Semantic Trajectories in Mobile Workforce
Management Applications *

Nieves R. Brisaboa, Miguel R. Luaces, Cristina Martinez Pérez, and Angeles S.
Places

Universidade da Coruna
Laboratorio de Bases de Datos
A Coruna, Spain
{brisaboa ,luaces,cristina.martinez, asplaces}@udc .es

Abstract. As a consequence of the competition between different man-
ufacturers, current smartphones improve their features continuously and
they currently include many sensors. Mobile Workforce Management
(MWM) is an industrial process that would benefit highly from the in-
formation captured by the sensors of mobile devices. However, there are
some problems that prevent MWM software from using this informa-
tion: i) the abstraction level of the activities currently identified is too
low (e.g., moving instead of performing an inspection on a client, or
stopped instead of loading a truck in the facility of a client; ii) research
work focuses on using geographic information algorithms on GPS data,
or machine learning algorithms on sensor data, but there is little research
on combining both types of data; and iii) context information extracted
from geographic information providers or MWM software is rarely used.

In this paper, we present a new methodology to turn raw data collected
from the sensors of mobile devices into trajectories annotated with se-
mantic activities of a high level of abstraction. The methodology is based
on activity taxonomies that can be adapted easily to the needs of any
company. The activity taxonomies describe the expected values for each
of the variables that are collected in the system using predicates defined
in a pattern specification language. We also present the functional ar-
chitecture of a module that combines context information retrieved from
MWM software and geographic information providers with data from the
sensors of the mobile device of the worker to annotate their trajectories
and that can be easily integrated in MWM systems and in the workflow
of any company.

Keywords: semantic trajectories, mobile workforce management, sen-
sor data, geographic information systems

* Funded by MINECO (PGE & FEDER) [TIN2013-46238-C4-3-R, TIN2013-46801-
C4-3-R, TIN2013-47090-C3-3-P, TIN2015-69951-R]; CDTI and MINECO [Ref. IDI-
20141259, Ref. ITC-20151305, Ref. ITC-20151247]; Xunta de Galicia (co-funded by
FEDER) [GRC2013/053].

1 Background and Motivation

The use of mobile devices has grown incessantly in the last decade and more than
60% of the people in advanced economies report owning a smartphone [7]. Fur-
thermore, the capabilities of mobile devices such as smartphones, tablet comput-
ers, and wearable devices have increased continuously. Their computing power is
similar to the one of a desktop computer from the last decade, and they include
multiple sensors that can be used to measure different variables such as the geo-
graphic position using a GPS receiver, the user activity using an accelerometer,
or the surrounding environment using a thermometer. An industrial process that
would benefit especially from the information collected using mobile devices is
Mobile Workforce Management (MWM). MWM systems are used by companies
to manage and optimize the task scheduling of their workers (e.g., ensuring that
the company has the lowest number of active employees at any time of the day)
and to improve the performance of their business processes (e.g., detecting which
tasks are costly for the company). As an example, it would be very beneficial for
a company that collects waste materials in rural areas to detect if the workers
spend a long time in the activity refueling to help deciding whether it is good
idea to hire someone who does this work at night.

This type of studies are impossible to carry out without the historical move-
ment data of the workers and a procedure to detect and analyze, at a high level
of abstraction, the activities they were performing and how much time they re-
quired. If the MWM system can detect what has really happened on a working
day and compare it to what was scheduled, it can generate useful information to
manage the business processes and to detect the critical points. However, current
MWM systems are not using the information that can be collected by mobile
devices. At most, they are using the location services to record the time when
a worker arrived at the client facility, but they do not use the full range of data
collected by the sensors of the mobile devices to answer queries such as was the
worker at a traffic jam that made him arrive late? or how much time is wasted
walking inside a client facility in each visit? because the data is massive and
complex.

The interest in coherently organizing and labeling sequences of spatio-temporal
points to handle starts with the seminal works [1,10,11] where the idea of assign-
ing semantic keywords to the raw data obtained from a GPS sensor is presented
for the first time. However, these works assume that the semantic keywords are
obtained from other sources and not from the GPS data itself. That is, the sys-
tem analyzes the GPS data sequence and organizes it into coherent sets but,
instead of labelling them, it presents them to be annotated by the user. From
then on, a new line of research was born in the scientific community dedicated
to semantically annotating moving objects, and the center of interest has shifted
from raw data obtained from the GPS sensor, to greaters level of abstraction ori-
ented to the needs of concrete applications. There has been lately much research
work in the field of semantic trajectories addressing the problems of collecting,
modeling, storing and analyzing these data. A semantic trajectory is a set of
episodes, each one consisting of a start time, an end time, and a semantic key-

word. A good summary of the research and the challenges in the field can be
found in [6]. However, the research on semantic trajectories is focusing on detect-
ing low-level activities such as stopped, moving, walking, or running instead of
high-level activities such as stuck in a traffic jam on the way to a client facility,
or loading the truck in the facility of a client. The reason of this mismatch in the
abstraction level is that research on semantic trajectories is aimed at the general
case and there is a limited usage of context information, whereas in a MWM
system the context information (e.g., the schedule of the worker) is extremely
important.

Some of the techniques proposed in the research field of semantic trajectories
have focused on the use of machine learning techniques for the detection of
activities[2,8,9]. However, these techniques cannot be applied in MWM systems
because they require training data, which is very is expensive to collect. For
example, in an MWM system this would mean that employees must annotate
for each task they perform during the day the start and end time, which is an
expensive and cumbersome process. In addition, there will be a large margin of
error because it is very difficult for an employee to perform his work and at the
same time to collect the sample data for the training process. The employee will
easily forget to tag the start or end of an activity and therefore, the sample data
set would be wrong. Finally, this could cause the employees to make mistakes
in their real tasks. Hence, the annotation of semantic trajectories using machine
learning techniques do seem appropriate.

Other research papers have focused on modeling, representing, processing,
querying, and mining object trajectories in their raw state. These lines of re-
search define query languages and model the paths of moving objects so that
specific patterns can be extracted later using query languages. In [3] the raw
data is divided in stop and move episodes [10], and relevant geographic informa-
tion from the application domain is assigned to each episode. Then, the authors
define a semantic trajectory data mining query language (ST-DMQL) to extract
knowledge (data mining) from the raw data using queries and movement pat-
terns. The authors of [5] propose the idea that a trajectory is formed by segments
of different levels of abstraction according to different criteria (e.g., stops and
moves versus the transport system used). In [4] the authors define a symbolic
trajectory as a set of units composed by a time interval plus a value that can
be of type label, labels, place or places. The authors also define a query language
with operators to filter and retrieve those symbolic trajectories. Even though
all these aproaches can be used to efficiently query trajectory data, they are
all techniques of a low level of abstraction and they are hardly integrable in an
MWM system because it would require an untrained company manager to write
complex queries.

Finally, in addition to the problems mentioned above, all the solutions are
generic and do not assume any additional knowledge beyond the data of the
trajectory. However, in the case of the integration with an MWM system, it is
necessary to keep in mind that additional information is known and must be
taken into account.

driving planned loading driving planned coffee break| ./ driving planned loading
09:45 - 10:00 route 10:20 - 10:40 route 11:00 - 11:15

08:25 - 03:45 10:00 - 10:20 . 10:40 - 11:00

[

drivingplanned | i = = = = = = = = == P - = = = = = - - - - - :
route H
08:00 - 09:10

loading
09:10 - 09:25 1

Fig. 1. Trajectory annotated with semantic activities

In this paper, we present the functional architecture of a module for MWM
systems that can be used to collect the information captured by the sensors of the
mobile devices, to analyze and annotate the trajectory with high-level activities
using context information from the MWM system and geographic information
providers, and to provide the semantic trajectory information back to the MWM
system in order to support business intelligence processes. The rest of this paper
is organized as follows. Section 2 describes the annotation methodology and
the activity taxonomies that form the basis of the methodology. Then, Section 3
describes the activity pattern specification language that is used on the taxonomy
to decide which activity is performed. Finally, Section 4 presents the functional
architecture of the working system and Section 5 presents the conclusions and
future work.

2 Annotation Methodology

The purpose of the annotation process is to divide the raw data captured by
the mobile device during the working day into a collection of activities, each one
consisting of a start time, an end time and a label that describes the activity
performed by the worker. For example, Figure 1 shows an annotated trajectory
in which the the worker was performing the activity driving on a planned route
between 09:00 and 09:10.

The raw data used to build and annotate the trajectory is retrieved from
three different sources: the MWM system, the sensors of the mobile device, and
the geographical information of the domain. Regarding the MWM system, the
conceptual model of the Figure 2 shows the minimum information required by
the annotation process. First, it is necessary to know the information of all the
workers of the company (represented in the class Worker). In addition, we must
know all the locations to which the employees have to go in their work day
(represented in the class Location). Each location is described by the name of
the client, the name and the geographic position of the location, and a boolean

Worker

sitributes

-id : Len

-name : String

Schedule

attribuies

1
-home : Geometry

= |-id: Len

-startTime : Calendar
-endTime : Calendar
-taskDescription : String
-route ; Geometry

Location

£

1
TaskType

-name : String

-id : Leng
-is0wnFacility : Boclean
-clientName : String
-locationName : String

0.1

-clientLocation : Geometry

Fig. 2. Minimum information required from the MWM system

1

-endTime : Calendar

Worker SensorData Position
—— 1 sitnbutes sfnouizs
" L s -id : Long -id : Long
‘;1 -Long i -sensorType ; SensorType -time : Calendar
-home : e0metry -startTime : Calendar -position : Geometry

-speed | Double

-altitude : Double
-bearing : Double
-accuracy : Double
-provider : String

-values : ArrayList=BigDecimal=

£

Fig. 3. Raw data collected from the mobile device

value to indicate whether the location is a facility of our own company or it is a
facility of a client. Finally, the daily schedule of each worker is represented by the
Schedule class. This class describes, for each task that must be performed by
each worker, the scheduled start and end time, the type of task (from a catalog
represented by TaskType), a description of the task, and the planned route that
the employee must follow to reach the location.

Figure 3 shows a conceptual model of the information collected by the sensors
of the mobile device. Each worker (represented by the Worker class) is related to
all the values collected by the sensors. The sensor information is represented by
the SensorData class, which stores the sensor type, the time interval when the
value was collected, and the value itself. In addition, we keep all the locations of
the workers (represented by the Position class) storing the variables collected by
the location sensor: the time instant when the value is registered, the geographic
location, the speed, the height, the heading, the precision and the provider of
the location.

In addition to the information provided by the MWM software and the in-
formation collected by the sensors of the mobile device, the annotation process
needs the geographic information of the domain to compare the location of the

*

=

1

1 Annotation
Traj@i attrbutes
1 * |-d: Long
1 -name : String
-startTime : Calendar
. -endTime : Calendar

Position | 1
*

Fig. 4. Annotated trajectory

Activity
0 km'h < velocity < 0.5 km/h

velocity = 6 km/h

0.5 km/h < velocity < 6 km/h

No displacement Moving slowly Driving fast
lineal aceleration lineal aceleration lineal aceleration lineal aceleration
* axis < 0.5 and x axis » 0.5 or % axis <05 and x axis > 0.5 or
y axis < 0.5 and yaxis » 0.6 or y axis < 0.5 and y axis » 0.5 or
zaxis < 0.5 z axis > 0.5 zaxis <05 z axis » 0.5
Stopped Active Driving slowly ~ Walking

Fig. 5. Example of an activity taxonomy

worker with elements of the context such as the road network, or specific points
of interest of the domain such as gas stations. This information is considered
external to the annotation system, but it is used in the annotation process and
the system retrieves. There are two possible ways to retrieve this information:
the first by accessing a local database using SQL queries, and the second by
querying OpenStreetMap using the Overpass API'. In both cases, the result is
a set of geographic objects that can be used in the evaluation of the activity
pattern.

The conceptual model in Figure 4 shows the expected result of the annotation
process. A raw trajectory is a set of raw data represented by the SensorData
and Position classes. An annotated trajectory consists of a set of annotations
(represented by the class Annotation. Each annotation stores the activity name,
the start and end time of the activity, and it references the raw data that compose
the activity.

The basis of the annotation process is the activity tazonomy. For each of
the worker types in the company an activity taxonomy must be defined that

! https://overpass-api.de/

https://overpass-api.de/

ActivityTaxonomy

-id: Lo
-name : String

+annotate

Predicate

Worker +evaluate(seg me;ﬂé .L-iet_<Segme nt=) : void

TaxonomyLeaf Node

-id : Long o -id : Long
-tag : String -tag : String

nents : List t=) tat nents - List t=)

Fig. 6. Catalog of activity taxonomies

includes all the activities that can be performed by the worker type and that
includes the rules for deciding what activity is performed at each time interval.
The Figure 5 shows an example of an activity taxonomy. The leaf nodes of the
taxonomy are the activities that can be performed by a worker (e.g., stopped,
active, driving slowly, walking, driving fast). Each intermediate node is formed
by a set of edges. Each taxonomy edge is tagged with an activity pattern that
represents the expected values for the variables that are collected in the system
(e.g., 0km/h < velocity < 0.5km/h).

The activity taxonomies for each worker are stored in a catalog whose con-
ceptual model is shown in Figure 6. In this catalog, each worker in the company
(represented by the Worker class) is associated with an activity taxonomy rep-
resented by the Taxonomy class. The definition of the predicate associated to
each edge of the taxonomy is done by means of a specification language that is
described in the Section 3 and that is represented by the Pattern Specification
class. Finally, a taxonomy can be associated with more than one employee since
the activities identified for all employees of the company in the same category
will be the same.

The procedure for annotating the trajectories is described in Algorithm 1.
The first step is to obtain all the workers of the company. Then, for each worker,
the activity taxonomy corresponding to the worker type is retrieved. After that,
the raw data is retrieved for the worker. As shown in Figure 3, the sensor data
consists of a collection of SensorData objects, each of them consisting of a time
interval and a sensor value. Similarly, the location data consists of a collection of
Position objects, each of them consisting of a timestamp and the GPS variables.
However, these data may not be aligned in the sense that the start and end times
of the intervals are not necessarily the same for all sensor types, and the location
timestamps may not coincide with any time interval. Therefore, it is necessary a
step in the algorithm to homogenize the time intervals. The result is a collection
of TrajectorySegment objects, each of them consisting of a time interval, a
sensor value for each sensor type, a Position.

Algorithm 1 Algorithm to annotate trajectories

function ANNOTATETRAJECTORIES(currentDate: Timestamp)
workers < retrieveWorkers()
for all aWorker € workers do
> Retrieve the activity taxonomy
activityTaxonomy < retrieveActivity Taxonomy (aWorker)
rootNode <« activity Taxonomy.getRootNode()
> Retrieve and segment the trajectory
rawTrajectory < retrieveTrajectoryData(aWorker, currentDate)
segmentedTrajectory <— segmentTrajectory(rawTrajectory)
> Annotate the trajectory (see Algorithm 2)
rawAnnotation +— annotate(segmentedTrajectory, rootNode)
> Aggregate contiguous segments of the same activity
annotation <+ aggregateSegments(rawAnnotation)
> Store the annotated trajectory
for all segment € annotation do
annotate(rawTrajectory, segment)
end for
end for
end function

Algorithm 2 Algorithm to evaluate a trajectory in a taxonomy node

function ANNOTATE(segmented Trajectory: List of segments, node: TaxonomyNode)
if node.getType() # "leaf” then
> It is an intermediate node
edges + note.get TaxonomyEdges|()
for all anEdge € edges do
> The predicate of the edge is evaluated
evaluation < anEdge.getPredicate().evaluate(segmented Trajectory)
> The segments that evaluate to true are passed to the child node
trueSegments < removeTrueSegments(evaluation, segmentedTrajectory)
annotate(trueSegments, anEdge.getChildNode())
> Only the segments that evaluate to false are kept in segmented Trajectory
removeFalseSegments(evaluation, segmentedTrajectory)
end for
> The remaining segments are annotated as undefined
annotate(segmentedTrajectory, undefined)
else
> It is a leaf node
for all segment € segmentedTrajectory do
> All segments are annotated with the activity of the node
segment.activity < node.getActivityName()
end for
end if
end function

In the next step, the activity taxonomy is evaluated against the segmented
trajectory. Algorithm 2 shows the algorithm used for the evaluation. The process
starts at the root of the taxonomy. The first taxonomy edge is retrieved and its
activity pattern is evaluated against the trajectory segments. All segments that
evaluate to true are passed to the taxonomy edge child node to be evaluated
recursively. This recursive procedure ends when a taxomy leaf node is reached.
In this case, all the segments received are annotated using the activity name in
the leaf node. All the segments that do not evaluate to true in an internal node
are evaluated against the next taxonomy edge. The segments that remain after
all taxonomy edges are annotated as undefined.

After evaluating the activity taxonomy against the segmented trajectory it
may happen that many segments contiguous in time are annotated with the
same activity. The next step of Algorithm 1 aggregates all these segments to a
single one. The final step of the algorithm stores the annotation in a database
following the conceptual model described in Figure 4.

3 Pattern specification language

As described in Section 2, each edge of the activity taxonomy is associated with
a predicate that is used to evaluate each trajectory segment and decide the
concrete activity that is used to annotate the segment. Each predicate is defined
using a pattern specification language that describes the expected values for each
of the variables that are collected in the system. The language consists of seven
different types of predicates that receive a trajectory represented as a list of
segments and return the result of evaluating the predicate as a list of boolean
value annotated with a time interval. The different types of predicates are the
following and are grouped into two levels, primary level and composite level,
this last level allows to combine simple predicates to build relationships between
them.

Primary predicates

— SensorPredicate: It returns true if the sensor values in the segment satisfies
a comparison operator.

e sensorname: The name of the device sensor used.

e operator: A list of comparison operators used to check the sensor value
against the threshold (one operator for each sensor dimension). Each
operator may be one of <, >, =, <, >, #.

e threshold: A list of threshold values used in the comparison (one value
for each sensor dimension).

e is0Or: A boolean value determining whether it is enough that one sensor
dimension fulfills the comparison (true), or all sensor dimensions are
required to fulfill the comparison (false).

e time: The minimum time interval that the sensor value must not fulfill
the comparison in order to render the predicate false. This attribute

10

is used to that short changes in the sensor values. turn the predicate
false (e.g., a sudden and short movement of the device should not be
considered relevant if the device has been static for a long period of
time).
— GPSPredicate: It returns true if the GPS position in the segment satisfies a
comparison operator.

e gpsattribute: The GPS attribute used in the predicate. It may be one
of speed, altitude, bearing, precission, or location provider.

e operator: A comparison operator used to check the GPS against the
threshold. The operator may be one of <, >, =, < > .

e threshold: A threshold value used in the comparison.

e time: The minimum time interval that the GPS attribute must not fulfill
the comparison in order to render the predicate false.

— SpatialPredicate: It evaluates whether the GPS position satisfies a spatial
relationship with the context geographical information.

e operator: The spatial relationship predicate used to compare the GPS
position against the collection of spatial features. It may be any of the
predicates defined by the Open Geospatial Consortium Simple Features
Specification (i.e., equals, disjoint, overlaps, touches, within, contains,
intersects).

e features: A list of spatial features retrieved from the context geographic
information.

e time: The minimum time interval that the GPS position must not fulfill
the spatial predicate in order to render the predicate false.

— SchedulePredicate: It returns true if the schedule information in the MWM
for the worker satisfies a comparison operator.

e operator: The comparison operator used between the task name pro-
vided in the predicate and the task scheduled in the MWM. It may
be one of equals, distinct, like, any (returns true as long as there is an
scheduled task).

e taskname: The name of the task. It may use SQL-like wildcards.

Composite predicates

— LogicPredicate: It allows to combine different predicates through logical
operators.
e operator: The logic operator used to combine the child predicates. It
may be one of and, or or not.
e childpredicates: A list of child predicates to be evaluated and com-
bined.
— DecisionPredicate: It can be used to create a decision tree.
e condition: The predicate that is evaluated and that is used to decide
which value must be returned.
e isTrue: The predicate that is returned when the condition predicate
returns true.

11

SensorPredicate

_sensorname - String SchedulePredicate
-operator : ArraylList<SensorOperator: attnbutes

-threshold : ArrayList<Double= -operator : ScheduleOperator
-is0r ; Boolean -tazkname : String

-time : Double

b

Predicate

operafions
+evaluate(segments : List=Segment=) : void

i

[
GPSPredicate

SpatialPredicate

- sﬂttth':.ﬁt:.:h sType attrbutes

_Egerﬂmr . gpgggper}ﬂptcr -operator : SpatialOperator
_threghghjl' Double -features : List<SpatialFeatures:
[-time : Double

-time : Double

Fig. 7. Predicate types

e isFalse: The predicate that is returned when the condition predicate
returns false.

e isUndefined: The predicate that is returned when the condition predi-
cate returns undefined.

— ConstantPredicate: It returns a constant value (either true, false or unde-
fined) regardless of the segment values. It is useful as a child predicate of a
DecisionPredicate.

e value: The value that is always returned by the predicate. It may be
either true, true, or undefined.

Figures 7 and 8 show a conceptual model of these predicates. Each predi-
cate is a specialization of the abstract class Predicate, which defines a method
to evaluate the predicate on a list of trajectory segments. Each subclass of
Predicate defines specific attributes for the concrete predicate and it over-
rides the method evaluate to implement a diferent evaluation procedure. Finally,
LogicPredicate and DecisionPredicate are special because they require a set
of child predicates (the arguments of the logical operator in the first case, the
decision predicate and the predicates for each decision result).

Figure 9 shows in a conceptual way the result of evaluating some predicates.
The top part of the figure shows the GPS positions of the trajectory and a spatial
feature used for the evaluation. The bottom part of the figure shows the results
of the predicate evaluation. The horizontal axis represents time, the vertical axis
represents the result of the evaluation of the predicate using a the value zero
if the evaluation is false, the value one if the evaluation is false, and no value
if the evaluation is undefined. The topmost predicate, within client facility, is a
SpatialPredicate that returns true when the GPS position is within the spatial

12

isFalse

isTrue

isUndefined

condition

Predicate

DecisionPredicate

s

+evaluate(segmeﬁ{s : L_ist_ecsegment:a) : void

childpredicates

ConstantPredicate

ax

-value . Bo

edan

-operator

LogicPredicate

Fig. 8. Predicate types

predicate,

within client faciility

device static

moving slowly

walking inside client facility

12:00 12:10

Fig. 9. Evaluation of the predicate walking inside client facility

12:20

12:30

12:40 12:50 13:00

13:10

time

13

feature of the client facility (i.e., between 12:40 and 12:47) and false otherwise. It
also returns undefined from 12:10 to 12:20 because there are no GPS data. The
second predicate, device static, is a SensorPredicate that returns true when
the values returned by the linear accelerometer of the device are below 1 m/s?
(hence, the device is relatively static and the user is not walking or running). The
following predicate, moving slowly, is defined using a GPSPredicate that returns
true when the speed recorded by the GPS is less than 10 km/h. Finally, the
predicate walking inside client facility is defined using a LogicPredicate that
combines the previous predicates using the logical operator and and negating
the predicate device static as follows:

walking inside client facility = within client facility A

A = device static A moving slowly

4 System architecture

MWM system

Schedule

MWM TRAJECTORY GEOGRAPHIC
INFORMATION INFORMATION
PROVIDER ANNOTATOR PROVIDER

4. 0 O

OpenStreetMap Geographic
Raw data Database

ANALYSIS
AND
REPORT

SENSOR
COLLECTOR
[Android]

SENSOR
RECEIVER

u

Manager

Trajectory
database

Worker

Fig. 10. Functional architecture

Figure 10 shows the functional architecture of the system. On the left side
of the figure we show the MWM system with the minimal information that we
expect to retrieve: information regarding the clients of the company, the workers
of the company, and their daily schedules. The right side of the figure shows the

14

system that we have built, which is composed of a module that is deployed as an
Android application on the worker mobile devices (i.e., Sensor Collector) and a
collection of server-side modules (i.e., Sensor Receiver, Geographic Information
Provider, MWM Information Provider, Trajectory Annotator, and Analysis and
Report). The modules in the architecture are used by three different user roles:
workers uses the Sensor Collector in their mobile devices, company managers
review the information computed by the Trajectory Annotator using the Analysis
and Report module, and analysts configure the different modules to suit the
company needs (e.g., they define the activity taxonomies, define the geographic
data sources, or configure the Sensor Collector sampling rate).

The Android sensor framework supports 13 types of sensors. An application
monitoring sensor events decides the desired sampling rate ranging from 5 events
per second to real-time (i.e., as fast as possible). Each sensor event consists of
a timestamp, the reading accuracy and the sensor’s data as an array of float
values. The meaning of each element in the array depends on the sensor type,
but typically each value represents the measurement in a specific dimension. For
example, a linear acceleration sensor returns an acceleration measure on each of
the three axes. Furthermore, each sensor reports about its capabilities, such as
its maximum range, manufacturer, power requirements, and more importantly,
its resolution.

The Sensor Collector module is an Android application that collects infor-
mation from the devices of the workers and sends it to the server-side. The
module can be configured to select which sensor types will be captured and the
sampling rate used. In order to reduce the volume of data that must be stored
in the mobile device and transmitted over the network, instead of storing every
sampled value from the sensor, the data is stored aggregated in sensor segments
that consist of a time interval (i.e., start time and end time) and a sensor event
value array. When the Sensor Collector module receives a new sensor event, if
the difference between the new sensor value and the value in the current sen-
sor segment is smaller than the sensor resolution (i.e., the sensor event can be
considered noise) the sensor event is discarded. Otherwise, the current sensor
segment end time is set to the current timestamp and a new sensor segment is
started.

The location sensor works differently in Android because the developer must
configure a distance and a time threshold that must be exceeded in order to
receive a location event. Therefore, the Android framework does the work of
avoiding excessive location events. For example, a developer may indicate that a
location event must only occur if the distance from the last position is larger than
10 meters and the time passed is larger than 10 seconds. Hence, considering that
the data rate from the location sensor is lower than the data rate from the other
sensors, the Sensor Collector does not have to discard data from the location
Sensor.

Given that sending data through the mobile network is expensive in terms of
battery life, and considering that the worker may not be connected at all times,
the Sensor Collector uses two data queues to optimize the network usage. When

15

a sensor event occurs, the data is stored in the ready for packing queue. Even
though this task is executed frequently, it is simple and it does not consume
much battery. At regular time intervals (e.g., every five minutes, although this
time interval is configurable by the developer) all elements in the ready for
packing queue are removed, compressed in a single data package using the ZIP file
format, and stored in the ready for sending queue. A different process retrieves
data packets from the ready for sending queue and tries to deliver them to the
server-side. If the sending process is sucessfull, the data packets are removed
from the queue. Otherwise, the data packets in the queue to retry sending them
later. These two strategies allow the Sensor Collector to save battery and to be
resistant to network problems.

The sensor information is received in the server-side by the Sensor Receiver,
which is a simple REST web service that receives the sensor data packets and
stores them in the raw data repository, whose conceptual data model can be seen
in Figure 3.

The Geographic Information Provider retrieves geographic information from
different data sources and makes it available to the trajectory annotator. This
module currently supports two different types of geographic data sources: spatial
databases (i.e., databases that support the Simple Features for SQL standard)
and OpenStreetMap (i.e., using the Overpass API). A developer defines a geo-
graphic data source in this module providing a name for the data source and the
query that must be executed (i.e., a JDBC connection string and a SQL query
for spatial database, or an overpass query for OpenStreetMap). The spatial fea-
tures in the geographic data sources are available to the trajectory annotator as
a named list that can be used in the predicates.

The MWM Information Provider retrieves the information from the MWM
system. The minimum information we expect to retrieve from the MWM system
is described in the conceptual model of Figure 2. This module is the only one
that must be adapted for different MWM systems from different vendors. In
some cases it may be a simple proxy that retrieves information from the web
services provided by the MWM system, but in other cases it may be a complex
module that retrieves information from the MWM data repositories.

The Trajectory Annotator module uses the raw data collected from the device
sensors, the information retrieved from the MWM system, the context geographic
information, and the activity taxonomies to annotate the trajectories of the
workers and store them in the trajectory database, as described in Section 2.

Finally, the Analysis and Report module uses the annotated trajectories to
provide useful information to the company managers, such as delays on the
schedules, that can be used to improve future schedules.

5 Conclusions

We have presented in this paper a new methodology to turn raw data collected
from the sensors of mobile devices into trajectories annotated with semantic ac-
tivities of a high level of abstraction. The methodology is based on the concept

16

of actwity taronomies that make the system is highly flexible because they can
be adapted easily to the needs of any company. Furthermore, the activity tax-
onomies describe the expected values for each of the variables that are collected
in the system using predicates defined in a pattern specification language, which
is very expressive and takes into account not only the raw sensor data but also
data retrieved from a MWM system, and from domain-related context geographi-
cal information. Finally, we describe the functional architecture of a module that
can be easily integrated in MWM systems and in the workflow of any company.

As future work, we are finishing the implementation of all the modules and
we plan to do a full-fledged experimental evaluation with two real companies in
the context of a research project.

References

1. Baglioni, M., Macedo, J., Renso, C., Wachowicz, M.: An Ontology-Based Approach
for the Semantic Modelling and Reasoning on Trajectories, pp. 344-353. Springer
Berlin Heidelberg, Berlin, Heidelberg (2008)

2. Bayat, A., Pomplun, M., Tran, D.A.: A study on human activity recognition us-
ing accelerometer data from smartphones. Procedia Computer Science 34, 450 —
457 (2014), the 11th International Conference on Mobile Systems and Pervasive
Computing (MobiSPC’14)

3. Bogorny, V., Kuijpers, B., Alvares, L.O.: St-dmql: A semantic trajectory data
mining query language. International Journal of Geographical Information Science
23(10), 1245-1276 (2009)

4. Giiting, R.H., Valdés, F., Damiani, M.L.: Symbolic trajectories. ACM Trans. Spa-
tial Algorithms Syst. 1(2), 7:1-7:51 (Jul 2015)

5. Ilarri, S., Stojanovic, D., Ray, C.: Semantic management of moving objects. Expert
Syst. Appl. 42(3), 1418-1435 (Feb 2015)

6. Parent, C., Spaccapietra, S., Renso, C., Andrienko, G., Andrienko, N., Bogorny,
V., Damiani, M.L., Gkoulalas-Divanis, A., Macedo, J., Pelekis, N., Theodoridis, Y.,
Yan, Z.: Semantic trajectories modeling and analysis. ACM Comput. Surv. 45(4),
42:1-42:32 (Aug 2013)

7. Pew Research Center: Smartphone ownership and internet usage continues to climb
in emerging economies. http://www.pewglobal.org/2016/02/22/smartphone-
ownership-and-internet-usage-continues-to-climb-in-emerging-
economies/, (Accessed on 12/12/2016)

8. Read, J., Zliobaité, 1., Hollmén, J.: Labeling sensing data for mobility modeling.
Information Systems 57, 207 — 222 (2016)

9. Rehman, M.H.u., Liew, C.S., Wah, T.Y., Shuja, J., Daghighi, B.: Mining personal
data using smartphones and wearable devices: A survey. Sensors 15(2), 4430 (2015)

10. Spaccapietra, S., Parent, C., Damiani, M.L., de Macedo, J.A., Porto, F., Vangenot,
C.: A conceptual view on trajectories. Data Knowl. Eng. 65(1), 126-146 (Apr 2008)

11. Yan, Z., Spremic, L., Chakraborty, D., Parent, C., Spaccapietra, S., Aberer, K.:
Automatic construction and multi-level visualization of semantic trajectories. In:
Proceedings of the 18th SIGSPATTAL International Conference on Advances in
Geographic Information Systems. pp. 524-525. GIS ’10, ACM, New York, NY,
USA (2010)

http://www.pewglobal.org/2016/02/22/smartphone-ownership-and-internet-usage-continues-to-climb-in-emerging-economies/
http://www.pewglobal.org/2016/02/22/smartphone-ownership-and-internet-usage-continues-to-climb-in-emerging-economies/
http://www.pewglobal.org/2016/02/22/smartphone-ownership-and-internet-usage-continues-to-climb-in-emerging-economies/

	 Semantic Trajectories in Mobile Workforce Management Applications

