
A Reusable Software Architecture for
Geographic Information Systems based on

Software Product Line Engineering ⋆

Nieves R. Brisaboa1, Alejandro Cortiñas1, Miguel R. Luaces1, and Matias
Pol’la23

1 Databases Lab, University of A Coruña, Spain
2 Giisco, Facultad de Informática, Universidad Nacional del Comahue,

Neuquén, Argentina
3 Concejo Nacional de Investigaciones Cient́ıficas y Técnicas

{brisaboa, alejandro.cortinas, luaces}@udc.es,
matias.polla@fi.uncoma.edu.ar

Abstract. In the last years there has been a continuous growth in func-
tionality of geographic information systems (GIS) resulting in many dif-
ferent software artifacts. Even though each GIS is used in different areas
with different objectives, they all share many features and requirements
and therefore it is possible to apply techniques based on intensive soft-
ware reuse, such as software product line engineering (SPLE). Although
there has been much research on software product line engineering in
the last years, the definition of a software product line for the domain of
geographic information systems has not been undertaken.

In this work we identify the requirements and functionalities of a generic
product for a web-based geographic information system, grouping them
into commonalities that allow us to reuse many software artifacts, and
variabilities that allow use to configure different products. Then, we de-
fine the functional and technological architecture of a software product
line that uses current technologies for web-based application develop-
ment. Finally, we design a tool to configure and assemble the compo-
nents to generate the possible products. The resulting platform is flexible
enough to adapt each product to the specific needs of each customer.

Keywords: geographic information systems, software product line en-
gineering, general-purpose software architecture, variability management

1 Introduction

The field of Geographic Information Systems (GIS) has received much atten-
tion in the last years. Many disciplines such as cartography, biology, ecology,
transportation and warehouse logistics use GIS to store, query and visualize

⋆ Partially funded by MINECO ref. TIN2013-46801-C4-3-R (PGE & FEDER) and
Xunta de Galicia ref. GRC2013/053 (FEDER) for authors in UDC.

2

geographic information. The improvements in communication technologies, to-
gether with the increased penetration of Internet access, have enabled the use of
GIS technology with mobile equipment to visualize and manage data stored on
remote computers accessible over the Internet. Clear examples of this trend are
the success of applications like Google Maps, the inclusion of location-based func-
tionality on a large number of web applications (e.g., Flickr, Facebook, Twitter),
and the emergence of different types of GIS applications for municipal manage-
ment, urban planning, tourism or property management.

Even though GIS applications have always had many common features and
requirements such as storing and indexing geo-referenced data, displaying infor-
mation as a set of layers, or grouping layers into different maps, the software
artifacts used to implement the applications used different and incompatible con-
ceptual, logical and physical data models (e.g., different definitions for the data
type polygon, or different semantics for the predicate overlaps). Hence, it was
very difficult to build interoperable applications because even the simplest task
(e.g., data migration) was an arduous one. To solve this problem, a collaborative
effort to define standards for GIS has been carried out by two organizations: ISO
(through ISO/TC 211 and the 19100 set of standards) and the Open Geospatial
Consortium (OGC). Nowadays, the application of techniques based on intensive
software reuse such as software product line engineering (SPLE) is possible and
relevant in the GIS domain. A software product line is a set of software-intensive
systems sharing a common, managed set of features that satisfy the specific needs
of a particular market segment or mission and that are developed from a common
set of core assets in a prescribed way [12]. Software product lines enable system-
atic reuse in cases where there are families of products, i.e. similar products
differentiated by certain characteristics. This new paradigm enables companies
to improve the quality of software produced as well as reduce costs and launch
times, thereby promoting the industrialization of software development.

Starting from the experience of our previous work in geographic subdomains
such as marine biology [4, 5] or the development of GIS applications [11, 2] and
geographic information retrieval algorithms [3], we have designed a software
product line for GIS. The products of this SPL are web-based GIS that can be
used to browse, query, analyze and manage geographic information. In Section 2
we present background concepts on SPLE. Then, in Section 3 we define the
features of the product and we group them into components. After that, in
Section 4 we define the platform architecture in the functional and technological
levels. Then, in Section 5 we present the architecture of the tool that allows
us to configure and assemble the software assets to generate the final products.
Finally, future work and conclusions are discussed in Section 6.

2 Related Work

The traditional approach to software development performs the elicitation of re-
quirements, design, implementation, testing and maintenance for each individual
according to the specific needs of each customer. The disadvantage of this ap-

3

proach is that it requires high development and maintenance costs in order to
produce high quality products. For this reason, new methodologies have emerged
to apply mass-production and reuse strategies to the software development pro-
cess. One such methodology is Software Product Lines Engineering (SPLE) [1,
12, 15], which focuses on separating the development of core, reusable software
assets (i.e., the platform), and the development of the actual applications (i.e.,
the products). The platform is modeled as a set of features that represent a
characteristic of a system relevant for some stakeholder (e.g., a requirement, a
technical function or function group or a non-functional characteristic) and a
set of variation points that represent the commonalities and variabilities of the
different products. Individual products are modeled as a concrete selection of
features and alternatives for the variation points in the platform. Finally, the
product is built by adapting and assembling software artifacts from the platform.

The scope and range of products that a product line can deliver is deter-
mined by the flexibility of the platform, which in turn is determined by the the
variability of the platform features. Therefore, variability management, which
involves the tasks of identifying and defining the platform features, defining
the functional and technological architectures of the product, and defining the
product line configuration and derivation processes, is one of the main tasks in
SPL development. There are many modeling techniques to identify and define
the platform features, such as FODA (Feature Oriented Domain analysis) [8],
FORM (Feature Oriented Reuse Method) [9], FM (Feature Modeling) [7], DM
(Decision Model) [14], or OVM (Orthogonal Variability Model) [12]. There are
also some approaches centered on the product architecture and the configuration
and derivation process, which can be classified into annotative [10] (i.e., adding
annotations in the source code to indicate the variant point and the different
variants) or compositional (i.e., implementing the variants with different software
assets). A metadata model that follows a mixed approach, taking into account
the main advantages of both of them such as traceability (compositional) and
fine-grained adjustments (annotative), has been defined in [13, 6].

Furthermore, we have presented in [4, 5] a methodology that extends the
framework presented in [12] to create a product line in the marine ecology sub-
domain. This product line has been used in a case study that includes the work
with biologists from two institutes and that resulted in the instantiation of two
products within this subdomain. However, although there has been much re-
search on software product line engineering in the last years, the definition of a
software product line for the domain of geographic information systems has not
been undertaken.

3 Identifying Features and Components for GIS Products

In this section, we identify and define all the functional and non-functional fea-
tures for web-based geographic information systems analyzing several existing
GIS applications with different scopes and features. Then, we determine which
software assets are required by the platform to provide all the features identified.

4

3.1 Feature Variability

We use the variability management model presented in [13, 6]. It defines four
types of variability for each feature (Mandatory (M), Optional (O), Alternative
(A) and Variant(V)), and three types of dependencies between features (Uses,
Requires and Excludes). The graphical notation is depicted on Figure 1.

Fig. 1. Variability Management - Graphical Notation. Extracted from [6]

In addition to the variability types and dependencies described above, it is
necessary to add a new element to the variability management model, called
variability scope, which represents whether the scope of variability for a feature
is global (notated as VG) and the variant is chosen once and applied every time
the functionality is selected, or the the scope is specific (notated as VS) and
a concrete variant must be chosen every time the functionality is selected. For
example, the architecture selection is global feature because it only has to be
selected once and it is applied in all variation points. However, the visualization
type of map viewers is a specific feature because an application can have multiple
map viewers with some of them being embedded within a web page, some others
being displayed in a full page, and some others being detachable (i.e., they start
embedded but they can also be displayed in a full page).

Id Feature M O A V Scope

1 Architecture selection • VG

2 Data model definition • VG

3 Maps definition • VG
3.a Layers definition • VG
3.b Styles definition • VG

4 Map viewers • -
4.a Visualization type • VS
4.b Geographic scope • VS
4.c Map viewer tools • VS

5 Geodata edition • VG

6 User management • VG

...

Table 1. Table Feature Variability - Subset

5

In Table 1 we show a subset of the features identified (the full table includes
more than 90 features). We have grouped them into different variant points
according to their function and we have established the variability type and
scope of each one. From the various GIS applications studied, we have not only
defined functional features like user authentication, but we have also defined
many non-functional features such as map viewer library selection. While the
former will turn out in new functionalities added to the product, the latter only
represents a design decision that changes the technology used to view the maps
in the web application. Some of the main features identified in our platform are
the following:

– Architecture selection. The technology used for some functions of the
products may vary (e.g., the DBMS or the map visualization library). We
give more detail regarding this feature on Section 4.

– Data model definition. Each product may have an specific data model
that must be defined as the first step in the configuration tool, as we can see
on Section 5.

– Managing maps, layers and styles. Each product may define its own col-
lections of map layers, visualization styles, and maps (i.e., a named collection
of ordered map layers with default styles). Furthermore, another feature en-
ables users of the product to manage them on runtime. The definition of
layers and maps is a mandatory feature because it has no sense to build a
GIS application without them.

– Configuring the map viewers. Every GIS application has one or more
map viewers, each one with its own configuration. Therefore, the scope of
these features is specific. Some of the features in this variation point are the
selection of the visualization type (i.e., the map viewer may be embedded
in some other content or shown in full page mode) or the selection of the
different tools that can be enabled (zooming and panning the map, opening
modal views with info of the selected elements, getting the permanent link
of the current view, etc.).

– Editing the geographic data. We can optionally enable the edition of
the geographic data on our GIS product. This allows the user to import
data from shapefiles or a WMS service, or even update the geographic data
directly on a map viewer.

– Enabling user and authentication management. As in any web-based
system, we can control the people who has access to the application and to
each feature of it. We can see this feature is optional, since we may want the
application to be totally open.

In Table 2 we present a subset of the dependencies that we have found be-
tween each feature. For example, if we choose not to use a Map Cache Server
in our application, we force the layers to be generated each time by our Map
Server. For example, feature Maps definition (3) has a requires dependency with
the feature Layers definition (3.a), and this one has a uses dependency with
the feature Styles definition (3.b). Also, the Map viewers feature has a requires

6

Id Name Use Requires Excludes

...

3 Maps definition 3.a
3.a Layers definition 3.b
3.b Styles definition

4 Map viewers 4.c 3, 4.a, 4.b
4.a Visualization type
4.a.1 Embedded map
4.a.2 Full page map
4.a.3 Switching type allowed 4.a.1, 4.a.2
4.b Geographic scope
4.c Map viewer tools

...
Table 2. Table Feature Dependencies - Subset

dependency with Maps definition, Visualization type and Geographic scope, and
a uses dependency with Map viewer tools. Furthermore, the subfeature of Vi-
sualization type, Switching type allowed, has a requires dependency with both
subfeature Embedded map and Full page map.

After defining all dependencies and variabilities, the relationships and con-
straints between features can be shown graphically in a variability model. Fig-
ure 2 shows the features described in Table 2. In the model we can see all
variation points (places where the variability occurs) represented by light gray
squares with the annotation VS or VG, according to their scope.

Maps

Embedded map Full page map
Switching type allowed

Requires

Requires

Visualization type

VS

VG

Styles

VG

Requires

Uses

Map viewers

Map viewer tools

Requires

VS

-

Layers

VG

Requires

Uses

Fig. 2. Portion of the variability model

3.2 Functional Components

Starting from the collection of features identified and defined in the variability
model described above, we have identified and defined a set of software compo-
nents that will implement all the possible features of the resulting products. The

7

components implementing any mandatory variant are called core components
and they will be included in all the generated products.

– Data model. The software engineer that uses the SPL to create a product
must provide a complete definition of the GIS application data model. The
software engineer may use alphanumeric and geographic data types, relation-
ships between entities with concrete cardinality, and simple restrictions like
the non-nullity of any element. This component is in charge of implementing
the data model in a specific architecture.

– Data access. This component is responsible for all the functionality that
involves creating, reading, updating and deleting elements from the data
model.

– Map viewer. This component implements the functionality related to view-
ing and interacting with geographic information using maps.

– Data viewer. The functionality related to browsing and interacting with
text-based data (e.g., lists, editing forms, etc.) is implemented by this com-
ponent.

– Menu. Nearly all web applications have a menu component to access all
sections and features thereof. Thus, our generated GIS application should
have also this component.

– Database management system. The DBMS chosen will affect many other
components, especially in the low level layers (Data model and Data access
components). The configuration of this component will include the definition
of the database, as well as the credentials used to connect to it. We provide
various options to choose between them.

The rest of the components are called optional components and may be or
not in the final products. Some of these components are totally isolated from
the rest, but there are many functionalities that require certain relationship and
interoperability between them.

– User manager. Some GIS applications will require authentication, different
user roles and the common functionality provided for any user-related web
product.

– Map manager. Maps, layers and styles are defined during the configuration
of the product. Furthermore, this component allows the product administra-
tor to manage these elements on runtime. Otherwise, the initial configuration
will be static.

– Map data importer. If the GIS produced should be able to import new
geographic data (i.e., from shapefiles), this component will allow it. The new
data can be added from different sources, besides the mentioned one.

– Map data exporter. Component used to export any to map to several
type files, like PDF or PNG. It also allows the user to print the visualized
maps.

– Map server. Most GIS applications use a map server to produce the car-
tography images. We have decided to make this component optional because

8

a map server is particularly costly in terms of hardware and configuration.
Therefore, some GIS applications may use an internal map server to draw
cartography whereas other applications may rely on external map servers
(e.g., OpenStreetMap) and display all geographic elements only at the client
side.

– Map cache. Some GIS applications that require an internal map server
may not require the cartography to be generated in real-time. Therefore,
this component implements a map cache so that static maps are displayed
instead of being generated each time they are required.

– Static pages manager. Not all the content displayed on the GIS applica-
tion can be generated automatically. Some content may depend on specific
and product-related information. To provide this flexibility on the user inter-
face, we have defined a component that handles the creation of customized
content using static web pages. These pages will be able to use other com-
ponents of the SPL (such as embedded maps) to enrich the interface.

4 Platform Architecture for GIS Products

The software architecture plays an important role in any information system.
Particularly, in SPL the definition of the platform architecture is a major task
because it must support the entire product range and scope previously defined.
For this reason, the platform architecture must be general and flexible enough to
capture both commonalities and variabilities. On the other hand, the platform
architecture must be concrete and efficient in order to support the creation of
products that can be used in real-life problems.

In this sense, we have defined a three-layer architecture composed of a user
interface, responsible for the interaction with the user; a processing layer which
contains all the functionality defined for the GIS; and a model management layer,
responsible for physical data storage and data management. In Figure 3 we have
classified the major components described in Section 3.2 according to the layer
where their activity takes place. We can see that there are three types of compo-
nents: user interface-layer components, data-layer components and transverse
components, which belong mostly to the processing layer but that also affect the
other two.

Regarding the technological architecture, web-based GIS applications usually
have simpler or less functionalities than desktop-based ones. However, thanks to
the late improvements in communications, server-side and client-side processing,
and web-based frameworks, we believe that a web-based GIS product can be
built. Figure 4 presents the platform architecture in terms of technology. It also
shows a feature model of the architectural variation points, which are annotated
with the legend VG and all the variants associated to each one are represented
with light gray boxes. We have decided to define only five variation points to
avoid an unmanageable number of alternatives that add unnecessary complexity.

In the user interface layer we have decided to use an open-source web appli-
cation framework called AngularJS because it presents a modular design which

9

Data Viewer

D
a
ta

 A
c
c
e

s
s

Data Model

Database Management System

Map Viewer

M
e
n
u

M
a
p
 S

e
rv

e
r

M
a
p
 C

a
c
h
e

U
s
e
r

M
a
n
a
g

e
r

S
ta

ti
c
 P

a
g

e
s
 M

a
n
a

g
e
r

M
a
p
 M

a
n
a
g

e
r

User Interface

Model
Management

Processing

M
a
p
 D

a
ta

 I
m

p
o
rt

e
r/

E
x
p
o
rt

e
r

Fig. 3. Platform architecture with functional components

enables us to define a flexible configuration and to implement the different vari-
ants with different software artifacts. In this layer, we have also decided to define
a variant point with two alternatives to visualize the geo-referenced data in the
user interface: OpenLayers and Leaflet. These libraries have different scopes and
therefore provide different advantages to the final product.

The processing layer is based on Spring MVC. The REST services used to
communicate the user interface with the processing layer are implemented with
Spring controllers, and the services that provide communication with the model
management layer are built using the dependency injection pattern of Spring.
We also use Spring Security to support user authentication and access-control.
Finally, as described in Section 3.2, the functional architecture defines a vari-
ation point to include an internal map server (GeoServer) and a map cache
(TileCache).

Finally, the model management layer a variant point with two alternatives for
the data access technology: Java Database Connectivity (JDBC) or Hibernate.
This layer also has a variant point with three alternatives for the Database
Management System: PostgreSQL and PostGIS, MySQL or Oracle Spatial.

5 Configuration and Derivation Tool for a SPL in GIS

The process for the generation of products in a software product line consists
of two main activities: product configuration, where the selection of the desired
features occurs; and product derivation, where the final product is assembled.
Figure 5 presents the tool that we have designed that enables both tasks. The

10

Fig. 4. Technological platform architecture and variability model

left side of the figure shows all the components of the product configuration tool.
On the right side of the figure we show the product derivation tool that receives
the product configuration and assembles the final product using the software
assets from the asset repository. The configuration of each product is stored in
the configuration repository and can be loaded in the tool in any moment, so we
can derive the exact same product again or update a product starting from a
previous configuration. We also maintain version control over the products and
their evolution.

The configuration tool is composed of several modules that allow us to tailor
the product to the user’s needs. In this task, all the variability present in the
shared platform should be instantiated according to specific needs within the
defined range. For this, first the data model of the application must be provided.
Once the tables are described, the set of maps that provide the geographical
context as well as the layers and the styles must be described. Then, the product
features must be selected in the variability configuration and feature selection
module. The module receives as input the variability model in XML format
as defined in [6]. This model is composed of different tags that represent the
variabilities, constraints and relationships defined in Section 3. Then, the module
generates an instance of the model with the functionality and actions selected by
the software engineer. This module also controls the validity of the selection of
features, according to the constraints and dependencies in the variability model.
In addition to the selection of features, the software engineer can optionally
provide static content such as text and pages in the applications, as well as the

11

Data Model

Maps / Layers / Styles

Variability Configuration &

Feature Selection

Menu Configuration

Tables

Actions

DERIVATOR

Assets

Configuration
Configuration

Configuration

Variability

XML
Model

Static Content

.........

- Product 1

Configuration

Repository

- Product 2

- Product N

...

Fig. 5. Configuration and Derivation Tools

details of the web aspect. The software engineer can also configure the application
menu using the menu configuration module.

The input of derivation tool is the configuration generated with the config-
uration tool in the previous step. The task of the derivation tool is performed
without user interaction. First, the configuration is parsed and after that the
product is built using the software assets extracted from the asset repository.

6 Conclusion and Future Work

In this paper we have presented a software product line for web-based geo-
graphic information systems. We have first identified and defined functional and
non-functional requirements for such systems based on the analysis of the char-
acteristics of a set of GIS applications. Then, we have defined a platform for
these products as a set of features, their variation points, and their restrictions
following the model introduced in [6]. After that, we have grouped the features
identified into two set of components: core and optional. This allowed us to de-
fine the functional and technological architecture of the platform taking into
account the current trends in web-based technology for GIS applications. Both
are highly-modular, which facilitates the assembly of products and their main-
tainability. Finally, we have designed the configuration and derivation tools that
are used to build the final products.

Regarding future work, we are currently implementing all the components,
working with three different products to validate and evaluate the benefits of
the software product line. We are also testing and analyzing other technologies
such as Yeoman, in addition to those described in [13, 6], in order to be able to
deal with the high level of variability proposed for the software product line.

12

References

1. J. Bosch. Design and use of software architectures: adopting and evolving a product-
line approach. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA,
2000.

2. N. R. Brisaboa, J. A. C. Lema, A. Fariña, M. R. Luaces, J. R. Parama, and J. R. R.
Viqueira. Collecting and publishing large multiscale geographic datasets. Softw.,
Pract. Exper., 37(12):1319–1348, 2007.

3. N. R. Brisaboa, M. R. Luaces, A. S. Places, and D. Seco. Exploiting geographic
references of documents in a geographical information retrieval system using an
ontology-based index. GeoInformatica, 14(3):307–331, 2010.

4. A. Buccella, A. Cechich, M. Arias, M. Pol’la, S. Doldan, and E. Morsan. To-
wards systematic software reuse of gis: Insights from a case study. Computers &
Geosciences, 54(0):9 – 20, 2013.

5. A. Buccella, A. Cechich, M. Pol’la, M. Arias, S. Doldan, and E. Morsan. Marine
ecology service reuse through taxonomy-oriented SPL development. Computers &
Geosciences, 73(0):108 – 121, 2014.

6. A. Buccella, M. Pol’la, A. Cechich, and M. Arias. A variability representation
approach based on domain service taxonomies and their dependencies. XXXIII
International Conference of the Chilean Society of Computer Science (SCCC’14).
Talca, Chile. IEEE Computer Society Press, November, 08-14.

7. K. Czarnecki, P. Grunbacher, R. Rabiser, K. Schmid, and A. Wäsowski. Cool fea-
tures and tough decisions: a comparison of variability modeling approaches. In Pro-
ceedings of the Sixth International Workshop on Variability Modeling of Software-
Intensive Systems, VaMoS ’12, pages 173–182, New York, NY, USA, 2012. ACM.

8. K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson. Feature-Oriented Do-
main Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21,
Software Engineering Institute, Carnegie Mellon University Pittsburgh, PA., 1990.

9. Kyo C. Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Euiseob Shin, and Moon-
hang Huh. Form: A feature-oriented reuse method with domain-specific reference
architectures. Ann. Softw. Eng., 5:143–168, January 1998.

10. Christian Kästner, Sven Apel, and Martin Kuhlemann. Granularity in software
product lines. In Proceedings of the 30th International Conference on Software
Engineering, ICSE ’08, pages 311–320, New York, NY, USA, 2008. ACM.

11. A. S. Places, N. R. Brisaboa, A. Fariña, M. R. Luaces, J. R. Paramá, and M. R.
Penabad. The galician virtual library. Online Information Review, 31(3):333–352,
2007.

12. Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software Product Line
Engineering: Foundations, Principles and Techniques. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2005.

13. M. Pol’la, A. Buccella, A. Cechich, and M. Arias. Un modelo de metadatos para
la gestión de la variabilidad en ĺıneas de productos de software. In Proceedings of
the ASSE’14: 15th Simposio Argentino de Ingenieŕıa de Software, Buenos Aires,
Argentina, 2014.

14. K. Schmid, R. Rabiser, and P. Grünbacher. A comparison of decision modeling
approaches in product lines. In Proceedings of the 5th Workshop on Variability
Modeling of Software-Intensive Systems, VaMoS ’11, pages 119–126, New York,
NY, USA, 2011. ACM.

15. Frank van der Linden, Klaus Schmid, and Eelco Rommes. Software Product Lines
in Action: The Best Industrial Practice in Product Line Engineering. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2007.

