem, we want to get an ordered set of nodes such that the modification
of geometries in this order increases rapidly the quality of the database and minimizes
the number of changes needed to restore consistency. This ordered set is even more
important if, for some reason, it is impossible to repair the whole dataset. Unfortunately,
geometries that should be modified are unknown a priori (they are only recognized once
the orthophoto is inspected on a one-by-one geometry analysis). So, the only possible
automatic optimization is to guess from the inconsistency graph which geometries should
be modified, being one or both of the end nodes of edges in the graph. This suggests an
heuristic-based process to obtain the smallest set of geometries that should be modified:
select first geometries that have a greater impact on the quality of the database.

In practice, the modification of geometries in order to restore consistency depends on
the correctness of the geometry with respect to an orthophoto. Thus, no all geometries
that participate in conflicts should be modified even if their modification may create a
consistent database. To make it clearer, consider two geometries that overlap when they
should touch. To restore consistency, one can theoretically modify one of both geometries;
however, by using the orthophoto, only one of these alternatives can be used. Indeed,
it can be the case that after the modification of a geometry, this geometry remains in
conflict with another geometry that should be also modified to eliminate the edge (i.e.
the conflict) from the inconsistency graph. The following example illustrates this case.

Example 4.3 (cont. Example 4.2) Assume that the orthophoto associated with the
inconsistent instance of Example 4.2, as shown in Figure 4(a), reveals that the correct
instance should be as shown in Figure 4(b). An approximation algorithm according to
the degree of nodes of the initial inconsistency graph will select first geometry g2 of the
tuple with key idl2 and degree 3 to be modified. However, when modifying geometry g2

based on the orthophoto, the conflict between g2 and g3 is not completely corrected.
2

We consider first a simple approximation algorithm called St Cleanning, which is shown
in Figure 5. This is an approximation algorithm for data cleaning that uses a priority
queue of tuples (i.e. nodes in the inconsistency graph) whose geometries must be modified
but whose priority, defined by weights, does not change along the process. Although we
later present a more effective dynamic version of this strategy, we introduce first the
static algorithm because it is simpler to understand and less computationally expensive.

The following example illustrates the applicability of the algorithm.

Example 4.4 (cont. Example 4.3) Consider the database instance in Figure 4(a) with in-
consistency graph and weights in Figure 3, and the associated orthophoto in Figure 4(b).

1A problem for which there is no known algorithm that can decide in polynomial time if a set of geometries is the
minimum set needed to restore consistency.

April 2, 2015 17:43 International Journal of Geographical Information Science ijgis˙cleaning

12

g2(idl2) g5(idb2)

g6(idb3)

g4(idb1)

g1(idl1)

g3(idl3)

g2

g3

g1

g5

g4

g6

g2

g3

g1

g5

g4

g6

(a) (b) (c)

Figure 4. Selection of geometries – partial correction: (a) inconsistent instance, (b) consistent
instance according to orthophoto, and (c) inconsistent instance after modification of geometry g2

1 Algorithm: St Cleanning
2 Input: An inconsistency graph G = (V,E) of D, a max-Heap Q priority queue of nodes in G ordered by

weight, and the set of TDs Φ.
3 Output: C is a ranking of nodes that indicates the order in which they should be repaired.
4 C ← ∅;
5 E′ ← E;
6 while E′ 6= ∅ do
7 u← delete max(Q);
8 if exists e ∈ E′ such that u is an end node of e then
9 //Manually repair u

10 C ← C ∪ {u};//Append u to the ranking C
11 foreach v ∈ direct neighbors(G, u) do
12 Check conflict between tuples u and v with respect to TDs in Φ;
13 if there is no conflict between u and v then
14 E′ ← E′ \ {(u, v)};
15 return

Figure 5. A “static” approximation algorithm for the total cleaning sequence

Iteration Priority Queue Graph

1 {idl2, idl1, idl3, idb3}
idl2

idl3

2 {idl1, idl3, idb3}
idl2

idl3

3 {idl3, idb3} Empty
Table 2. Execution of Algorithm St Cleanning for the database instance in Example 4.4

The steps followed by Algorithm St Cleanning using the inconsistency measure-based
weights are show in Table 2, where the priority queue is at the beginning of the iteration
and the graph is at the end of the iteration (thus, idl1 and idb3 do not appear as they
are removed from the graph during the first iteration).

As the example shows, the priority queue is only modified by eliminating at each
iteration the node with highest priority (highlighted with bold font). The algorithm,
however, checks at each iteration if there are still conflicts in the database. Note also
that, at each iteration, it is necessary to check if the node with highest priority is still
inconsistent (line 8), as this may not be the case due to previous repairs of other elements.

April 2, 2015 17:43 International Journal of Geographical Information Science ijgis˙cleaning

13

For example, in the second iteration, idl1 is already consistent due to the repair of idl2
in the previous iteration. Thus, the algorithm wastes an iteration. 2

In each cycle the algorithm takes one node from the priority queue. Using an imple-
mentation of graphs with adjacency lists, checking for edges of an end node that should
be covered (i.e. eliminated from the inconsistency graph) is linear with respect to the
number of neighboring nodes. Even more, an edge is revised at most twice, one for each
end node, so there are at most |V | cycles with at most 2|E| revisions of edges. This leads
to a time cost of O(|V | + |E|), which matches the complexity of the 2-approximation
algorithm for vertex cover. We now prove that this algorithm is also a 2-approximation.
In other words, this algorithm (in the worst case) will find a set that is at most twice the
minimum set needed to eliminate inconsistencies from the database, which is equivalent
to isolating all the nodes in the inconsistency graph.

Proposition 4.5: Algorithm St Cleanning finds a set that has, in the worse case, twice
the number of elements of a minimum set needed to isolate all the nodes in the incon-
sistency graph.

Proof : Let A be the set of edges that are selected to make condition in line 8 true.
Note that this is the set that makes the condition for the while in line 6 true. In order
to eliminate these edges, any optimal set of nodes must include at least one of the end
nodes of the edge. Let C∗ be the size of the optimal set, then C∗ ≥ |A|. For each of the
edges in the set A, we get at most 2 nodes in the set determined by the algorithm. Thus,
let C be the size of the set determined by the algorithm, then C ≤ 2|A|. Combining both
expressions, C ≤ 2C∗, thereby proving the theorem.

�

A second alternative to select geometries for modification in the cleaning process uses
a dynamic priority queue, that is, a priority queue where weights of nodes are updated
in each iteration of the cleaning process. The strategy follows a simple procedure to
guide the data-cleaning process: i) take the node with highest weight, ii) modify (if
necessary) the corresponding geometry, iii) recompute the weight of all nodes in its
adjacency list (i.e. direct neighbors), iv) iterate until consistency has been restored (or
resources dedicated to the process have been exhausted). Notice that the static version
of the algorithm described above can be devised as a restricted version of this strategy in
which the third step is omitted. Figure 6 presents this dynamic strategy. The algorithm
is described in its more general form, which corresponds with the use of inconsistency
measures. In Appendix B, we describe some optimizations that may apply for simpler
weighting schemes, such as degree.

Example 4.6 (cont. Example 4.4) Table 3 illustrates the steps followed by the dynamic
strategy for the same database instance in Example 4.4. This strategy needs one iteration
less than the static one because idl1 is removed from the priority queue after the first
iteration. In other words, the dynamic strategy detects in advance some elements that
do not need to be considered any more, thus avoiding idle iterations. This is not the
only improvement of the dynamic strategy, which, in general, reorders the priority queue
to demote the elements which inconsistencies were partially (or totally) repaired in the
iteration.

2

In Appendix B we provide an efficient implementation of this strategy and show that
each iteration (lines 7-19) takes O(nu log |V |) time, where nu is the number of neighbors of
the node processed in that iteration (i.e. the node with highest priority). In addition, the

April 2, 2015 17:43 International Journal of Geographical Information Science ijgis˙cleaning

14

1 Algorithm: Dy Cleanning
2 Input: An inconsistency graph G = (V,E), a max-Heap Q priority queue of nodes in G ordered by weight.
3 Output: C is a ranking of nodes that indicates the order in which they were repaired.
4 C ← ∅;
5 E′ ← E;
6 while E′ 6= ∅ do
7 u← delete max(Q);
8 //Manually repair u
9 C ← C ∪ {u};//Append u to the ranking C

10 gu ← repaired geometry associated with u;
11 foreach v ∈ direct neighbors(G, u) do
12 Check conflict between tuples u and v with respect to TDs in Φ;
13 repinc ← inconsistency between v and gu;
14 G[v].weight← G[v].weight− (G[v][u].weight− repinc);
15 if there is no conflict between u and v then
16 E′ ← E′ \ {(u, v)};
17 else
18 G[v][u].weight← repinc;
19 decrease key(G[v].weight, v,Q);

20 return
Figure 6. A “dynamic” data-cleaning strategy

Iteration Priority Queue Graph

1 {idl2, idl1, idl3, idb3}
idl2

idl3

2 {idl3, idb3} Empty
Table 3. Execution of Algorithm Dy Cleanning for the database instance in Example 4.4

proof of the approximation ratio of St Cleanning can be easily adapted for the dynamic
case, so we can state the following proposition:

Proposition 4.7: Algorithm Dy Cleanning finds a set that has, in the worse case, twice
the number of elements of a minimum set of nodes needed to isolate all the nodes in the
inconsistency graph.

The proposed dynamic strategy does not work in the general case, where new conflicts
might appear due to the modification of an object. The following example illustrates this
case.

Example 4.8 Consider geometries shown in Figure 7(a) and assume that a topological
dependency constraint specifies that these geometries should be disjoint or touch. Then,
these geometries are inconsistent since g2 overlaps g3. Now consider that the algorithm
selects g2 to be modified and this modification produces geometries in Figure 7(b) based
on an orthophoto in Figure 7(c). Then, after modification of g2, a new conflict between
g1 and g2 appears.

2

An algorithm for the general case is costly because it requires to check for all possible
new conflicts. Note, however, that even though new conflicts might appear, a geometry
that is repaired will never be modified again (because the orthophoto is assumed to be
the truth). Thus, this leads to an O(n2) algorithm, with n the number of tuples in the
database. We do not include this algorithm in our experimental evaluation, because the
appearance of new conflicts in a data-cleaning process guided by our strategy is not very
likely. Notice that these are “conflicts hidden by other conflicts” (i.e. incorrect objects

April 2, 2015 17:43 International Journal of Geographical Information Science ijgis˙cleaning

15

g2

g3

g1

(a)

g2

g3

g1

(b)

g2

g3

g1

(c)

Figure 7. Example where new conflicts appear in the cleaning process: (a) original inconsistent
database, (b) inconsistent database after g2 modification, and (c) final consistent database

that are not in conflict at the beginning of the process but that, after the repair of
some other incorrect object, become inconsistent with it). Indeed, it is the case in our
experimental evaluation that Dy Cleanning completely repairs the database, so no such
hidden conflicts exist. A deeper study of this kind of conflicts, and the proposal of an
optimized algorithm for such scenarios is left as an open problem.

5. Experimental evaluation

In this section we evaluate the static and dynamic strategies presented in the previous
section, and also the different alternatives to assign weights to nodes in the inconsistency
graph. Let us first recap all the evaluated heuristics:

• bl random: baseline solution that emulates no-expertise at-all.

• bl area: baseline heuristic relying on the idea that larger objects are better candidates
to restore consistency. Although this heuristic fits in the general schema presented in
Section 4 (the weight of each node corresponds to the area of its geometry), we include
it as a baseline because of its simplicity.

• st degree: variant of the static strategy in which the weight of each node corresponds
to its degree in the inconsistency graph.

• dy degree: dynamic version of the previous one.

• st measures: variant of the static strategy in which weights are assigned according to
inconsistency measures adapted from Brisaboa et al. (2014).

• dy measures: dynamic version of the previous one.

All these heuristics provide a ranking according to which the objects in the dataset
should be repaired (or checked for correctness). Obviously, if we go through the whole
ranking, the dataset ends being correct, but not with the same number of iterations
among the different ranking strategies. Thus, the goal of this evaluation is to show how
fast can each heuristic obtain a correct dataset (or which heuristic improves quality the
most in less iterations). Note that we assume the existence of integrity constraints on
the datasets, so not all the objects in the dataset have to be checked but just those that
violate some integrity constraints. The use of integrity constraints also applies for the
baseline solutions (i.e. our baselines do not check all the objects but just those violating
some integrity constraints). It is also important to recall that an object violating an
integrity constraint may not contain any errors (because its inconsistency may be due
to other geometries). One final clarification is that baseline strategies (bl random and
bl area) can also have static and dynamic variants. In our experiments we just include
the dynamic versions, which show better performance.

April 2, 2015 17:43 International Journal of Geographical Information Science ijgis˙cleaning

16

In the following experiments we use a real dataset consisting of 1,024 county sub-
divisions in the state of New York. This dataset is part of the TIGER/Line Shapefile
from the U.S. Census Bureau1, which is known for not containing inconsistencies in the
data. We introduce inconsistencies in the dataset by means of a simplification algorithm
available in the GeoTools Toolkit2, an open source Java library that provides tools for
geospatial data analysis and processing. Using this simplification algorithm we generate
four inconsistent datasets, each of which contains errors in the 5%, 10%, 25%, and 50%
of the objects, respectively. Modified objects were selected uniformly at random in such a
way that the set of modified objects in each dataset is a subset of the modified objects in
the subsequent dataset. For example, modified objects in the 5% dataset are also part of
the modified ones in the 10% dataset. The amount of error introduced in each object can
be easily controlled by the tolerance applied by the simplification algorithm (see Dou-
glas and Peucker (1973) for further details about the parameters of this algorithm). We
randomly select the tolerance applied to each object in the set {0.0001, 0.001, 0.01}. In
this way, each dataset contains objects with different degree of error.

In order to compare the different heuristics, we first need to define a measure of quality
of datasets. We could use the inconsistency measures presented in Brisaboa et al. (2014)
for this purpose, but this could benefit the st measures and dy measures heuristics (in-
deed, this is the case and we do not include these results in the paper). As we know
the correct (original) dataset, we can define more objective measures of the quality of
a dataset. Notice that these measures cannot be used in a real data-cleaning process as
they need to know the correct dataset in advance. In this evaluation, the original dataset
plays the role of an oracle upon which we can define quality measures whose explana-
tions follow. The original dataset is also used to repair (substitute) the geometries in the
execution of the strategies.

We evaluate quality as the inverse of the amount of error of the inconsistent versus
the original database (oracle), and we explore three different measures of error: (i) the
number of objects in the inconsistent dataset that are not equal to its corresponding
object in the original dataset, (ii) the overall number of points in the representation of
geometries that do not correspond (or that are missing) to the points in the original
dataset, and (iii) the overall difference of area between the inconsistent and the original
dataset. We use the following example to illustrate that these three evaluations represent
very different ideas, and thus, show different behaviors.

Example 5.1 Consider the following two datasets, each of them containing an original
(correct) versus a modified (incorrect) geometry. In each dataset, geometries drawn with
continuous line are the original ones.

(a) Dataset 1 (b) Dataset 2

Figure 8. Illustration of differences between evaluations

One of the simplest possible evaluations is based on the number of objects in the
dataset that contain errors (i.e. objects that are not equal to its corresponding object

1http://www.census.gov/geo/maps-data/data/tiger.html
2GeoTools (http://www.geotools.org)

April 2, 2015 17:43 International Journal of Geographical Information Science ijgis˙cleaning

17

in the original dataset). In the example of Figure 8 this evaluation considers that the
quality of both datasets is the same, which may not be realistic if we try to relate it
with the cost of manually repairing them. However, this simple evaluation provides a
preliminary distinction between the different strategies.

Our second definition of quality is based on the overall number of points of geometries
in the inconsistent dataset that do not correspond (or that are missing) with points of
geometries in the original dataset. Given an original geometry go = {go,1, go,2, . . . , go,n}
and its corresponding modified geometry gm = {gm,1, gm,2, . . . , gm,n′}, where n may
not be equal to n′, we define the difference (error) between these two geometries as
(go ∪ gm) \ (go ∩ gm), where ∪,∩, and \ represent set operations union, intersection, and
difference, respectively. The example in Figure 8 shows a case with lower error according
with this definition (Dataset 1) and higher error (Dataset 2).

Our last definition is based on the difference of areas between geometries. Given an
original geometry go and its corresponding modified geometry gm, the area-based error
is equal to area((go ∪ gm) \ (go ∩ gm)), where ∪,∩, and \ represent spatial operations
union, intersection, and difference, respectively. Unlike previous example, this definition
considers that the quality of Dataset 1 is lower than the quality of Dataset 2. 2

5.1. Evaluation based on number of incorrect objects

Figure 9 shows the results of the experimentation with this evaluation. Y-axes show
error (determined by the number of geometries that differ with respect to the original
database) and x-axes show iteration in the cleaning process (note that each unit repre-
sents 5 iterations). In these graphs, the most rapidly decreases the error the better.

A first conclusion is that the use of rank-based strategies clearly improves the data-
cleaning process, as it drastically reduces the number of geometries to be processed to
about a 20%. For example, in the 5% dataset, dynamic strategies repair the whole dataset
in 10 iterations, which is less than the 20% of the 51 inconsistent objects at the beginning
of the process. This improvement is consistent in the other datasets.

A second conclusion is that baseline solutions are far from being competitive, especially
in the datasets with fewer number of objects with error. The dataset with 50% of modified
objects is shown for completeness but it is not realistic because real datasets usually
contain much lower percentage of objects with errors. Although baseline solutions correct
all the objects in less iterations than the two static strategies (because they are dynamic
and recompute the ranking at each iteration), they need more iterations to improve the
quality of the dataset significantly.

Among the static strategies, st degree performs much better than st measures. A sur-
prising result is that st degree performs similar to the more complex (and computation-
ally expensive) dynamic strategies. Note that all of them achieve an improvement of
quality of about 80% (with respect to the initial error of the dataset) in almost the same
number of iterations. However, the improvement of the remaining 20% is much slower
for the st degree.

Our last conclusion is that both dynamic strategies perform similar and outperform
all other strategies.

5.2. Evaluation based on number of incorrect points

This evaluation is inspired in the cost of repairing objects with errors, because the larger
this error is, the larger the number of points that should be modified. It should be clear

April 2, 2015 17:43 International Journal of Geographical Information Science ijgis˙cleaning

18

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30 35 40

E
rr

o
r

Iterations (x5)

bl_random
bl_area

st_degree
st_measures

dy_degree
dy_measures

(a) 5% of modified objects

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

E
rr

o
r

Iterations (x5)

bl_random
bl_area

st_degree
st_measures

dy_degree
dy_measures

(b) 10% of modified objects

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120

E
rr

o
r

Iterations (x5)

bl_random
bl_area

st_degree
st_measures

dy_degree
dy_measures

(c) 25% of modified objects

 0

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100 120 140 160 180

E
rr

o
r

Iterations (x5)

bl_random
bl_area

st_degree
st_measures

dy_degree
dy_measures

(d) 50% of modified objects

Figure 9. Evolution in the quality of the database based on incorrect objects

that the example in the left part of Figure 8 would take less time to be corrected than
the example on the right because it needs to insert, eliminate, or translate less number
of points. Figure 10 shows the results obtained from this evaluation.

These results are similar to the ones obtained in the previous evaluation. Dynamic
strategies outperform all other strategies and, although there are some differences be-
tween them, these are not significant. The st degree behaves much better than the other
static alternative, and it is worse than the dynamic strategies just for the last part of
the cleaning process. This means that it could be an alternative (due to its simplicity)
in scenarios where the goal is to obtain an acceptable quality, but it is not necessary
to repair the dataset completely. Baseline solutions are not competitive in this scenario
either, although it can be observed that bl area performs significantly better than the
random approach.

5.3. Evaluation based on difference of areas

This evaluation is inspired in a subjective perception of quality. In the cognitive validation
of the factors that affect the degree of violation of objects with respect to a topological
relation (which is a sort of definition of quality) presented in Brisaboa et al. (2011),
overlapping area was identified as one of the factors that matter for most users. The
definition of quality based on the difference of areas presented above captures and adapts
the same idea. Figure 11 shows the results of this experiment.

In this scenario, strategies based on the inconsistency measures presented in Brisaboa
et al. (2014) clearly outperform those based on the degree. This result is not surprising

April 2, 2015 17:43 International Journal of Geographical Information Science ijgis˙cleaning

19

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 5 10 15 20 25 30 35 40

E
rr

o
r

Iterations (x5)

bl_random
bl_area

st_degree
st_measures

dy_degree
dy_measures

(a) 5% of modified objects

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

E
rr

o
r

Iterations (x5)

bl_random
bl_area

st_degree
st_measures

dy_degree
dy_measures

(b) 10% of modified objects

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 20 40 60 80 100 120

E
rr

o
r

Iterations (x5)

bl_random
bl_area

st_degree
st_measures

dy_degree
dy_measures

(c) 25% of modified objects

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0 20 40 60 80 100 120 140 160 180

E
rr

o
r

Iterations (x5)

bl_random
bl_area

st_degree
st_measures

dy_degree
dy_measures

(d) 50% of modified objects

Figure 10. Evolution of the quality of the database. Evaluation based on incorrect points

as those inconsistency measures consider areas in their definition. A surprising result is
that even the static variant outperforms those based on the degree (although dy degree
repairs the whole dataset in less iterations than st measures). It should be noticed that
dy measures is remarkable better than any other strategy, especially in the 5% dataset.
After 25 iterations, the improvement achieved by dy measures is about 95%, compared
with the 75% and the 60% achieved by st measures and dy degree, respectively. There-
fore, dy measures is a clear choice in applications where the quality of the dataset is
defined in terms of areas (i.e. in scenarios where the human perception of quality does
matter).

5.4. Time analysis

As a proof of concept, we compare the time performance of dynamic strategies. All
the experiments were performed in an Intel Core 5@1.7GHz, 4GB RAM, running OS
X 10.9.1. We compiled with Java version 1.6. Table 4 shows the times of the dynamic
strategies using degree and inconsistency measures.

Strategy 5% 25% 50%
dy degree 1989 7330 12894
dy measures 2205 7518 13432

Table 4. Time performance of dynamic strategies (ms)

These results show that the use of inconsistency measures makes the strategy just

April 2, 2015 17:43 International Journal of Geographical Information Science ijgis˙cleaning

20

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0 5 10 15 20 25 30 35

E
rr

o
r

Iterations (x5)

bl_random
bl_area

st_degree
st_measures

dy_degree
dy_measures

(a) 5% of modified objects

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

E
rr

o
r

Iterations (x5)

bl_random
bl_area

st_degree
st_measures

dy_degree
dy_measures

(b) 10% of modified objects

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0 20 40 60 80 100 120

E
rr

o
r

Iterations (x5)

bl_random
bl_area

st_degree
st_measures

dy_degree
dy_measures

(c) 25% of modified objects

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 20 40 60 80 100 120 140 160 180

E
rr

o
r

Iterations (x5)

bl_random
bl_area

st_degree
st_measures

dy_degree
dy_measures

(d) 50% of modified objects

Figure 11. Evolution of the quality of the database. Evaluation based on difference of areas

slightly slower, being both alternatives in the same order of magnitude. If we compare
time per iteration, dynamic strategies perform in the range [30-50] ms/iteration, which is
competitive with the [10-20] ms/iteration of static strategies. Indeed, the difference would
be imperceptible by humans if we integrate these strategies in a geographic information
system.

6. Conclusions and future work

We have proposed and evaluated strategies that support data-cleaning of inconsistent
spatial databases with respect to a set of integrity constraints that impose topological
relations between spatial objects. These strategies are based on an inconsistency graph
that models the violation of the integrity constraints defined in the database. The basic
idea is to use information of such graph to rank geometries in a spatial dataset that
should be modified in order to improve the quality of the database. We explore two
kinds of weights assigned to nodes in the graph: the degree of each node and inconsistency
measures as defined in Brisaboa et al. (2014); and compare them with a random-order
baseline solution and with a naive weighting schema that uses the area of the geometry
associated with the node. In addition, for each of them we compare a static and a dynamic
approach.

Our experimental evaluation shows that ranked-based strategies are suitable to de-
crease up to 80% of revised objects to be modified in a cleaning process (i.e. only a 20%
of the inconsistent objects have to be processed). In detail, the experiments show that

April 2, 2015 17:43 International Journal of Geographical Information Science ijgis˙cleaning

REFERENCES 21

heuristics based on the dynamic strategy clearly outperform those based on the static
one. The dynamic variants based on both inconsistency measures and degrees in the
inconsistency graph perform similarly. The only significant difference is when the quality
of the database is evaluated in terms of differences of areas between correct and incorrect
objects, in which case the dy measures clearly outperform all the other heuristics.

The next step of our work is to evaluate the different strategies in a real production set-
ting. In order to do that we need to spend more time on engineering the implementation
of the strategies and integrating them into a geographic information system. Then, this
prototype could be evaluated by specialists on the repair of spatial databases. Finally,
we also leave as a future work the analysis of the data-cleaning process for topological
relations between 3D spatial objects (Lee and Kwan 2005, Zlatanova et al. 2004).

Acknowledgement(s)

This work was partially funded by CONICYT Fondecyt regular 1140428 and iniciación
11130377 (Chile), by “Ministerio de Ciencia e Innovación” - Spain (PGE and FEDER)
grant TIN2009-14560-C03-02 and by “Xunta de Galicia (FEDER)”, grant GRC2013/053.

References

Abdelmoty, A.I. and Jones, C.B., 1997. Towards Maintaining Consistency of Spatial
Databases. In: Proceedings of the Sixth International Conference on Information
and Knowledge Management (CIKM’97) ACM, 293–300.

Borges, K.A.V., et al., 2002. Integrity Constraints in Spatial Databases. In: In Database
Integrity: Challenges and Solutions Ideas Group.

Bravo, L. and Rodŕıguez, M.A., 2009. Semantic Integrity Constraints for Spatial
Databases. In: Proceedings of the 3rd Alberto Mendelzon International Workshop
on Foundations of Data Management (AMW), Vol. 450 of CEUR Workshop Pro-
ceedings CEUR-WS.org.

Bravo, L. and Rodŕıguez, M.A., 2012. Formalization and reasoning about spatial semantic
integrity constraints. Data Knowl. Eng., 72, 63–82.

Brisaboa, N., Rodŕıguez, M.L.M.A., and Seco, D., 2014. An Inconsistency Measure of
Spatial Data Sets with respect to Topological Constraints. International Journal of
Geographic Information Science, 28 (1), 56–82.

Brisaboa, N.R., Luaces, M.R., and Rodŕıguez, M.A., 2011. Cognitive Adequacy of Topo-
logical Consistency Measures. In: ER Workshops, Vol. 6999 of Lecture Notes in
Computer Science Springer, 241–250.

Chaudhuri, S., Ganti, V., and Kaushik, R., 2006. A Primitive Operator for Similarity
Joins in Data Cleaning. In: Proceedings of the 22nd International Conference on
Data Engineering, ICDE 2006 IEEE Computer Society, p. 5.

Cockcroft, S., 1997. A Taxonomy of Spatial Integrity Constraints. GeoInformatica, 1 (4),
327–343.

Cormen, T., et al., 2009. Introduction to Algorithms. MIT Press.
Davis, C.A., Borges, K.A.V., and Laender, A.H.F., 1999. Spatial Integrity Constraints

in Object Oriented Geographic Data Modeling. In: ACM-GIS, 1–6.
Davis, C.A., Borges, K.A.V., and Laender, A.H.F., 2005. Deriving Spatial Integrity Con-

April 2, 2015 17:43 International Journal of Geographical Information Science ijgis˙cleaning

22 REFERENCES

straints from Geographic Application Schemas. Encyclopedia of Database Technolo-
gies and Applications. Idea Group, 176–183.

del Mondo, G., et al., 2013. Modeling Consistency of Spatio-Temporal Graphs. Data
Knowl. Eng., 84 (1), 59–80.

Deng, M., bao Liu, W., and zhi Feng, X., 2005. Dealing with Inconsistency between Dig-
ital Geographic Lines from Multi-data Sources in GIS. Journal of Remote Sensing,
9 (4), 343–348.

Deng, M., et al., 2003. Modelling Error Propagation for Spatial Consistency. Journal of
Geospatial Engineering, 5 (2), 51–60.

Douglas, D.H. and Peucker, T.K., 1973. Alogrithms for the reudction of the number
of points required to represent a digitized line or its caricature. Cartographica: The
International Journal for Geographic Information and Geovisualization, 10 (2), 112–
122.

Egenhofer, M. and Franzosa, R., 1991. Point Set Topological Relations. International
Journal of Geographical Information Science, 5, 161–174.

Egenhofer, M. and Shariff, A., 1998. Metric Details for Natural-Language Spatial Rela-
tions. ACM Transactions on Information Systems, 16 (4), 295–321.

Egenhofer, M.J. and Dube, M.P., 2009. Topological relations from metric refinements.
In: 17th ACM SIGSPATIAL International Symposium on Advances in Geographic
Information Systems ACM, 158–167.

Godoy, F.A. and Rodŕıguez, M.A., 2004. Defining and Comparing Content Measures of
Topological Relations. GeoInformatica, 8 (4), 347–371.

Güting, R., 1994. An Introduction to Spatial Database Systems. VLDB Journal, 3, 357–
399.

Hadzilacos, T. and Tryfona, N., 1992. A Model for Expressing Topological Integrity Con-
straints in Geographic Databases. In: Spatio-Temporal Reasoning, Springer LNCS
639, 252–268.

Hunter, A. and Konieczny, S., 2005. Approaches to Measuring Inconsistent Informa-
tion. In: Inconsistency Tolerance, Vol. 3300 of Lecture Notes in Computer Science
Springer, 191–236.

ISO, 2004. ISO 19125-1:2004 Geographic information – Simple feature access – Part 1:
Common architecture. Technical report, International Organization for Standard-
ization.

Jin, L., Li, C., and Mehrotra, S., 2003. Efficient Record Linkage in Large Data Sets. In:
Eighth International Conference on Database Systems for Advanced Applications
(DASFAA ’03) IEEE Computer Society, 137–.

Lee, J. and Kwan, M.P., 2005. A combinatorial data model for representing topological
relations among 3D geographical features in micro-spatial environments. Interna-
tional Journal of Geographical Information Science, 19 (10), 1039–1056.

Martinez, M.V., et al., 2007. How Dirty Is Your Relational Database? An Axiomatic
Approach. In: Symbolic and Quantitative Approaches to Reasoning with Uncertainty,
9th European Conference, ECSQARU 2007, Hammamet, Tunisia, 103–114.

Mäs, S., 2007. Reasoning on Spatial Semantic Integrity Constraints. In: COSIT, Springer
LNCS 4736, 285–302.

Mehta, D.P. and Sahni, S., 2004. Handbook Of Data Structures And Applications
(Chapman & Hall/Crc Computer and Information Science Series.). Chapman &
Hall/CRC.

OpenGis, 1999. Opengis Simple Features Specification for SQL. Technical report, Open
GIS Consortium.

April 2, 2015 17:43 International Journal of Geographical Information Science ijgis˙cleaning

REFERENCES 23

Ordonez, C., Garćıa-Garćıa, J., and 0002, Z.C., 2007. Measuring referential integrity in
distributed databases. In: Proceedings of the First Workshop on CyberInfrastructure:
Information Management in eScience, CIMS 2007, Sixteenth ACM Conference on
Information and Knowledge Management, CIKM 2007, Lisbon, Portugal ACM.

Papadias, D., Mamoulis, N., and Delis, V., 1998. Algorithms for Querying Spatial Struc-
ture. In: VLDB Conference, 546–557.

Randell, D.A., Cui, Z., and Cohn, A.G., 1992. A Spatial Logic Based on Regions and
Connection. In: B. Nebel, C. Rich and W. Swartout, eds. KR’92. Principles of
Knowledge Representation and Reasoning: Proceedings of the Third International
Conference San Mateo, California: Morgan Kaufmann, 165–176.

Renz, J. and Nebel, B., 1999. On the Complexity of Qualitative Spatial Reasoning: A
Maximal Tractable Fragment of the Region Connection Calculus. Artif. Intell., 108
(1-2), 69–123.

Rodŕıguez, M.A., Bertossi, L.E., and Marileo, M.C., 2013. Consistent query answering
under spatial semantic constraints. Inf. Syst., 38 (2), 244–263.

Rodŕıguez, M.A., et al., 2010. Measuring consistency with respect to topological depen-
dency constraints. In: 18th ACM SIGSPATIAL International Symposium on Ad-
vances in Geographic Information Systems, ACM-GIS 2010, San Jose, CA, USA,
182–191.

Servigne, S., et al., 2000. A Methodology for Spatial Consistency Improvement of Geo-
graphic Databases. GeoInformatica, 4 (1), 7–34.

Veregin, H., 1999. In: A framework for correcting geographical boundary inconsistency.,
177–189 John Wiley.

Xie, Z., et al., 2010. A framework for correcting geographical boundary inconsistency.
In: Geoinformatics: GIScience in Change, Geoinformatics 2010 IEEE, 1–5.

Zlatanova, S., Rahman, A.A., and Shi, W., 2004. Topological models and frameworks for
3D spatial objects. Computers & Geosciences, 30 (4), 419 – 428.

Appendix A. Theoretical framework for the cleaning process

In this appendix, we describe the cleaning process of an inconsistent spatial database as
an optimization problem that minimizes the number of changes to restore its consistency.
Note that this problem is slightly different from the one in our practical scenario, but its
theoretical analysis inspires the practical approach proposed in this paper.

Definition A.1: Let D be a spatial database with integrity constraints Ψ of the
form (1) and inconsistency graph GD,Ψ = (V,E). A cleaning sequence over G is a set of
distinct nodes (i.e. tuples in D) SG sorted by their weight such that each node in SG is
in V and, for each (t1, t2) ∈ E, then t1 ∈ SG or t2 ∈ SG (or both). Then, a total cleaning
process on G is defined as the optimization problem of finding the smallest ordered set
SG (i.e. the smallest number of nodes) such that, by modifying geometries in tuples of
the sequence, the consistency of D is restored. 2

Intuitively, the total cleaning process of a database instance D with inconsistency graph
GD,Ψ requires to take nodes in SG and modify them such that all conflicts in D are
eliminated (i.e. edges in G are eliminated). Note that this process does not say any-
thing about how nodes (geometries) have to be modified. It assumes, however, that all
necessary changes on a node are made at once, which is consistent with the orthophoto-
guided process assumed in our practical approach. Even more, we will assume, as a first

April 2, 2015 17:43 International Journal of Geographical Information Science ijgis˙cleaning

24 REFERENCES

approach, that modifying a geometry does not introduce new conflicts with other geome-
tries and that all conflicts are equally important. An example of such simple strategy is
to eliminates one of the tuples that form an edge in the inconsistency graph. However,
below we show that even this simple case leads to a hard problem.

Proposition A.2: Let G = (V,E) be an undirected graph representing the inconsis-
tent part of D under the set of integrity constraints Ψ. The decision problem of deter-
mining whether or not G has a cleaning sequence of size k is NP-complete. 2

Proof : (a) Membership of NP. A non-deterministic algorithm can guess a set of k nodes
in the inconsistency graph and then verify in polynomial time if the modification of the
geometries in the tuples makes the database consistent. Note that the cost of modification
of a geometry depends on the size of its representation which, in current systems, turns
out to be equivalent to the number of points used in the representation. In our problem,
let t1 = (ū1, g1) ∈ R, t2 = (ū2, g2) ∈ P be two tuples such that ConflD,R,P,T (t1, t2) is true
for some relational predicates R and P in D and a topological relation of constraints T
in Ψ, we may modify either g1, g2 or both.

(b) Completeness. This can be proved by reduction of the vertex cover decision prob-
lem, which is NP-complete (Cormen et al. 2009), to our problem. A vertex cover of an
undirected graph G = (V,E) is a subset V ′ ∈ V such that if u, v ∈ E, then u ∈ V ′ or
v ∈ V ′ (or both). The decision problem for vertex cover is to determine if a graph has a
vertex cover of a given size k.

Given a graph G = (V,E), we need to construct a database instance D with a set of
constraints Ψ defined over a database schema such that D has a cleaning sequence of
size k if and only if G has a vertex cover of size k. Let us construct a database schema
with single relation R(id, s), where id is a thematic attribute and s is a spatial attribute.
For each v ∈ V we insert a tuple (v, g′) in R, where g′ is initially disjoint but with the
same size and shape of all other geometry. For each e = (u, v) ∈ E we then make the
corresponding geometries gu and gv in tuples (u, gu) and (v, gv) of instance D Touches,
and all others remain Disjoint. Then, let Ψ be:

∀u, v, g1, g2(R(u, g1) ∧R(v, g2) ∧ u 6= v → Disjoint(g1, g2)).

Constructing this database instance can be done in polynomial time with respect to
the number of tuples and the size of representation of geometries. Note that imposing the
condition that only geometries belonging to tuples that are connected in the graph touch
and all others are disjoint defines a set of topological conditions that is realizable (Renz
and Nebel 1999) and, therefore, it is possible to have a non-empty database instance
that, when checking for consistency, produces the inconsistency graph.

Intuitively each tuple represents a node in G and each edge in the graph is mapped
onto an edge in the inconsistency graph. Then, G represents the inconsistent part of D,
which can be restored by modifying any of the end nodes of edges in G. By definition of
a cleaning sequence, the problem of determining if a subset of vertexes in G is a cleaning
sequence of size k is equivalent to the decision problem of the vertex cover of size k. We
have proved the proposition. �

The optimization version of this NP-complete decision problem is to find the total
cleaning sequence, which is in MAXSNP-complete. Obviously, the problem becomes
harder if we consider the general case in which the modification of one geometry may
introduce new conflicts or when conflicts are not equally important.

April 2, 2015 17:43 International Journal of Geographical Information Science ijgis˙cleaning

REFERENCES 25

Appendix B. Implementation issues

As discussed in Section 4, the key factor for the success of a data-cleaning strategy is the
quality of the ranking it provides. However, there is a secondary factor represented by
the running time of the computations that the strategy involves. Although this time may
be negligible when compared with the time consumed by the correction of geometries, an
efficient implementation will avoid annoying delays in serving the next geometry to be
modified. We describe next an efficient implementation of our dynamic strategy based on
two well-known data structures (see for example Mehta and Sahni (2004)): an adjacency
list representation of the inconsistency graph and a priority queue.

The priority queue Q must support operations delete max(Q) and
decrease key(k, id,Q). The former returns (and removes from the queue) the ele-
ment with highest key (weight), whereas the later decreases the key of an inconsistent
object id to value (weight) k. Note that id is used just for explanation purposes, the
queue does not support efficient access by that field. Thus, we must previously obtain
a reference to such element. A max-Heap priority queue implementation supports both
these operations in O(log n) time where n is the size of the queue. In addition, each
element in the priority queue must provide direct access to the corresponding node in
the inconsistency graph (either a pointer or the object identifier).

On the other hand, the graph representation must support operation
direct neighbors(G, x), which returns an iterator over the neighbors of node x,
which is the identifier of an object. We can assume this operation takes constant time
provided direct access to node x. In addition, we assume that each node in the graph
stores its weight and a reference to the corresponding element in the priority queue.
Similarly, each entry in the adjacency list of a node stores the proportional weight that
is due to the conflict of the object with this particular entry and a pointer to the dual
relationship (i.e. entry of y in neighboring list of x stores a pointer to entry of x at
list of y). We call this pointer the reverse pointer. Finally, both data structures can be
efficiently constructed from the dataset and the set of integrity constraints. We do not
consider this time as it is an offline process at the beginning of the cleaning process.

We describe now an iteration (lines 7-19 of Algorithm 6) of the strategy in terms of
the operations over these data structures. The first step (line 7) performs the operation
delete max(Q) on the priority queue and obtains a pointer to the node with highest
error, u. The third step (we skip the second step as it is manually performed by the user
in charge of repair geometries), obtains the direct neighbors(G, u) of node u and iterates
over them (lines 11-19). For each direct neighbor v, it computes the inconsistency degree
of v with the already modified geometry of u (it was modified in step 2). In case there
is not conflict any more, v is removed from the neighboring list of u. In other case, we
make use of the reverse pointer to update the new weight of u in the neighboring list of
v. In both cases, the weight of node v must be updated and the corresponding element
in the priority queue deposed via a decrease key() operation.

The above explanation is for the case of weights assigned according to inconsistency
measures, the cases of weights assigned by area and degree are simplifications of this
more general case. For example, when using of areas, the algorithm does nothing when
there is still a conflict between u and v (line 18) and the decrease key() operation in line
19 is just executed when v does not have more conflicts and, in such case, it always set
the new weight to zero (i.e. decrease key(0, v,Q)). The case of degree is binary, that is,
repinc takes value 1 if there is still a conflict between u and v and 0, otherwise.

Overall, an iteration takes O(nu log |V |) time, where nu is the number of neighbors of

April 2, 2015 17:43 International Journal of Geographical Information Science ijgis˙cleaning

26 REFERENCES

the node with highest priority at the beginning of the iteration. This complexity is due
to the nu decrease key() operations that may be performed during an iteration.

