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ABSTRACT
Compact data structures combine in a unique data structure
a compressed representation of the data and the structures
to access such data. The target is to be able to manage
data directly in compressed form, and in this way, to keep
data always compressed, even in main memory. With this,
we obtain two benefits: we can manage larger datasets in
main memory and we take advantage of a better usage of
the memory hierarchy.

In this work, we present a compact data structure to rep-
resent raster data, which is commonly used in geographi-
cal information systems to represent attributes of the space
(i.e., temperatures, elevation measures, etc.). The proposed
data structure is not only able to represent a dataset in
compressed form and access to an individual datum without
decompressing the dataset from the beginning, but it also
indexes its content, and thus it is capable of speeding up
queries.

There have been previous attempts to represent raster
data using compact data structures, which work well when
the raster dataset has few different values. However, when
the range of possible values increases, performance in both
space and time degrades. Our new method competes with
previous approaches in that first scenario, but scales much
better when the number of different values and the size of
the dataset increase, which is critical when applying over
real datasets.

CCS Concepts
•Information systems→Geographic information sys-
tems; •Theory of computation → Data compression;
Sorting and searching; •Applied computing → Physical
sciences and engineering;

Keywords
Geographic information systems; raster datasets; data com-
pression; query processing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SSDBM ’16, July 18 - 20, 2016, Budapest, Hungary
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4215-5/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2949689.2949710

1. INTRODUCTION
Geographical information systems can manage spatial in-

formation using different data models. At the conceptual
level, we have two alternatives: object-based models and
the field-based models [22]. An object-based model consid-
ers that the space contains discrete and identifiable enti-
ties, each with a geospatial position. Whereas, a field-based
model can be seen as a mathematical function that for each
position of the space gives a value. Examples of object-based
models are those containing buildings, roads, and other man-
made objects. Field-based examples are usually more re-
lated to physical properties like land elevation, temperature,
atmospheric pressure, etc. Considering the logical level, we
can find another two models: vector models, which represent
the geographic information using points and line segments,
and raster models, which represent geographic information
by partitioning the space as a tessellation, in most cases, of
squares of the same size that are usually called cells. In that
case, the space is represented as a grid where each cell has a
value [15]. Although any logical spatial model can be used
to represent any conceptual spatial model, vector models are
commonly used to represent object-based models and raster
models are often used for field-based models.

In this work, we deal with raster models. Given that any
image can bee seen as a raster, the use of this data model
is massive. Other examples of application of raster datasets
could be pollution control, weather forecast, satellite im-
agery, remote sensing capture, 3D modeling, engineering,
etc. All these scenarios have something in common, they
deal with big raster datasets.

Data compression has been traditionally applied in these
contexts with the goals of saving space and bandwidth [21,
14]. In most cases, it is not possible to process or query the
original data in its compressed shape, requiring a decom-
pression phase that is generally time-consuming. However,
in the last recent decades, a new family of data structures,
called compact data structures, has changed this classical
way of using compression. Compact data structures com-
bine in a unique data structure a compressed representation
of a dataset and the access methods that allow us to re-
trieve any given datum, without the need of decompressing
the dataset from the beginning [12]. The idea is to keep data
always compressed, even in main memory. The benefits are
obvious, in addition to the typical savings in disk space and
bandwidth, we can process larger datasets, and moreover,
this processing can be more efficient thanks to a better us-
age of the memory hierarchy. In many cases, compact data



structures, in addition to a compressed representation, pro-
vide some sort of self-indexation, which allow us to answer
queries even faster than performing that query over the plain
representation and within the same compressed space [16,
18].

Moreover, due to the size of many of those datasets, it
is common to process them by pieces using some sort of
parallel computing [10, 17, 6]. In that scenario, data in-
terchanges between nodes can slow down the process due
to bottlenecks in the network. Compression has been mas-
sively used to reduce bandwidth consumption [5] in that
scenario. Traditionally, compression methods applied for
this context have been designed to perform the compression
and decompression processes very fast, since, as explained,
data have to be decompressed prior to any process, and thus
data should be compressed before any data exchange and de-
compressed at the destination node. With a compact data
structure approach, data can be interchanged between nodes
in compressed form, and also processed in compressed form
at the destination node, without decompressing it, saving
space and time.

There exists vast research focused on compressing raster
datasets, and also for creating additional indexes on top
of the raster data to improve query and processing perfor-
mance[8, 23]. However, to the authors’ knowledge, only two
types of compact data structures have been proposed specifi-
cally designed to deal with this type of information [7]. They
have been proved to work well when the number of different
possible values in the raster is low, yet when that number
grows, both the space and the time needed to answer queries
increase dramatically. When dealing with field-based mod-
els, it is likely to have real values or large integers as values
for each cell, and thus, the range of possible values can be
high. Therefore, these existing compact representations be-
come impractical for real datasets.

In this work, we present a new compact data structure to
represent raster datasets, called k2-raster, which is based
on the k2-tree [4], a compact representation for representing
binary matrices in little space that follows a Quadtree strat-
egy [20] and supports efficient random access to the data.
The proposed data structure has a competitive performance
with that of the previous approaches when the number of
possible values in the raster dataset is low, but scales much
better when the number of possible values increases, being
much better in that scenario. In our experiments, k2-raster
occupies between 4% and 58% of the space occupied by the
plain representation, which is up to 6 times less that the
previous approaches. In addition, k2-raster was able to an-
swer queries up to 34 times faster than those previous data
structures.

The rest of the paper is structured as follows. Section 2
presents some previous concepts that are relevant for de-
scribing our proposal and the related work, which is pre-
sented in Section 3. Section 4 shows our structure to repre-
sent and query raster datasets. Section 5 details our exper-
imental study. Finally, Section 6 presents the conclusions
and future work.

2. PREVIOUS CONCEPTS

2.1 Rank and select operations over bitmaps

Let B[1, n] be a bitmap, that is, a sequence of bits. We
define operation rankb(B, i) as the number of occurrences
of bit b ∈ {0, 1} in B[1, i]. When omitting b, rank opera-
tion returns the number of 1s up to a given position, that
is, rank(B, i) = rank1(B, i).

This operation can be answered in constant time using
just o(n) extra bits on top of B [11]. It is the basis of most
of the compressed data structures of the literature, and it
will also be used in our proposal.

2.2 DACs
Directly Addressable Codes (DACs) [3] is a variable-length

encoding scheme for sequences of integers that supports fast
direct access to any position of the sequence in a very com-
pact space. It is oriented for sequences of integers with skew
frequency distributions, where the number of occurrences of
smaller integer values is higher than the number of occur-
rences of larger integer values.

Given a sequence of integers X = x1, x2, . . . , xn, DACs
rearrange the binary representation of those integers into
a level-shaped structure as follows: the first level B1 con-
tains the first n1 bits of each integer. In addition, there is
a bitmap C1 indicating for each integer, whether its binary
representation requires more than n1 bits or not. If it does
not require more than n1 bits, bitmap C1 stores a 0. Instead,
if it requires more than n1 bits, it stores a 1 and includes
the following n2 bits of its binary representation in a second
level B2. This scheme is repeated using as many levels as
needed. The number of levels L and the number of bits nl

at each level l, with 1 ≤ l ≤ N , can be computed to achieve
the minimum space.

The fast direct access is provided thanks to the support
of rank operations over the bitmaps Cl, as they allow us to
obtain the complete binary representation of the integer in
a given position, by a top-down traversal of the level-shaped
structure. Thus, the worst case time for extracting a random
codeword is O(L), being L the number of levels used.

Optimizing DACs to obtain the minimum space possible
may lead to an inefficient representation in terms of access
time, if it requires a considerable large number of levels.
DACs can also be configured to obtain the minimum space
as possible but limiting the number of levels L to use, which
is given as a parameter. This will be the approach followed
in our proposal.

2.3 k2-tree
The k2-tree is a compact data structure that was originally

proposed for representing Web graphs in little space while
providing navigational capabilities [4]. It represents the bi-
nary adjacency matrix of a graph using a succinct represen-
tation for trees, more concretely, the LOUDS (level-ordered
unary degree sequence) tree representation [11].

The k2-tree builds a non-balanced k2-ary tree from the
graph by recursively subdividing the adjacency matrix into
k2 submatrices of the same size. It starts by subdividing the
original matrix into k rows and k columns of submatrices of
size n2/k2. Each of the resulting k2 submatrices will gener-
ate a child of the root node whose value is 1 iff there is at
least one 1 in the cells of that submatrix. A 0 child means
that the submatrix has all 0s and hence the tree decompo-
sition ends there. The method proceeds recursively for each



child with value 1, until it reaches a submatrix full of 0s, or
it reaches the cells of the original matrix (i.e., submatrices
of size 1×1). Figure 1 shows an example of this subdivision
(left) and the resulting k2-ary tree (right) for k = 2.

The tree is compactly represented by just storing in two
bitmaps T and L all the bit values of the tree following a
level-wise order. T stores all the bits of the k2-tree except
those at the last level of the tree, and L stores the last level of
the tree, thus containing the binary value of (some) original
cells of the adjacency matrix. It is possible to navigate this
space-efficient representation by just supporting rank oper-
ations over bitmap T , imposing little extra space on top of
it [9]. In particular, it is possible to obtain any cell, row,
column or region of the matrix in a very efficient time. The
top-down traversals in the conceptual tree are simulated by
rank operations in its bitmap representation.

The k2-tree representation obtains excellent performance
when the binary matrix is sparse, has large zones of 0s and
the 1s are clustered. There exists a variant of the original
method that behaves better when the number of 1s grows
[7]. This variant also compresses large areas of 1s. It repre-
sents uniform areas (either black zones of 1s, or white zones
of 0s) with a 0, adding a way to distinguish black and white
areas; and areas with mixed 1s and 0s (grey areas) with a 1,
requiring further subdivisions in the tree. This representa-
tion is more suitable for representing other types of datasets
different from Web graphs, such as binary images.

The k2-tree representation was also adapted to support
the compact representation of RDF datasets [2], moving ob-
jects [19], general graphs [1], and raster data [7], among
others. The approaches used to represent raster data using
the k2-tree as basis will be explained in the next section.

3. RELATED WORK
In this section, we describe the previous proposals for effi-

ciently representing and querying raster datasets as compact
data structures in main memory: accumulated k2-trees, also
known as k2-acc, and k3-trees. They are both variations of
the k2-tree to tackle the scenario where, instead of binary
matrices, we want to efficiently represent general raster data,
where each cell has an integer value.

These approaches have been proved to perform better
than other representations of raster datasets, such those
based on GeoTIFF images [7]. This behavior was indeed
expected, as the k2-tree uses a MX-Quadtree strategy [20],
which has been extensively used for image data.

3.1 k3-trees
The first of the strategies consists in generalizing the k2-

tree to deal with a three-dimensional binary cube instead of
a two-dimensional binary matrix. This can be trivially done
by extending the space partitioning while maintaining the
representation techniques used for k2-trees.

Thus, the k3-tree stores tuples 〈x, y, z〉 such that the raster
value at position (x, y) is z. This representation can obtain
the value of a given cell or all the cells with a given value or
range of values by just traversing the k3-tree fixing some of
their dimensions (x and y for the first query and z for the
lasts queries).

3.2 k2-acc
The second strategy proposed for representing raster data-

sets in compact space consists in creating a collection of
k2-trees, as many as different existing values of the raster.
Assuming there are t different values in the raster: v1 <
v2 < · · · < vt, it creates t k2-trees, namely K1,K2, . . . ,Kt,
where each Ki has a value 1 set up in those cells whose
value is v ≤ vi. Thus, this approach is denoted accumulated
k2-trees or k2-acc. These k2-trees use the variant that also
compresses large zones of 1s, as it can better exploit the
regularities of the spatial attributes.

This representation can return the value at a given cell by
binary searching the collection of k2-trees, and can return
very efficiently those cells within a given range of values, as
it only needs to access two different k2-trees. Obtaining the
cells that contain a specific value also requires the traversal
of two k2-trees.

Compared with the previous approach, k2-acc obtains in
general better time performance for retrieving cells contain-
ing a specific value or range of values, whereas k3-tree ob-
tains better space results and better time results when re-
trieving the value in a given position.

4. OUR PROPOSAL: k2-raster
In this section we describe the k2-raster. It is a new tech-

nique for representing raster datasets that uses compressed
space and offers indexing capabilities, thus, improving query
times over the raster data.

LetM be a raster matrix of size n×n, being n a power of k,
containing values v ≥ 0 for each cell Mij .

1 The k2-raster re-
cursively partitions the matrix M into k2 submatrices, anal-
ogous to the original k2-tree, and builds a tree representing
this recursive subdivision. In addition, the representation
is coupled with an efficient representation of the maximum
and minimum values of each submatrix, which are needed
for the representation of the raster data, but also provide the
indexing functionality. Using the min/max values for index-
ing and improving query performance has already been used
in the past [13, 8, 23], but our proposal efficiently represents
this information, obtaining compressed spaces and avoiding
the need of representing the original raster matrix, making
our approach a self-indexed representation.

4.1 Construction and data structures
The process of construction the k2-raster from the raster

matrix is as follows. The root node of the tree stores the
minimum and maximum values (rMin, rMax) of the com-
plete matrix, which is then divided into k2 submatrices that
are added as child nodes to the parent, in this case to the
root node. For each node, the algorithm proceeds differently
depending on the maximum and minimum values of its cor-
responding submatrix. If these two values are equal, i.e., all

1In case that the input matrix is of size n×m, being n and
m any integer, we conceptually extend the input matrix to
the right and to the bottom with 0s, making it of width and
height n′ = kh = k�logk max{n,m}�, that is, we round n and
m up to the next power of k of their maximum value. This
does not cause a significant overhead because our technique
is efficient to handle large areas of equal values.
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Figure 1: Example of binary matrix(left) and resulting k2-tree representation (right), with k = 2.

cells in the submatrix have the same value, only the maxi-
mum value is stored and the subdivision of that branch ends;
otherwise, both values (maximum and minimum) are stored
and the submatrix is recursively decomposed into k2 sub-
matrices. The process goes on until the last level is reached,
which corresponds to the case where a submatrix is com-
posed of just a single value, or when the maximum and min-
imum values of a node are equal.

Let illustrate our representation with an example. Under
the label “Step 1” of Figure 2, we can see an 8×8 raster ma-
trix, and below it, the corresponding k2-raster using k = 2.
The root node is built with the maximum and minimum
values of the complete matrix. Next, the complete raster is
subdivided in 4 regions of 4×4 cells (given that the original
raster is 8 × 8). Under the label “Step 2”, we can see those
subdivisions and their maximum (marked in dark grey) and
the minimum (marked in light grey) values. For each sub-
division, we add one child node to the root node of the tree,
storing those values. Observe that in the case of the bottom
right subdivision, the maximum and the minimum values
are the same number (2), therefore such node becomes a leaf
node and it is not further subdivided. The three submatrices
corresponding to the first three nodes are then subdivided
into another 4 submatrices, shown under the label “Step 3”,
each with its maximum and minimum values highlighted.
At level 2 of the tree, we can see the corresponding nodes to
each subdivision: those having the maximum value equal to
the minimum value are leaf nodes, and the rest are further
subdivided. However, at level 3 we reach the cell level of the
raster, and then we store the values of the raster. That is,
for each subdivision that reaches this level, we add a child
node for each of its cells, storing the value in the cell.

The previous description corresponds to the conceptual
representation of the k2-raster, but we use succinct data
structures to obtain compression. More specifically, we rep-
resent the tree and the maximum and minimum values as
follows:

• The tree representation is similar to that of a k2-tree.
In contrast to the original k2-tree, a 0 in the tree of
a k2-raster means that all values in the correspond-
ing submatrix are equal, and a 1 means that there are
two or more different values. Furthermore, the original

k2-tree is divided into two bitmaps T and L, where L
represents nodes of last level and T the rest of nodes
of the tree. However, in our case, the bitmap L is not
necessary because it would always be 0, since the max-
imum and minimum value of a leaf node will always
be equal and be represented by a 0.

• The nodes of the tree must store the maximum val-
ues of their corresponding submatrix. These values
are encoded as the difference with the maximum value
of their parent nodes. Notice that we will never get a
negative value because the maximum value of a par-
ent node is always equal or greater than the maximum
value of its children. The final result is a list of integer
sequences, one for each level of the tree, and all but
the maximum value of the root level are encoded us-
ing DACs. Since the maximum values are encoded as
differences, which tend to be small, DACs provide effi-
cient random access to any position of the sequence in
little space. The maximum value of the root (rMax) is
stored as an integer in plain form. Assuming that the
tree has l levels, we obtain l sequences of maximum
values. We can concatenate all the lists in a unique
sequence denoted Lmax.

• The construction of the structure for the minimum
values uses the same technique as for the maximum
values, except that the encoding to each value is the
difference between its value and the minimum value
of the parent node. Again, it will not have negative
values because the minimum value of the node is al-
ways equal or greater than the minimum value of the
parent node.2 The minimum value of the root (rMin)
is stored as an integer in plain form. Since we will not
store minimum values for the leaf nodes, as the max-
imum value is enough to represent them, for a tree of
l levels, we obtain l− 1 sequences of minimum values.
We can concatenate all the lists in a unique sequence
denoted Lmin.

2The minimum value of a node could also be represented
as a difference with respect to the maximum value of that
node. In fact, since only difference greater than zero are rep-
resented, we could subtract 1 to this difference value. This
variant has also been proved experimentally and it obtained
comparable results.



Figure 2: Example of raster matrix (top). We indicate the minimum (light grey) and maximum (dark
grey) value of each submatrix for the four steps of the recursive subdivision of the construction algorithm.
Conceptual tree representation obtained from the construction of the k2-raster (bottom). Numbers at each
node indicate the maximum and minimum value of its corresponding submatrix. In the last level, only the
maximum is shown.

Notice that Lmax will have as many elements as T , as
each node of the tree stores its maximum value, plus all the
values required for the last level of the tree (which is repre-
sented in Lmax but not in T ). Lmin only contains values
for those internal nodes z with T [z] = 1, as those nodes with
T [z] = 0 has a minimum value equal to its maximum value,
and it is already stored in Lmax. It is straightforward to
obtain the position of the value in Lmax corresponding to a
node z: it is at position z of Lmax. Obtaining the position
of its corresponding value in Lmin is also possible by using
rank operation over T : it is at position rank(T, z).

Figure 3 shows the final representation of the k2-raster
corresponding to the conceptual tree shown in Figure 2. The
maximum and minimum values stored at each node are now
encoded using differences with the values of its parent. In
addition, when the maximum and minimum value are equal,
only the maximum value is stored. Using differences instead
of the actual values causes that the final sequence of integers
to encode is mostly composed of small numbers (assuming
some uniformity among the values of the input raster ma-
trix), and this will be exploited by DACs encoding.

Construction
The construction of our representation can be easily done
using a bottom-up recursive procedure.

The algorithm we present here consists in a depth-first
traversal of the tree that outputs the bit array of the tree
representation T� and the lists of maximum and minimum
values for each node, which we will call V max� and V min�,
separately for each level � of the tree. The total time of the
algorithm is linear in the number of cells in the matrix, that
is, O(nm). In fact, it is optimal, as it processes the whole
raster accessing each cell only once.

The algorithm proceeds as follows. When it reaches the
last level, it reads the k2 corresponding matrix cells. If they
are all equal, it just return that value as maximum and min-
imum values; otherwise, it appends their values to Vmax�,
compute their maximum and minimum values and return
them as result of the call.

In case of reaching an internal node, the algorithm pro-
ceeds with k2 recursive calls, one for each children. Af-
ter each child returns its maximum and minimum values, if
these values are different, it appends these values to V max�

and V min� lists and sets up a 1 in the T� of that level. If
the maximum and minimum values are equal, it appends
the value to V max� and sets up a 0 in T�. The overall max-
imum and minimum for all the children is also computed.
If they are equal, it means that all the children contain the
same value, thus, we must undo the last operations we have
done, as these nodes will not have a representation in our
structure. This can be easily done by removing the last k2

positions of T� and V max�, or just moving the pointer that
indicates their last written position, k2 positions backwards.
Finally, the algorithm returns the maximum and minimum
values to its parent.

Algorithm 1 shows the pseudocode of the construction
process. It is invoked as Build(n, 1, 0, 0), where the first
parameter is the (possibly extended) raster matrix size, the
second is the current level, the third is the row offset of
the current submatrix, and the fourth is its column offset.
It assumes that k, T�, V max�, and V min� are global vari-
ables, and that T�, V max�, and Vmin� have been initialized
as empty sequences. In addition, there exist global vari-
ables pmax� and pmin� initialized to zero that are used to
know the last written position of V max� and V min� re-



Figure 3: Compact representation of the conceptual k2-raster using differences for the maximum and minimum
values (top). Data structures T , Lmax and Lmin used for representing compactly the k2-raster (bottom).

spectively. After running this algorithm, we must append
all T�, Vmax�, and V min�, and convert V max and V min
to Lmax and Lmin by computing the differences and en-
coding with DACs. Notice that the algorithm returns the
maximum and minimum values of the input matrix, that is,
rMax and rMin, that must be represented in plain form.

4.2 Query algorithms

Obtaining a cell value
To access the value of a given position, the k2-raster per-
forms a top-down traversal of the tree, guided by the quad-
rant where the cell is located at each level. While going down
in the tree, we must decode the maximum values stored for
the traversed nodes and subtracting them from the maxi-
mum value stored at the root node.

Algorithm 2 shows the pseudocode for this query. To ob-
tain the value at position (x, y) of the raster matrix, that is
Mxy , it is invoked as getCell(n, x, y,−1, rMax). It consists
in a recursive procedure whose parameters are: current sub-
matrix size, row of interest in the current submatrix, column
of interest in the current submatrix, and the position in T
of the node to process (the initial −1 is an artifact because
T does not represent the root node). Values T , Lmax, and
k are global. It is assumed that rank(T,−1) = 0 and rMax
is the maximum value of the raster matrix, which is not
represented in Lmax.

The worst-case navigation time to get a value of a cell is
O(logk n · L), that is, a full traversal from the root node to
the last level of the k2-raster requiring to decode a value
from Lmax at each level. We use L to denote the number of
levels used in DACs for representing Lmax, which depends
on the largest number encoded in the sequence. The time
will be lower when the queried cell is surrounded by cells
with the same value.

To illustrate this query, we will obtain the value at po-
sition (6, 3). In this case, we invoke the algorithm with
the parameters getCell(8, 6, 3,−1, 5), we compute the node
corresponding with the submatrix that contains this cell at

level 1 of the tree. This is z ← rank(T,−1) · 4 + 6/4 · 2 +
3/4 = 2. We obtain val ← accessDACs(Lmax, 2) = 2,
maxval ← 5 − 2 = 3, and, since z = 2 < |T | = 16,
we recursively invoke getCell(8/2, 6mod 4, 3mod 4, 2, 3) =
getCell(4, 2, 3, 2, 3). We repeat the procedure in the next
level: z ← rank(T, 2) · 4 + 2/2 · 2 + 3/2 = 12 + 2 + 1 =
15, val ← accessDACs(Lmax,15) = 0, maxval ← 3 −
0 = 3, and, since z = 15 < |T |, we recursively invoke
getCell(4/2, 2mod 2, 3mod 2, 15, 3) = getCell(2, 0, 1, 15, 3).
Finally, we obtain z ← rank(T, 15) · 4 + 0/1 · 2 + 1/1 = 21,
val ← accessDACs(Lmax,21) = 0, maxval ← 3 − 0 = 3,
and, since z = 21 ≥ |T | = 16 we return 3, which is the
content of cell (6, 3).

If instead we want to retrieve the value of position (7, 7),
we invoke the algorithm as getCell(8, 7, 7,−1, 5). We com-
pute z ← rank(T,−1) · 4 + 7/4 · 2 + 7/4 = 3, we decode
val ← accessDACs(Lmax,3) = 3, maxval ← 5 − 3 = 2,
and, since T [3] = 0 we just return 2, which is the content of
cell (7, 7).

Retrieving cells with a given value or range of values
The k2-raster can also retrieve the cells of the raster matrix
that contain a given value or whose value is within a given
range by efficiently traversing the tree from the root node
down to the last level. In addition, this query can be re-
stricted to a particular window from the raster matrix, that
is, instead of querying the whole matrix, we can search only
inside a specific rectangle [x1, x2]× [y1, y2].

Lets describe how to obtain all cells within the region
[x1, x2] × [y1, y2] that contain values in the range [vb, ve].
Notice that if we are interested in just a particular value v,
this is a particular case where the given range is [v, v].

To know whether a cell or region of cells contains a value
within a specific range we combine the functionality of the
original k2-trees to solve range queries, that is, to obtain
cells with 1s within a given rectangle, with the indexing ca-
pabilities offered by our k2-rasters, thanks to the storage
of the maximum and minimum values at the nodes of the
tree. Thus, we perform a top-down traversal in the tree
through the branches corresponding with submatrices over-



Algorithm 1: Build(n, �, x, y) computes T , Vmax and
V min of the k2-raster representation from matrix M
and returns (rMax, rMin)

minval←∞
maxval← 0
for i← 0 . . . k − 1 do

for j ← 0 . . . k − 1 do
if � = 
logk n� then /* last level */

if minval > Mx+i,y+j then
minval ←Mx+i,y+j

end
if maxval < Mx+i,y+j then

maxval← Mx+i,y+j

end
V max�[pmax�]← Mx+i,y+j

pmax� ← pmax� + 1
else /* internal node */

(childmax, childmin)←
Build(n/k, �+ 1, x+ i · (n/k), y + j · (n/k))
V max�[pmax�]← childmax
if maxval <> minval then

V min�[pmin�]← childmin
pmin� ← pmin� + 1
T�[pmax�]← 1

end
pmax� ← pmax� + 1
if minval > childmin then

minval ← childmin
end
if maxval < childmax then

maxval← childmax
end

end

end

end
if minval = maxval then

pmax� ← pmax� − k2

end
return (maxval,minval)

lapping with the window, disregarding those that fall out-
side the range of values sought and returning those regions
completely contained inside the region and whose min/max
values are completely contained within the given range.

Algorithm 3 shows the pseudocode for this query. It is
again a recursive procedure and, in case we want to ob-
tain all the cells containing values in the range [vb, ve] in-
side the window [x1, x2]× [y1, y2], the algorithm invoked as
searchValuesInWindow(x1, x2, y1, y2, rMax, rMin,−1).
For this algorithm, k, T , Lmax, Lmin, vb, and ve are con-
sidered global variables.

The k2-raster also allows for other efficient queries, such
as retrieving all the values of a region of the raster, obtaining
the maximum value or the minimum values of region, deter-
mining the existence of cells with a value in a region of the
raster (which can be answered faster than searchValueIn-
Window as it does not require obtaining the actual position
of that cell), etc.

4.3 Hybrid variant

Algorithm 2: getCell(n,x, y, z,maxval) returns the
value at cell (x, y)

z ← rank(T, z) · k2

z ← z + �x/(n/k)
 · k + �y/(n/k)

val← accessDACs(Lmax, z)
maxval← maxval− val
if z ≥ |T | or T [z] = 0 then /* leaf */

return maxval
else /* internal node */

return
getCell(n/k, xmod (n/k), ymod (n/k), z,maxval)

end

The main goal of our compact data structure is to im-
prove both space and query times. Focusing on efficiency,
we implement an optimization that allows us to significantly
reduce the time of some queries with the cost of slightly in-
creasing the space requirements of the structure.

In some queries, like getting an individual datum, our
method needs to descend the tree until reaching the re-
quested data, therefore, query time increases with the height
of the tree. Therefore, we propose a new design that allows
us to modify how the matrix is partitioned during the first
levels of tree. That is, instead of using a unique k value
for partitioning all levels, we use two different values k1 and
k2; k1 for the first levels, and k2 for the rest. The goal
is to reduce the total number of levels by performing more
subdivisions in the first levels.

More precisely, given the parameters k1, k2 and the num-
ber of levels n1, the construction process is as follows: for
the first n1 levels, each submatrix is partitioned into k2

1 sub-
matrices and for levels n1 +1 until the leaf nodes is divided
into k2

2 submatrices. We call this version hybrid k2-raster,
k2-rasterH for short.

Figure 4 shows an example of a k2-rasterH built with
k1 = 4, k2 = 2, and n1 = 1. The process is exactly the same,
the difference is that in the first level (given that n1 = 1) the
matrix is divided into k2

1 = 16 submatrices. As in the normal
version, each submatrix adds a child node to the root node
informing about the maximum and minimum value in that
submatrix. Therefore, we can see in Figure 4 that the root
node has 16 children. The second level uses k = 2, and thus
each submatrix is divided into 4 submatrices again, that in
this case are individual cells. The effect of increasing k is
that the tree becomes wider and smaller, and thus, it causes
faster top-down traversals.

5. EXPERIMENTAL EVALUATION

5.1 Experimental Framework
To test the efficiency of our structure, we run a set of

experiments comparing k2-raster against the two previous
compact data structures for raster datasets: k2-acc and k3-
tree. We check the space consumption and the time to an-
swer the two queries shown in Section 4.2.

getCell illustrates the impact on the time to access and re-
cover the original information when we represent the raster
with each of the techniques, since they keep the information
compressed. searchValuesInWindow illustrates the indexing
capabilities of each representation.



Figure 4: Example of using different k values. We indicate the minimum (light grey) and maximum (dark
grey) value of each submatrix for the three steps of the recursive subdivision of the construction algorithm
(top). Conceptual tree representation obtained from the construction of the k2-raster with k1 = 4, k2 = 2
and n1 = 1 (bottom).

In the case of getCell queries, we measure the average
time result for 100,000 queries, choosing random positions
of the input matrix. For searchValuesInWindow queries, we
measure the average time result of 10,000 queries, choosing
random input rectangles contained in the input matrix and
random values for the range boundaries, limited by the num-
ber of different values of the matrix.

All the experiments were run on an isolated IntelR©Xeon R©-

E5520@2.26GHz with 72 GB DDR3@800 MHz RAM. It ran
Ubuntu 9.10 (kernel 2.6.31-19-server), using gcc version 4.4.1
with -O9 options. Time results refer to cpu user time.

We use two different configurations for k2-raster: one uses
k = 2 for the whole tree, whereas the other uses the hybrid
approach, with k1 = 4, k2 = 2, n1 = 4. This last version
will be denoted as k2-rasterH. Both of them use an im-
plementation for supporting rank operations that uses 5%
of extra space on top of the bit sequence T and provides
fast queries [9]3. In addition, Lmax and Lmin are encoded
using the version of DACs that optimizes the space usage
while restricting the maximum number of levels. More con-
cretely, we have limited the number of levels to 3. We will
compare both variants of our proposal with k2-acc and k3-
tree with the same configurations as in the original paper [7].

In the experimental evaluation we use real data obtained
from the Spanish Geographic Institute4 (SGI). More specifi-
cally, we use several DTM (Digital Terrain Model) data files
that contain the spatial elevation data of the terrain from
some regions of the country, stored as rectangular equal-
spaced grids, called tiles (with 5 meters resolution). Each
cell of a tile has a real number of at most three decimal dig-

3If more space and less time is desired, one could replace the
bitmap by another that that uses 37.5% extra space and is
much faster.
4http://www.ign.es

its. In the experiments we use different DTM files as input
raster matrices with different sizes (by considering adjacent
tiles, that is, tiles that represent adjacent regions of the ter-
rain) and varying the number of different unique values (by
considering different precisions of the spatial elevation val-
ues, that is, using different number of decimal digits).

5.2 Analyzing the behavior of k2-raster
Table 1 shows the main properties of the dataset used

in this section. We considered several raster matrices of
different sizes by joining several tiles. Specifically, 1×1 is
built from 1 tile, 2×2 is a raster made up using 2×2 adjacent
tiles, and so on. The subscript indicates how many digits
of the decimal digits were considered. By considering more
or less, we increase or decrease, respectively, the number of
different values existing in the raster matrix. Experiments
over these datasets were run only with k2-raster since in
most cases k2-acc and k3-tree did not run.5 Thus, we devote
this section to analyze the behavior of our approach when
varying the size and the number of different values of the
input matrix.

The results of the experiment are shown in Figure 5. In
the x-axis we show the size of the raster, and the curves
in the plot correspond to four different discretized versions
of the raster, i.e., we generate different input matrices by
taking into consideration 0 to 3 decimal digits of the original
raster values. We only display the values of the normal k2-
raster since the hybrid version obtain similar results. As
explained, this experiment could not be run with the rest of
techniques.

As expected, when considering more decimal digits, there
are more different values, and thus the compression is worse.6

5The method k2-acc can complete the construction of large
datasets but it requires a unaffordable time consumption,
such as days, and the representation obtained is larger than
the original matrix in plain form
6Compression refers to the size of the compressed dataset as



Algorithm 3: searchValuesInWindow(n,x1, x2, y1, y2,
maxval,minval, z) returns all cells from region [x1, x2]
to [y1, y2] containing values within [vb, ve]

z ← rank(T, z) · k2

for i← �x1/(n/k)
 . . . �x2/(n/k)
 do
if i← �x1/(n/k)
 then x′

1 ← x1 mod (n/k)
else x′

1 ← 0
if i← �x2/(n/k)
 then x′

2 ← x2 mod (n/k)
else x′

2 ← (n/k)− 1
for j ← �y1/(n/k)
 . . . �y2/(n/k)
 do

if j = �y1/(n/k)
 then y′
1 ← y1 mod (n/k)

else y′
1 ← 0

if j = �y2/(n/k)
 then y′
2 ← y2 mod (n/k)

else y′
2 ← (n/k) − 1

z ← z + k · i+ j
maxval← maxval− accessDACs(Lmax, z)
if z ≥ |T | or T [z] = 0 then /* leaf */

minval ← maxval
if minval ≥ vb and maxval ≤ ve then

output corresponding region of cells
return /* all cells meet the

condition in this branch */

end

else /* internal node */
minval ←
minval + accessDACs(Lmin, rank(T, z))
if minval ≥ vb and maxval ≤ ve then

output corresponding region of cells
return /* all cells meet the

condition in this branch */

end
if minval > ve or maxval < vb then

return /* no cells meet the

condition in this branch */

end
if minval < vb or maxval > ve then

searchValuesInWindow(n/k, x′
1, x

′
2,

y′
1, y

′
2, maxval,minval, z)

end

end

end

end

What is most significant is that if we fix the number of dif-
ferent values, the technique obtains similar results indepen-
dently of the size of the matrix. This property is of interest
for applying over real datasets, which tend to be large.

Figure 6 shows the times obtained for getCell and search-
ValuesInWindow queries when varying the size and number
of different values of the input raster. Figure 6(a) shows
that times increase for cell queries as the size of the collec-
tion grows, since obtaining the value of a cell from a larger
raster requires traversing a higher number of levels. In ad-
dition, times are also slower when the number of different
values in the raster is larger.

Figure 6(b) shows the times obtained for searchValuesIn-
Window queries. In this case, we limited the size of the
rectangles to 500 × 500 cells. We have done this because if

a percentage of the original dataset.

Table 1: Datasets used for analyzing the perfor-
mance of k2-raster when varying the size and number
of different values of the input matrix. The rasters
have been obtained by joining adjacent tiles.

# different
Name #rows #cols values

raster1×10 4,201 5,841 714
raster2×20 8,402 11,682 1,015
raster3×30 12,603 17,523 1,180

raster1×11 4,201 5,841 7,134
raster2×21 8,402 11,682 10,149
raster3×31 12,603 17,523 11,800

raster1×12 4,201 5,841 69,868
raster2×22 8,402 11,682 101,239
raster3×32 12,603 17,523 117,659

raster1×13 4,201 5,841 632,493
raster2×23 8,402 11,682 989,433
raster3×33 12,603 17,523 1,115,408
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Figure 5: Compression obtained by k2-raster when
varying the size and the number of different values of
the input rasters. The curves represents the values
for different discretization levels.

we used completely free random limits for the query rect-
angles, as the size of the dataset grows, the size of the
query rectangles would increase in the same level. Thus,
with larger query rectangles, computing the answer would
be more costly, but not due to the size of the raster, but due
to the size of the query rectangle.

Results shows that window queries are faster when the
dataset is larger. This can be caused by the fact that as
we have a higher number of different values, the possibility
that a submatrix of the raster contains values from the range
sought is lower, and this can be detected in an upper level of
the tree thanks to the max/min values stored at the nodes.
Thus, the final time is lower than for smaller datasets, which
output a higher number of cells meeting the criteria.

5.3 Comparison with related work
For comparing k2-raster with k2-acc and k3-tree we have

generated a collection of raster matrices from just one tile,
namely that denoted as MDT05-0533-H30-LIDAR. More con-
cretely, we have first truncated the original values by taking
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Figure 6: Time performance of k2-raster for cell (left) and window (right) queries when varying the size and
number of different values of the input raster.

Table 2: Datasets used for comparing k2-raster with
related work. They have been generated from one
specific tile, MDT05-0533-H30-LIDAR, to obtain raster
matrices with different number of values.

# different
Name #rows #cols values

MDT05-0533-H30-LIDAR�9 3,881 5,841 227
MDT05-0533-H30-LIDAR�7 3,881 5,841 903
MDT05-0533-H30-LIDAR�5 3,881 5,841 3,606
MDT05-0533-H30-LIDAR�3 3,881 5,841 14,415
MDT05-0533-H30-LIDAR�1 3,881 5,841 57,586
MDT05-0533-H30-LIDAR 3,881 5,841 114,966

only the two most significant decimal digits. Then we have
created other 5 raster matrices MDT05-0533-H30-LIDAR�x

by shifting x bits of the value of each cell, for x = 1, 3, 5, 7, 9.
By doing this, we have generated a collection of matrices
with the same size and different number of different values.7

We have not used the original values with all their precision
due to the problems of k2-acc and k3-tree for running over
datasets with a high number of different values. Table 2
shows the properties of these datasets.

Figure 7 shows the compression with the six datasets of
Table 2. We can only create the representations of k2-acc
and k3-tree for the first four datasets of the table (from top
to bottom).

The x-axis shows the number of different values in the
dataset. With 227 different values, compression ratios are
around 3% of the original collection, obtaining all techniques
a similar result. When the dataset reaches around 1,000 dif-
ferent values, k3-tree and the k2-raster obtain compression
ratios around 9%, whilst k2-acc starts to yield worse val-
ues, around 11%. With the third dataset, which has 3603
different values, k2-acc already obtains a much worse com-
pression ratio, around 44%. k3-tree obtains a slightly worse
compression than k2-raster, namely a 23% versus 19%. This
tendency continues with the fourth dataset, but now k2-acc
does not compress at all, occupying more space than the
original collection (177%). k3-tree obtains a 32% of com-

7Notice that by shifting x bit each value is divided by 2x,
thus decreasing the number of different values in the raster.
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Figure 7: Comparison of the compression obtained
(in %) by different methods when varying the num-
ber of different values of the input matrix.

pression and k2-raster continues with a little improvement
(29%). As explained, for the last two datasets, we only have
values for k2-raster. We can see that the worsening in com-
pression ratio has a very gentle slope, taking into account
that the x-axis scale is logarithmic, and as the number of
different values grows the distribution is less skewed (given
that the size of the raster is always the same), and thus
obtaining compression is more difficult.

Figure 8(a) shows the time to get the value of a given cell
using the datasets of Table 2. When the raster has 1,000 or
fewer different values, the winner is k3-tree; but when that
number increases, the k2-raster becomes the best option.
For this query, the hybrid version of k2-raster is always
between 30-60% faster than the normal version. Indeed the
normal version is slower than k2-acc in the first dataset, and
it is on a par with k3-tree in the third dataset. However, in
the fourth dataset, with 14,415 different values, the hybrid
k2-raster is 3.8 times faster than k2-acc and 3 times faster
than k3-tree. Again the slope of the curve of the k2-raster
is very smooth, even when processing datasets with much
more different values (recall that the x axis has a logarithmic
scale).
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Figure 8: Time as the number of different values grows.

Figure 8(b) shows the time to solve the searchValuesIn-
Window query. In this query, the k2-raster is the clear
winner in all datasets by far. The k3-tree is faster than k2-
acc only in the first dataset, increasing the times very fast
as the number of different values grows. k2-acc has just the
opposite behavior. The reason is the following. To solve this
query, k2-acc accesses two k2-trees, those representing the
extremes of the checked range. The time is affected if one or
both boundaries are represented by non-sparse k2-trees. In
that case, the traversal of the tree must continue until reach-
ing the leaves at the deepest level, since few nodes are leaves
at a level before the maximum depth. The problem can be
attenuated if one of the boundaries is sparse, but if both
suffer this problem, the times can be affected. The sparser
k2-trees are those at the beginning of the range of possible
values, as the 0s will dominate the raster, and those at the
end of the range of possible values, as the 1s will dominate
the raster, whereas the values in the middle show a mixture
of 0s and 1s that will harm search times. When the range of
possible values is small, there are more chances of processing
trees that are not sparse, whereas as the number of possible
values grows, the amount of trees which are sparse increase.
In any case, in this experiment, the k2-raster is between
3 and 20 times faster than k2-acc and between 10 and 34
times faster than the k3-tree. Indeed, in this experiment,
the scenario of few different values is the best one for the
k2-raster. In this query, there are no differences between
the two versions of the k2-raster.

5.4 Discussion
In the datasets where we could run experiments for all

techniques, we can see that the k2-acc can consume up to 6
times more space than k2-raster, and indeed, in that case,
it occupies more space than the original dataset. The space
consumption of the k3-tree was always close to that of k2-
raster, only at most 12% worse.

The time to get a cell value also yields a bad result for the
k2-acc, as it is up to 3.8 times slower than k2-raster. k3-tree
shows a slightly better behavior, but still it is up to 3 times
slower than k2-raster. In the searchValuesInWindow query,
k2-acc obtains better results (but at the expense of occupy-
ing even more space than the original dataset), though it is
between 3 and 20 times slower than k2-raster. This query
is disastrous for the k3-tree, as it is up to 34 times slower

than k2-raster.

For our experiments we have used raster matrices ex-
tracted from some digital elevation model, which represents
the terrain’s surface of some part of the planet. We have
randomly chosen one tile from one region from Spain to il-
lustrate graphically the space/time results obtained, more
concretely the one named MDT05-0533-H30-LIDAR, but all
the tiles included in the same database showed a similar
behavior.

Notice that k2-raster obtains an excellent performance
for this kind of raster dataset, that is, when there are large
zones of cells containing the same value, and the differences
between the values of adjacent cells is generally small. Large
zones of cells with the same value are represented by k2-
raster with just one bit in an upper level of the tree repre-
sentation, obtaining very compact spaces and excellent time
performance, as the queries can be answered quickly with-
out descending many levels in the tree. Small differences
among the cell values of adjacent cells make possible a com-
pact representation of the minimum and maximum values,
which also impacts both space and time results. k2-raster
is not designed for random raster matrices: it would not ob-
tain any compression, as T would be a complete k-ary tree
and we would need to store all the values of the original cells
as part of Lmax. It would have some indexing capabilities
due to the storage of the minimum and maximum values at
each node of the tree, but times would also be degraded as
we would need to access the last level of the tree for most of
the queries.

6. CONCLUSIONS
We have presented k2-raster, a new compact data struc-

ture that represents raster data in compressed space with
indexing capabilities. Our technique supports, within re-
duced space, to efficiently return the original value at any
cell of the raster and also supports advanced searches, such
as retrieving cells containing some specific values restricting
the search to any random region of the raster.

We compare our proposal with existing techniques from
the literature. Our experiments show that k2-raster clearly
outperforms these previous approaches for real datasets. It
obtains better space usage and query performance and, which
is more importantly, it scales better when the datasets gets



larger or when it contains a higher number of different val-
ues. Previous techniques do not support well datasets with
these properties, which typically appear when using real
datasets.

As future work, we plan to develop more query types over
our structure, in order to achieve a fully functional com-
pressed data structure for raster data representation. In
addition, we will study its performance over other raster
datasets of different nature, as we believe that this proposal
can be used in many different application domains, some
of them requiring adaptations of the structure. We also
explore the possibility of extending the structure to other
dimensions, for instance, to be used for spatio-temporal or
3D datasets. In addition, we will also study the adaptation
of our data structure to distributed environments.
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