
Efficient set operations over k2-trees

Nieves R. Brisaboa�, Guillermo de Bernardo�, Gilberto Gutiérrez∗,
Susana Ladra�, Miguel R. Penabad� and Brunny A. Troncoso∗

�Universidade da Coruña ∗Universidad del B́ıo-B́ıo
Facultade de Informática Facultad de Ciencias Empresariales
A Coruña, 15071, Spain Concepción, Chile
brisaboa,gdebernardo, ggutierr,btroncos@ubiobio.cl
sladra,penabad@udc.es

Abstract

Abstract: k2-trees have been proved successful to represent in a very compact way different
kinds of binary relations, such as web graphs, RDFs or raster data. In order to be a
fully functional succinct representation for these domains, the k2-tree must support all the
required operations for binary relations. In their original description, the authors include
how to answer some of the most relevant queries over the k2-tree. In this paper, we extend
this functionality and detail the algorithms to efficiently compute the k2-tree resulting from
the union, intersection, difference or complement of binary relations represented using k2-
trees.

1 Introduction

Binary relations can be an abstraction to represent the relation between the objects
of two collections of different nature: graphs, trees, strings, among others. They can
be used in several low-level structures within a more complex information retrieval
system, or even replace one of the most used one: an inverted index can be regarded
as a binary relation between the vocabulary of terms and the documents where they
appear. Moreover, it can represent the relation between terms and web pages, or
even social networks or the connection between the web pages in the Web, which is
normally represented as a web graph.

Given a binary relation R between two sets X and Y where elements x ∈ X are
related with elements y ∈ Y , which is denoted (x, y) ∈ R or xRy, the basic operations
that we want to perform over R are: given two elements x ∈ X and y ∈ Y , determine
whether xRy; given an element x ∈ X, count/list all y ∈ Y |xRy; or given an element
y ∈ Y , we want to count/list all x ∈ X|xRy. In addition, other common operations
over binary relations are the well-known union, intersection, difference or complement.

Binary relations can be represented by a matrix {rij} called relation matrix. If xRy
then the cell rxy of the relation matrix is 1, and if these elements are not related, then
the cell value is 0. This matrix representation has been exploited in several works to
compactly represent binary relations while supporting operations in an efficient way.

This work was supported in part by MECESUP UBB0704 project (GG), the group “Bases de
Datos” 132019 GI/EF of the Universidad del B́ıo-B́ıo (GG, BT), TIN2013-46238-C4-3-R (NB, MP),
TIN2013-46801-C4-3-R (SL), and GRC2013/053 (NB, GB, SL, MP).

2015 Data Compression Conference

1068-0314/15 $31.00 © 2015 IEEE

DOI 10.1109/DCC.2015.9

373

One of the most complete representations for binary relations was proposed by
Barbay et al. [2, 1], who study the representation of binary relations using succinct
data structures, while supporting a wide set of operators efficiently. They also consider
data structures for binary relations and adaptive algorithms on these data structures
[2].

Brisaboa et al. [4] present a complete study of the k2-tree, a new Web graph
representation based on a compact tree structure that takes advantage of large empty
areas of the adjacency matrix of the graph. A k2-tree is able to efficiently answer if
two Web pages are connected or the list of pages that point to or are pointed by
a specific Web page. However, there are operations that are not supported by the
original work. For instance, given two snapshots of the Web graph in two different
moments of time, it would be interesting to obtain Web pages that were connected
in the first snapshot but not in the second, Web pages that were connected at both
snapshots, or Web pages that were connected at any temporal moment. k2-trees have
been used in other scenarios, such as geographical and RDF data, or images. The
viability of the usage of k2-tree in these scenarios depend on the set of operations and
queries that it supports. Hence, operations such as the union, intersection, difference
or complement should also be supported by the k2-tree to be considered as a fully
functional representation of binary relations.

In this paper, we want to extend the functionality of k2-tree for binary relations.
We want to verify whether the implementation of binary operations directly on this
structure is possible and efficient. Thus, we present algorithms that perform those
binary operations directly over the compressed representation and generate the result
as a k2-tree. We first review the k2-tree structure and then propose the algorithms
for different variants of the k2-tree.

2 Previous work: k2-tree

The k2-tree was originally designed for compressing Web graphs [4], and has been
extensively used in recent years to represent binary relations such as web graphs and
social networks [4], raster data [5], and RDF datasets [3]. It represents a binary matrix
by a special kind of tree inspired in quadtrees [9] and using succinct representation
for trees [7].

More specifically, the k2-tree method represents the adjacency matrix of a graph,
or more generally the binary matrix of any binary relation, using a non-balanced
k2-ary tree. The method consists in subdividing the binary matrix into k rows and k
columns, thus producing k2 submatrices of size n/k by n/k. Each of these submatrices
will be a child of the root node and its value will be 1 iff there is at least one 1 in
the cells of the submatrix. A 0 child means that the submatrix has all 0s and hence
the tree decomposition ends there. Once the level 1, with the children of the root,
has been built, the method proceeds recursively for each child with value 1, until we
reach submatrices full of 0s, or we reach the cells of the original matrix. Fig. 1 shows
an example of this subdivision (left) and the resulting k2-ary tree (right).

The k2-ary tree described is not really stored as illustrated. Instead, the binary
matrix is represented in a compact way with just two bit arrays: T (tree) and L

374

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000010 000

00011100 000

00000000 000

00000000 000

00000000 000

00000000 000

00000000 000

01000000 000

01000000 010

01000000 101

01000000 010

00000000

00000000

00000000

00000000

01 1 1

1 1 10 0 0 0 0 0 01 1

1 1 1111 1 1 10 0 0 00 0 0 0 0 0 0

0100 01000011 0010 0010 10101000 0110 0010

Figure 1: A k2-tree.

(leaves). T stores all the bits of the k2-tree except those in the last level following
a level-wise traversal. Bitmap L stores the last level of the tree. Additionally, an
auxiliary structure is created over T that allows the navigation through the compact
representation of the tree, that is, to travel down from the position of a node to
the start position of its children. More concretely, this auxiliary structure supports
efficient computation of rank queries [6], that is, counting the number of bits set up
to a certain position, which is the basis of the navigation in the k2-tree.

While alternative compressed graph representations are limited to retrieving di-
rect, and sometimes reverse, neighbors of a given node, the k2-tree allows for these,
but also for more sophisticated forms of retrieval, such as range searches or check-
ing whether two Web pages are connected or not without extracting the complete
adjacency lists of the pages involved in the query.

This extended functionality makes the k2-tree a perfect representation for binary
relations, since common operations over binary relations involve determining if an
element x is related to another element y or restricting the relation to subsets of the
original sets. There are more queries, properties and operations that are common for
binary relations and have not been described for the k2-trees. In the next section, we
will describe efficient algorithms to perform set operations for binary relations that
are represented using k2-trees.

3 Operations for binary relations over k2-trees

In this section we present the algorithms for computing the Union, Intersection, Dif-
ference and Complement of binary relations using k2-trees. Thus, unlike for other
queries where the answer is a boolean value or a list of elements, here we need to
generate a new k2-tree that represents the result of the operation.

All the algorithms described in this section share some common variables, which
we define as follows. As input of the algorithms we consider the bitmaps representing
the k2-trees of the input binary relations. Let be the input binary relations RA and

375

RB between two sets X and Y , then we will use bitmaps A and B corresponding
to the concatenation of the bitmaps from their k2-tree compact representation, that
is, A = TA||LA and B = TB||LB. We denote C the output bitmap of the resulting
k2-tree. Auxiliary rank structures over this bitmap will be built afterwards and are
not considered in the algorithms. In addition, pA and pB are pointers that reference
the next bit to read from each bitmap; l is the current level of the visited nodes from
k2-trees A and B; n is the input matrix size1; and H = �logk n�, is the height for the
input k2-trees.

For computing the union of two k2-trees, C will be generated as just one bitmap
that represents as a k2-tree the result of RA ∪ RB. However, for efficiently comput-
ing the intersection, difference and complement of k2-trees, we use a decomposition
strategy by levels: we used an array of bitmaps C with size H, where each C[i]
(0 < i ≤ H) stores the bitmap corresponding to level i of the resulting k2-tree. In-
stead of two pointers pA and pB, we will use two array of pointers of size H where
pA[i] and pB[i] reference to the next bit to read from bitmap A and B at level i.
Those arrays of pointers avoid an abuse of rank functions to access children nodes.
The final k2-tree representation requires a concatenation of the H bitmaps C[i]. In
addition, we will also use a temporal bitmap t with size k2 bits, in order to store
partial results.

3.1 Union algorithm

Union algorithm traverses bitmaps A and B in a synchronized, breadth-first way.
Algorithm 1 shows the pseudocode.

For the traversal of the bitmaps we maintain a queue, denoted by Q, where we
store tuples 〈l, rA, rB〉. Values rA and rB will indicate whether the processed internal
nodes from A and B, respectively, have children or not. The algorithm begins by
inserting 〈0, 1, 1〉 tuple at Q, meaning that the root nodes of A and B trees, which
are at level 0, have children. Then, the algorithm processes the queue as follows until
there is no tuple to process.

Every tuple corresponds to just one of four cases depending on rA and rB values:
Case 1: rA = 1 and rB = 1. If both internal nodes have children, the algorithm
executes an OR operation among bits of their children pointed by pA and pB re-
spectively, and the result is added to bitmap C. Case 2: rA = 0 and rB = 0. If
none of the internal nodes have children, the algorithm adds one 0 at the end of
bitmap C. In this case, indexes pA and pB are not incremented. Case 3 and Case
4: Just one k2-tree has children. Suppose that node from A does not have children
(rA = 0, rB = 1), in this case, the algorithm copies the k2 bits from B pointed by pB,
adding the result to bitmap C. Note that in this case, just pB index is incremented.
When rA = 1, rB = 0 we proceed symmetrically with exchanged roles between the
nodes from A and B. For all cases, if the OR operation for a pair of children outputs
a 1 and it is not the last level of the corresponding k2-trees, a new tuple is inserted
in the queue.

1We can assume that the input matrix is a square matrix of size n×n, being n = max(|X|, |Y |),
adding n−min(|X|, |Y |) extra columns or rows with zeroes if necessary.

376

Algorithm 1 Union

1: Union(A,B)
2: Q.Insert(〈0, 1, 1〉)
3: pA← 0, pB ← 0
4: while not Q.Empty() do
5: 〈l, rA, rB〉 ← Q.Delete()
6: for i← 0 . . . k2 − 1 do
7: bA← 0, bB ← 0
8: if rA = 1 then
9: bA← A[pA], pA← pA+ 1
10: end if

11: if rB = 1 then
12: bB ← B[pB], pB ← pB + 1
13: end if
14: C ← C||(bA ∨ bB)
15: if (l < H) ∧ (bA ∨ bB = 1) then
16: Q.Insert(〈l + 1, bA, bB〉)
17: end if
18: end for
19: end while
20: return C

3.2 Intersection

Intersection algorithm performs a depth-first traversal by the different levels of the
tree using bitmaps A and B to intersect in a synchronized way the corresponding
subtrees of each pair of nodes, where the subtrees are processed from left to right
at each level. Algorithm 2 shows the pseudocode. The first call to the algorithm is
Intersection(1, pA, pB), where all values of pA and pB are set to the initial node at
each level.

Intersection algorithm compares the k2 nodes at each step and considers one of
three cases. Case 1: If the input nodes belong to the last level, then we can compute
the value of the intersection directly using an AND operator. Case 2: If one of
the input values from k2-tree A and B at level i is 0, then the result is 0, and
we concatenate a 0 value at C[i]. In this case, we need to update pointers pA[i +
1], ..., pA[H] or pB[i + 1], ..., pB[H], to omit the whole non-empty subtree. For this,
we propose a function skipNodes, which is described at Algorithm 5. Case 3: If both
values are 1, then we have a “candidate” to take value 1, but we need to check it by a
deep traversal. Here we apply a recursive call with the next level as input parameter.
As the algorithm returns if it added any bit to the bitmap C[j] for a certain level j,
this recursive call will determine if the intersection of the subtrees of both nodes is
empty (the recursive call returns 0) or not (it returns 1), determining the value of the
intersection for the original input values.

Algorithm 2 Intersection

1: boolean Intersection(l, pA, pB)
2: writesomething ← 0
3: for i← 0 . . . k2 − 1 do
4: if l < H then
5: if (A[pA[l]] ∧B[pB[l]]) then
6: t[i]← Intersection(l + 1, pA, pB)
7: else
8: t[i]← 0
9: skipNodes(A, pA, l + 1, A[pA[l]])
10: skipNodes(B, pB, l+ 1, B[pB[l]])
11: end if

12: else
13: t[i]← A[pA[l]] ∧B[pB[l]]
14: end if
15: writesomething ← writesomething ∨ t[i]
16: pA[l]← pA[l] + 1, pB[l]← pB[l] + 1
17: end for
18: if writesomething = 1 then
19: C[l]← C[l] || t
20: end if
21: return writesomething

377

Algorithm 5 SkipNodes (left) and Copy (right) functions

1: SkipNodes(X, pX, l, s)
2: newpos← pX[l] + s ∗ k2 − 1
3: nOnes← rank(X,newpos)− rank(X, pX[l]− 1)
4: pX[l]← newpos+ 1
5: if (nOnes > 0) ∧ (l < H) then
6: SkipNodes(X, pX, l + 1, nOnes)
7: end if

1: Copy(X, pX, l, s)
2: end← pX[l] + s ∗ k2 − 1
3: nOnes← rank(X, end)− rank(X, pX[l]− 1)
4: C[l]← C[l]||X[pX[l]..end]
5: pX[l]← end+ 1
6: if (nOnes > 0) ∧ (l < H) then
7: Copy(X, pX, l + 1, nOnes)
8: end if

3.3 Difference

The computation of the resulting k2-tree of the difference of two binary relations RA,
RB (that is, RA − RB) can be performed in an analogous way as the intersection
operation. When comparing two bits, the cases here are the following. Case 1: If
the input value in the node from k2-tree A is 0, then the result is 0 and this value
is added to C[i], where i means the associated level. In case the value from B is 1,
we need to update the values for pB. Case 2: If the input value from A is 1 and
the input value from B is 0, we Copy the subtree from the current position to the
last level of A concatenating the bits level by level in C[i] (see Algorithm 5). Case
3: If value from A is 1, and the value from B is 1, then we have a “candidate” to
take value 0 but we need to check it by a deep traversal, computing with a recursive
call if this difference is 0 or 1 for the subtrees. For the last level we compute directly
the difference of the bits. Algorithm 6 shows the pseudocode. The first call to the
algorithm is Difference(1, pA, pB), where all values of pA and pB are properly
initialized.

Algorithm 6 Difference

1: boolean Difference(l, pA, pB)
2: writesomething ← 0
3: for i← 0 . . . k2 − 1 do
4: t[i]← 0
5: if (A[pA[l]] ∧B[pB[l]]) then
6: if (l < H) then
7: t[i]← Difference(l + 1, pA, pB)) {Internal

nodes}
8: else
9: t[i]← A[pB[l]]∧ ∼ B[pB[l]] {Last level}
10: end if
11: else if (A[pA[l]]) ∧ (∼ B[pB[l]]) then
12: if (l < H) then
13: t[i] = Copy(l + 1, A, pA)){copy subtree}

14: else
15: t[i]← 1
16: end if
17: else
18: skipNodes(B, pB, l+ 1, B[pB[l]])
19: end if
20: writesomething ← writesomething ∨ t[i]
21: pA[l]← pA[l] + 1, pB[l]← pB[l] + 1
22: end for
23: if writesomething = 1 then
24: C[l]← C[l]||t
25: end if
26: return writesomething

3.4 Complement

The complement of a k2-tree A often requires to apply depth-first traversal from the
actual input node to the nodes in the last level of A (see Algorithm 7); because of
this, we used the decomposition strategy by levels. The process finalizes when all of
the branches of the k2-tree A have been visited. Complement algorithm processes

378

each node of the k2-tree A as follows. Case 1: If the input value is 0, then we used
a function named FillIn() to turn the subtree completely full of 1’s from the current
node to the last level. Case 2: If the input value is 1, then we have a “candidate”
to take value 0 but we need to check it by a deep traversal. There is a possibility
that some values change from 0 to 1 at last level, and in this case upper levels do
not change. In this case we apply a recursive call to compute the complement of the
subtree. For the last level, we assign directly the negated value (∼) of the input.

Algorithm 7 Complement

1: boolean Complement(l, pA)
2: writesomething ← 0
3: for i← 0 . . . k2 − 1 do
4: t[i]← 1
5: if (A[pA[l]] = 1) then
6: if l < H then
7: t[i] ← Complement(l + 1, pA) {internal

nodes}
8: else
9: t[i]← ∼ A[pA[l]]
10: end if

11: else if (l < H) then
12: FillIn(l+1) {Fill in the subtree with 1 values}
13: end if
14: writesomething ← writesomething ∨ t[i]
15: pA[l]← pA[l] + 1
16: end for
17: if (writesomething = 1) then
18: C[l]← C[l]||t
19: end if
20: return writesomething

4 Set operations for k2-trees with compression of ones (k2-tree1)

A k2-tree performs very well when the matrix it represents has a relative small number
of ones, and they are clustered. It takes full advantage of compression by representing
large submatrices of zeroes by a simple 0. However, if the number of ones grows, k2-
trees behavior worsens, because it needs more bits to represent a simple one. In order
to overcome this problem, k2-trees with compression of ones were developed [5]. The
basic idea is to represent uniform areas (either black zones of ones, or white zones of
zeroes) by a 0, and areas with mixed ones and zeroes (gray areas) by a 1, adding a
way to distinguish black and white areas.

More specifically, in addition to bitmaps L and T , we add a bitmap T ′ to distin-
guish black and white zones. In this way, a 1 in a bitmap T means it is a gray area,
while a 0 means it is a black or white area. T ′ will have a bit for each 0 in T , and
its value is either 0 (white zone: all zeroes) or 1 (black zone: all ones). L remains
without changes: each value represents directly the bit (0/1) of the original matrix.

Let us name k2-tree1 this implementation of k2-tree with compression of ones. The
pseudocode and explanation of the Complement, Union, Intersection and Difference
operations follows. As k2-tree1 can be regarded as a compact and efficient represen-
tation of a quadtree [9], some existing works studied this problem before for different
implementations of quadtrees [10, 8]. The algorithms we propose are particular for
the implementation of k2-tree1, which use succinct data structures.

4.1 Complement

The complement of a k2-tree1 is straightforward: we just have to turn black areas
into white ones (and vice versa), and to complement the bits in the leaves of the tree.

379

All this information is stored in T ′ and L (T remains unchanged). Algorithm 8 shows
the pseudocode.

Algorithm 8 Complement Algorithm for k2-tree1
1: Complement(A)
2: C.T ← A.T
3: C.T ′ ←∼ A.T ′
4: C.L←∼ A.L
5: return C

4.2 Union, Intersection and Difference

Intersection and difference in Section 3 were recursive, because the value of a result bit
depended on the operation applied to the children of the current bit on the operand
k2-tree. In the case of k2-tree1s, this same dependence applies to the union: if two
(sub)trees A and B are gray areas, their union can still be a black zone (for example,
if A is the complement of B). Thus, we will use a recursive algorithm to compute
the union, intersection and difference of k2-tree1s. In fact, traversal of the trees is
so similar on all of them, that we have combined the three operations in the same
algorithm (Algorithm 9). A table is included to indicate the next steps to execute
that depend on the operation to perform.

Input bitmaps A and B, and output array of bitmaps C will be used here for
simplicity, like in Section 3 (omitting T , T ′ and L in the pseudocode). However,
these bitmaps (including the vector t to store partial results) contain now “3-valued
bits”: 0 (white area), 1 (gray area), and 2 (black area), being the value of 2 valid
only in the T part of the bitmap (leaves can have only 0 or 1). Reading (updating)
real bitmaps T and T ′ just requires reading (updating) bitmap T and, if its bit is a 0,
also T ′. Pointers pA, pB are also composed of two values, one for T and one for T ′.

Algorithm 9 traverses all bits of the root nodes of A and B. Depending on the
operation and the values of the bits, it produces an output bit and takes some other
action (like copying a subtree or skipping one). In the case of gray areas (when
both bits are 1), the operation continues recursively to the next level. Step 6 on
Algorithm 9 shows how the operation must proceed depending on the input bits. All
9 possibilities for the combinations of two 3-valued bits are considered.

Let us focus first on the union operation. If both bits are 0, the result is 0, and if
both are 2 (black areas) the result is also 2. Slighter complicated cases occur when
gray areas appear (since Union is commutative, some cases are symmetrical, so we
will not cover all of them). If the bit in A is 1 and the bit in B is 0, the result will
be the tree whose root is the bit in A, so we Copy the subtree in A to the result C
(several levels can be copied, until either leaves or 0 bits are found). If A has a 2
(black zone) we know the output is 2, regardless of what B has. But if B has a 1, it
has a subtree that must be skipped (it will produce no output). If both bits are 1, the
result is computed recursively (children nodes are processed). During a recursive call,
if t becomes full of ones, it is not added to the result. Instead, the function returns
2. The base case for the union is the output from two leaves, which is computed as
the logical OR of their bits.

380

Algorithm 9 Recursive Binary Operation Algorithm (k2-tree1)
1: int BinOp(
,l)
2: writesomething ← 0
3: full← 1
4: for i← 0 . . . k2 − 1 do
5: if l < H − 1 then
6: Execute the following step depending on values a = A[pA[l]], b = B[pB[l]] and the binary operation

a b

∩ ∪ −
0 0 t[i]← 0 t[i]← 0 t[i]← 0

0 1
t[i]← 0 t[i]← 1 t[i]← 0

SkipNodes(B, pB, l + 1, 1) Copy(B, pB, l + 1, 1) SkipNodes(B, pB, l + 1, 1)
0 2 t[i]← 0 t[i]← 2 t[i]← 0

1 0
t[i]← 0 t[i]← 1 t[i]← 1

SkipNodes(A, pA, l + 1, 1) Copy(A, pA, l + 1, 1) Copy(A, pA, l + 1, 1)
1 1 t[i]← BinOp(
, l + 1) t[i]← BinOp(
, l + 1) t[i]← BinOp(
, l + 1)

1 2
t[i]← 1 t[i]← 2 t[i]← 0

Copy(A, pA, l + 1, 1) SkipNodes(A, pA, l + 1, 1) SkipNodes(A, pA, l + 1, 1)
2 0 t[i]← 0 t[i]← 2 t[i]← 2

2 1
t[i]← 1 t[i]← 2 t[i]← 1

Copy(B, pB, l + 1, 1) SkipNodes(B, pB, l + 1, 1) Copy(Complement(B), pB, l+ 1, 1)
2 2 t[i]← 2 t[i]← 2 t[i]← 0

7: else
8: t[i]← A[pA[l]]{∧| ∨ |∧ ∼}B[pB[l]]
9: end if

10: writesomething ← writesomething ∨ t[i]
11: full← full ∧ (t[i] = 2)
12: pA[l]← pA[l] + 1, pB[l]← pB[l] + 1
13: end for
14: if writesomething = 1 then
15: if full = 1 then
16: return 2
17: else
18: C[l]← C[l] || t
19: end if
20: end if
21: return writesomething

The intersection of RA and RB uses the same algorithm, but the base case and
the action for each combination of two input bits is different from the union. The
intersection of two leaves is the logical AND. In upper levels, the intersection of A
and B behaves as follows: if one of them is a black area, the intersection is the other
one; if one of them is a white area, the intersection is a white area and we must skip
the bits of the other one; if both are gray areas, we must check recursively the value
of the intersection.

For the difference RA − RB the base case at leaves level implies the difference
between the bits. In upper levels, we highlight the following cases: if A is 0, the
output is 0 and B, if present, must be skipped; if B is 0, the output is A; if B is a
black zone, the output is 0, and A, if present, must be skipped; if A is a black zone
and B is gray, then the output is 1, and we Copy the Complement of B in the output
(this is put this way again for clarity, but we do not need to compute the complement
of the whole tree). If both A and B are 1, we must check recursively the difference.

381

5 Discussion and Future Work

The k2-tree has been extensively used in recent years to represent binary relations:
web graphs, social networks, raster data, RDF datasets, etc. In addition to its data
structures, several navigation algorithms have been described, such as retrieving the
original binary relation, determining if one element x is related to another element
y or all the elements related with a specific one. In this paper we go further in the
proposal of functionality for this data structure, detailing the algorithms to compute
the union, intersection, complement and difference of k2-trees, including different
variants of their representation. For all the algorithms shown, it can be proven that
no bit is processed twice. Thus, the resulting k2-tree is efficiently obtained in time
linear to the size of the input k2-trees.

We plan to continue this work extending the set of binary operations supported by
the k2-tree, including other operations such as restriction or composition of relations,
and also algorithms that check different properties over the binary relations, such
as reflexivity, symmetry, antisymmetry, transitivity, etc. We also plan to include
an extensive experimental evaluation of the practical performance of the algorithms,
compared with trivial baselines, applying set operations directly over raw data, and
also with other representations such as [1]. We also plan to extend this work to
support operations for n-ary relations.

References

[1] J. Barbay, F. Claude, and G. Navarro, “Compact binary relation representations with
rich functionality,” Infomation and Computation, vol. 232, pp. 19–37, 2013.

[2] J. Barbay, A. Golynski, J. I. Munro, and S. S. Rao, “Adaptive searching in succinctly
encoded binary relations and tree-structured documents,” Theoretical Computer Sci-
ence, vol. 387, pp. 284–297, 2007.

[3] N. R. Brisaboa, G. de Bernardo, and G. Navarro, “Compressed dynamic binary rela-
tions,” in Procs. of DCC, 2012, pp. 52–61.

[4] N. R. Brisaboa, S. Ladra, and G. Navarro, “Compact representation of web graphs
with extended functionality,” Information Systems, vol. 39(1), pp. 152–174, 2014.

[5] G. de Bernardo, S. Álvarez-Garćıa, N. R. Brisaboa, G. Navarro, and O. Pedreira,
“Compact querieable representations of raster data,” in Procs. of SPIRE, 2013, pp.
96–108.

[6] R. González, S. Grabowski, V. Mäkinen, and G. Navarro, “Practical implementation
of rank and select queries,” in Poster Procs. of WEA, 2005, pp. 27–38.

[7] G. Jacobson, “Space-efficient static trees and graphs,” in Procs. of FOCS, 1989, pp.
549–554.

[8] T. W. Lin, “Set operations on constant bit-length linear quadtrees,” Pattern Recogni-
tion, vol. 30(7), pp. 1239–1249, 1997.

[9] H. Samet, Foundations of Multidimensional and Metric Data Structures. Morgan
Kaufmann Publishers Inc., 2006.

[10] C. A. Shaffer and H. Samet, “Set operations for unaligned linear quadtrees,” Computer
Vision, Graphics, and Image Processing, vol. 50(1), pp. 29–49, 1990.

382

