
Geoinformatica manuscript No.
(will be inserted by the editor)

The largest empty rectangle containing only a query
object in Spatial Databases

Gilberto Gutiérrez · José R. Paramá ·
Nieves Brisaboa · Antonio Corral

Received: date / Accepted: date

Abstract Let S be a set of n points in a fixed axis-parallel rectangle R ⊆ <2,
i.e. in the two-dimensional space (2D). Assuming that those points are stored
in an R-tree, this paper presents several algorithms for finding the empty
rectangle in R with the largest area, sides parallel to the axes of the space,
and containing only a query point q. This point can not be part of S, that is,
it is not stored in the R-tree.

All algorithms follow the basic idea of discarding part of the points of S,
in such a way that the problem can be solved only considering the remaining
points. As a consequence, the algorithms only have to access a very small
portion of the nodes (disk blocks) of the R-tree, saving main memory resources
and computation time.

We provide formal proofs of the correctness of our algorithms and, in order
to evaluate the performance of the algorithms, we run an extensive set of
experiments using synthetic and real data. The results have demonstrated the
efficiency and scalability of our algorithms for different dataset configurations.

Keywords Spatial databases, Query, Indexing methods

A preliminary partial version of this work appeared in [1].

Gilberto Gutiérrez (B)
Universidad del B́ıo-B́ıo, Computer Science and Information Technologies Department
Chillán, Chile
E-mail: ggutierr@ubiobio.cl

José R. Paramá · Nieves Brisaboa
University of A Coruña, Computer Science Department A Coruña, Spain
E-mail: {jose.parama,brisaboa}@udc.es

Antonio Corral
University of Almeria, Department of Languages and Computation Almeria, Spain
E-mail: acorral@ual.es

2 Gilberto Gutiérrez et al.

1 Introduction

In computational geometry, there is a research line that is aimed at finding
empty geometric figures in a space that contains a set of points. For example,
one of them is to find the largest empty axis-parallel rectangle in a space
containing a set of points (see Figure 1(a)). A variant of the previous problem
is to find the largest rectangle that only contains a given query point, assuming
that the query point does not belong to the set of points in the space (see
Figure 1(b)). This work deals with the latter variant.

More variants of this problem are those that find a circumference, a square,
or a convex hull. In addition, in the case of rectangles and squares, another
alternative is to consider figures with sides that are not parallel to the axes.

(a) Largest empty rectangle.

q

(b) Largest empty rectangle containing
only a query point (the triangle point is
the query point).

Fig. 1 Two variants of the problem of finding the largest empty rectangle.

The search for empty geometric figures with the largest area, or any other
metric, has applications in several fields. Among them, we can cite very-large-
scale integration design (VLSI), database management, operations research,
wireless sensor network [2], geographical information systems (GIS) [3], and
data mining [4].

As an example of application of the largest empty rectangle containing
a query point in the GIS field, consider a entrepreneur trying to find a
location for her/his business (restaurant, coffe shop, etc.). If she/he has a list
of candidate positions for her/his business (available and affordable locals),
she/he can provide those positions as the query points to a GIS system, which
has the locations of business of the same sector as points. After running the
queries, she/he obtains the largest empty rectangle around each query point,
and then, she/he can choose a local with a large empty area around the query
point, where the position of the local (query point) is quite centered in the

The largest empty rectangle containing only a query object in Spatial Databases 3

empty area. This means that the site has a considerable area around without
competitors and, therefore, a high probability of having customers for whom
the closest option is her/his business. Note that, the largest empty rectangle
(without location constraints) would be in an area where the locals are too
expensive, or in an area too far from her/his home, or any other constraint.

Another classic application would be when we have several candidate
placements for a facility that implies risks (for example, a nuclear plant or a
potential toxic chemical plant) [3]. If we have the location of human settlements
as points and we provide those candidate sites for the facility as query points,
we can choose a location with a large empty area around, and where the
query point is quite centered. Observe that, if we do not use the query point,
the largest empty rectangle can be in a foreign country, in a non appropriate
geological soil, or in the sea (assuming that the space limits include one or
more peninsulas).

Finally, in the case of VLSI, one might be interested in placing a large
circuit close to a given component [2,5].

The spatial databases (SDBs) represent an important aid for GIS to
manage large amounts of data. However, SDBs require the design of new data
structures, spatial access methods, query languages, and algorithms to manage
spatial information. In this sense, several new query types have been defined,
among others, the window query, the intersection query, the nearest neighbor,
and the spatial join [6,7]. Many of those query types are problems that were
first tackled in the field of the computational geometry, where it is assumed
that all spatial objects can be fit into main memory, and later, those problems
were faced in the field of the SDBs. Following this path, several algorithms
have been proposed considering that objects are stored in a multidimensional
structure, in most cases an R-tree [8], for example; [9,10] present several
algorithms that solve the k-pairs (k ≥ 1) of nearest neighbors between two
sets, [11] shows an algorithm to find the nearest neighbor to a given point,
and [12] presents an algorithm to obtain the convex hull of a set of points
stored in an R-tree.

The problem of finding the largest axis-parallel rectangle that only contains
a given query point (see Figure 1(b)) has also been treated in the area
of computational geometry. In this work, we face this problem from the
perspective of SDBs, assuming that the points are stored in an R-tree. We
present three basic algorithms and two combinations of them. All algorithms
are based on the same idea, they extract a portion of the points in the space by
taking advantage of the presence of an R-tree. Then, using only those points,
a conventional computational geometry algorithm obtains the same result as
if it were applied over the whole set of points. The idea is that the extracted
set is much smaller than the whole set of points, and thus, the computation is
faster and needs less main memory.

These algorithms take advantage of the extensive use of the R-tree in
commercial database management systems [13] (Oracle [14], PostgreSQL [15],
etc.), extending the usefulness of that data structure.

4 Gilberto Gutiérrez et al.

The first algorithm, called q−MER, was presented in [1]. The other two,
called q−MERD1 and q−MERD2, are presented for the first time in this
work. Since depending on the distribution of the data provided as input, one
algorithm performs better than the others, in this paper we also present two
new heuristics that choose the best algorithm for a given query and input data.
In addition, this work present a more detailed empirical study with respect to
that in [1].

We have run a set of experiments to evaluate the performance of
our algorithms over large real and synthetic datasets. The results have
demonstrated the efficiency of our algorithms in terms of pruning unnecessary
branches on the R-tree in order to find the final result of the query and
scalability for different dataset configurations. Moreover, our algorithms
required less response time and storage resources than the naive approach
of reading all the points from disk, store them in main memory, and use a
computational geometry algorithm to obtain the result.

The outline of the paper is as follows: Section 2 presents some previous
related work. Section 3 presents some basics and definitions. Section 4 presents
our three basic algorithms and the two heuristics. Section 5 shows the results
of our experiments. Finally, Section 6 shows our conclusions and directions for
future work.

2 Related work

Given a set S of n points in a fixed axis-parallel rectangle R ⊆ <2, the search
for the largest empty geometric figure (circumference, square, rectangle, or
convex hull) has been an active research field in last decades. Focusing on
the problem of finding the largest rectangle with sides parallel to the axes of
the space, two variants have been considered: (i) no information about the
position of the figure is provided (see Figure 1(a)), and (ii) information about
the position is provided (see Figure 1(b)).

The first variant has been extensively studied. The first work is [16],
where two algorithms are described: the first one takes O(n2) time and O(n)
space, the second one takes O(n log2 n) expected time considering that the
points are randomly arranged into the space. Later, Chazelle et al. [17],
present a divide-and-conquer algorithm withO(n log3 n) time complexity using
O(n log n) space. An algorithm with similar time complexity is discussed in
[18], this one using O(n) space. Orlowski presented an algorithm [19] that
takes O(s log n) time, where s is the number of maximal empty rectangles (or
restricted rectangles). A maximal empty rectangle (MER) is a rectangle that
(i) its edges are parallel to the axes of R, (ii) it lies wholly in R, (iii) no point
of S is contained in its interior, and (iv) each edge contains, at least, a point
of S or is contained in an edge of R. Moreover, that algorithm has an expected
time O(n log n). A more recent approach [20] takes O(n log2 n + s) time and
O(log n) space by using a priority search tree.

The largest empty rectangle containing only a query object in Spatial Databases 5

There are also works in 3D, in this case the algorithms compute the largest
empty axis-parallel cuboid [21,22].

The second variant was proposed in [23,24]. This algorithm performs a
preprocessing step where the space is divided into a set of cells such that all
points that fall in the same cell produce the same maximal empty rectangle
containing the query point. These cells are stored in main memory organized
into a data structure for objects in the two-dimensional space called range
tree. The preprocessing stage takes storage O(n2 log n) and time O(n2). To
retrieve the MER corresponding to a query point q, an additional O(log n)
time is needed. Another approach was presented in [5], this corresponds to a
significant improvement in terms of preprocessing time and space with respect
to that in [23,24]. Specifically, this algorithm requires O(nα(n) log3 n) storage
to maintain the data structure (a segment tree) and O(nα(n) log4 n) time
to build the structure, where the term α(n) is the slowly increasing inverse
Ackermann function. Yet, the query time to find the MER that only contains
q increases to O(log4 n).

However the search of a circle with location constraints is an old problem.
There are several variants: largest circumference only containing a query point
[25,2], a query line [26], or even a n− gon [3,27].

All the algorithms commented so far assume that the objects can be fit into
main memory. Edmonds, et al. [4] face the problem of finding all the empty
spaces left by a set of objects, assuming that the main memory does not have
enough space to store all the objects. That algorithm takes O(|X||Y |), where
X e Y are the distinct values of the coordinates of the dataset. Yet, this work
does not consider the case where the objects are stored in a multidimensional
structure.

To the best of our knowledge, this problem has not been tackled in the
field of SDBs. The closest problem might be the skyline query (which given a
set of points S, the query returns all points in S that are not dominated by
another point) [28,29] and its variations (dynamic and reverse skyline queries)
[30]. Observe that the dominant points of the skyline query define an empty
area that includes the origin of the space (0, 0). However, our empty areas
do not have a skyline shape, but a simple corner of a city block, yet in four
directions (northeast, northwest, southwest, and southeast) from the query
point. Therefore our problem is related to the skyline problem, since both use
the dominance relationship between elements stored in the R-tree (points and
MBRs (Minimum Bounding Rectangles)). Furthermore, in order to speed up
execution times, indexes (as R-tree) have been also used to avoid processing
part of the points [28,29].

6 Gilberto Gutiérrez et al.

3 Preliminaries

3.1 R-tree

An R-tree is a generalization of B+-trees designed for the dynamic indexation
of a set of k-dimensional geometric objects. It is a hierarchical, height balanced
multidimensional data structure, designed to be used in secondary storage. In
inner levels the indexed objects are represented by the Minimum Bounding
k-dimensional Rectangles (MBRs), which bound their children. In this paper,
we focus on 2 dimensions, therefore these MBRs are rectangles with faces
parallel to the coordinate axis and characterized by two points (pmin and
pmax). By using the MBR instead of the exact geometrical representation of
the object, its representational complexity is reduced to two points where the
most important features of the spatial object (position and extension) are
maintained. Consequently, the MBR is an approximation widely employed,
and the R-trees belong to the category of data-driven access methods, since
their structure adapts itself to the MBRs distribution in the space.

Definition 1 An MBR is a rectangle, which faces are parallel to the axis of
the coordinate system and is characterized by two points pmin and pmax, where
pmin = (pmin.x, pmin.y) and pmax = (pmax.x, pmax.y), such that pmin.x ≤
pmax.x and pmin.y ≤ pmax.y. They correspond to the end-points of one of its
major diagonals (e.g. the lower-left corner and the upper-right corner of such
rectangle).

An R-tree satisfies the following rules. Leaves are on the same level. In our
case, each leaf node contains the indexed real points, although it may contain
pointers to the objects of the database together with their MBRs. Every inner
node contains entries of the form 〈MBR, ref〉, where ref is a pointer to the
child of the entry and MBR is the MBR that contains spatially the MBRs
(or points if the child is a leaf node) contained in this child. An R-tree of class
(m;M) has the characteristic that every node, except possibly for the root,
contains between m and M entries, where m ≤ dM/2e. The root contains at
least two pairs. The R-tree nodes are implemented as disk pages.

Figure 2 depicts some MBRs, the indexed points, and the corresponding
R-tree. Dotted lines denote the MBRs of the entries at the root node. The
rectangles with solid lines are the MBRs in the entries of parent nodes of the
leaves. Finally, points are the indexed objects in the leaves.

We consider that the leaf nodes are at level 0 and the root is at level h,
that is, the tree has h+ 1 levels.

Next we present two important properties of the MBRs of R-trees [11]:

Property 1 MBR enclosure property : This property establishes that an MBR
of an R-tree entry always encloses the MBRs of its descendant entries.

Property 2 MBR face property : This property establishes that every face of
any MBR of an R-tree node (at any level) touches at least one point of some
spatial object in the spatial database.

The largest empty rectangle containing only a query object in Spatial Databases 7

R6

R5

R9

R8

R7

R11

R12

R10

R1

R4

R2

R3

R1 R2 R3 R4

R9 R10R7 R8R5 R6

p1

p2

p3

p6

p4

p5

p7
p8

p9

p10

p11

p12

p14

p13

p15

p17

p16

p19p18

p20

p21

p22

p23

p7 p8

p9 p10 p11 p12 p13 p14

p15 p16 p17

p18 p19 p20

p21 p22 p23p1 p2 p3

R11 R12

p4 p5 p6

Fig. 2 An R-tree.

Many variations of R-trees have appeared in the literature (an exhaustive
survey can be found in [13]). One of the most popular and efficient variations
is the R*-tree [31]. The R*-tree added two major enhancements to the R-tree,
when a node overflow is caused. First, rather than just considering the area, the
node-splitting algorithm in R*-tree also minimized the perimeter and overlap
enlargement of the minimum bounding rectangles. Minimizing the overlap
tends to reduce the number of subtrees to follow for search operations. Second,
R*-tree introduced the notion of forced reinsertion to make the shape of the
tree less dependent to the order of insertions. When a node becomes overflowed,
it is not split immediately, but a portion of entries of the node is reinserted
from the top of the tree. The reinsertion provides two important improvements
First, it can reduce the number of splits needed and; second, it is a technique for
dynamically reorganizing the tree. With these two enhancements, the R*-tree
generally outperforms R-tree and it is commonly accepted that the R*-tree
is one of the most efficient R-tree variants. In this paper, we have chosen the
R*-tree to perform our experimental study.

8 Gilberto Gutiérrez et al.

3.2 Definitions and properties

Next, we introduce some definitions and properties that will be used later.

Definition 2 Let S be a set of points in a fixed axis-parallel rectangle R ⊆ <2

(in the plane) and a query point q /∈ S such that q ∩ R 6= ∅. An axis-parallel
rectangle is called a maximal empty rectangle only containing the query point
(QMER) if:

(i) it contains the query point,
(ii) its edges are parallel to the axes of R,
(iii) it lies wholly in R,
(iv) no point of S is contained in its interior, and
(v) each edge contains, at least, a point of S or is contained in a edge of R.

Here, the notion of an axis-parallel rectangle assumes that its geometric
structure is bounded by four sides and thus, a QMER in 2D can be given by
two points: its lower-left corner and its upper-right corner (as an MBR).

6

5

9

8

7

11

12

10

p1

p2
p3

p6

p4

p5

p7
p8

p9

p10

p11

p12

p14

p13

p15

p17

p16

p19
p18

p20

p21

p22

p23

q

Fig. 3 Two QMERs.

A QMER is a rectangle only containing the query point that can not be
enlarged, either due to edges contained in the space limits or edges that contain
a point. Figure 3 displays two QMERs (marked with letters A and B), there
are many others, but in order to avoid an overloaded figure, only those QMERs
are shown.

Observe that the QMER B can not grow in any direction: to the south, the
space ends; to the west, the QMER can not be enlarged, otherwise B would
contain the point p21; to the north, the QMER founds a barrel in p14; and
finally to the east, p17 represents an obstacle to the growth of B. This does
not mean that B is the largest empty rectangle containing q, in fact A is larger.

The largest empty rectangle containing only a query object in Spatial Databases 9

In order to obtain the largest empty rectangle, all computational geometry
algorithms compute MERs (QMERs in the variants with query point)
somehow, and then they search the largest MER (QMER), which is the desired
result.

Definition 3 Given a set of points S in a fixed axis-parallel rectangle R ⊆ <2

stored in an R-tree and a query point q /∈ S such that q ∩R 6= ∅. A candidate
empty rectangle containing the query point (QCER) is a QMER computed
using a set of points (called C) that are obtained from the MBRs of the R-
tree, instead of using the real points in S.

QCERs are computed taking advantage of the knowledge of the position and
extension of the objects in the space present in the R-tree. QCERs are equal or
upper bounds of real QMERs, this allows the q−MER algorithm to compute
only QMERs inside QCERs. By doing this, we divide the problem of computing
the largest empty rectangle containing the query point over the set of points S
into much smaller problems. Each one computes the largest empty rectangle
containing the query point inside a QCER, which is usually much smaller than
the complete space R. Although, we have to repetitively run the computational
geometry algorithm (once for each QCER), since those executions have as
input a much smaller set of points, this implies that the total execution time
is lower.

Definition 4 Given a set of points S in a fixed axis-parallel rectangle R ⊆ <2,
which is stored in an R-tree, and a query point q /∈ S and q ∩ R 6= ∅, the
largest maximal empty rectangle containing the query point q (LQMER) is
the QMER, also in R, with the largest area.

Definition 5 We say that an edge of a rectangle is supported by a point p, if
that edge contains p.

For example, observe in Figure 3 that the upper edge of the QMER A
is supported by the point p3, since it contains that point. That is, the edge
contains the point, but the point is not inside A. If an edge of a QMER is
supported by a point, then such edge can not be moved in such a way that the
QMER grows, otherwise, the rectangle will contain that point, and hence it
would not be a QMER, since only the query point is allowed inside a QMER.

Given a rectangle R ⊆ <2 that contains a point p, Table 1 shows some
definitions (see Figure 4 for a graphic description). These definitions are
auxiliary definitions that will be used along the paper.

Definition 6 Let R ⊆ <2 be a rectangle that contains three points: a query
point q, pi(pi.x, pi.y), and pj(pj .x, pj .y), being i 6= j:

– If pi and pj are in URQ(q). pi dominates pj in URQ(q) if pi.x ≤ pj .x and
pi.y ≤ pj .y.

– If pi and pj are in ULQ(q). pi dominates pj in ULQ(q) if pj .x ≤ pi.x and
pi.y ≤ pj .y.

10 Gilberto Gutiérrez et al.

ULQ(p) the Upper-Left quadrant of p is the rectangle bounded by
point p and the Upper-Left corner of R

URQ(p) the Upper-Right quadrant of p is the rectangle bounded by
point p and the Upper-Right corner of R

LLQ(p) the Lower-Left quadrant of p is the rectangle bounded by
point p and the Lower-Left corner of R

LRQ(p) the Lower-Right quadrant of p is the rectangle bounded by
point p and the Lower-Right corner of R

ULC(R) is the Upper-Left corner of R
URC(R) is the Upper-Right corner of R
LLC(R) is the Lower-Left corner of R
LRC(R) is the Lower-Right corner of R
L(R) the line segment that connects ULC(R) with LLC(R)
R(R) the line segment that connects URC(R) with LRC(R)
U(R) the line segment that connects ULC(R) with URC(R)
D(R) the line segment that connects LLC(R) with LRC(R)
FARTHESTC(p,R) the corner of R such that dist(p, FARTHESTC(p,R)) is the

largest euclidean distance between p and any corner of R

Table 1 Definitions.

(a) Quadrants defined by a point. (b) Elements defined by a rectangle.

(c) A distance relationship between a
rectangle and a point.

Fig. 4 Definitions.

– If pi and pj are in LRQ(q). pi dominates pj in LRQ(q) if pi.x ≤ pj .x and
pj .y ≤ pi.y.

– If pi and pj are in LLQ(q). pi dominates pj in LLQ(q) if pj .x ≤ pi.x and
pj .y ≤ pi.y.

Definition 7 Let R ⊆ <2 be a rectangle that contains two points: a query
point q and pi.

The largest empty rectangle containing only a query object in Spatial Databases 11

q

ULQ(q) URQ(q)

LLQ(p)
LRQ(q)

(a) Involving points.

1

2

3

4

5

6

(b) Involving points and MBRs.

Fig. 5 Dominance relationships and areas.

– If pi is in ULQ(q) the dominance area of pi is the rectangle bounded by
pi and the Upper-Left corner of R

– If pi is in URQ(q) the dominance area of pi is the rectangle bounded by
pi and the Upper-Right corner of R

– If pi is in LLQ(q) the dominance area of pi is the rectangle bounded by
pi and the Lower-Left corner of R

– If pi is in LRQ(q) the dominance area of pi is the rectangle bounded by
pi and the Lower-Right corner of R

In Figure 5(a), p1 dominates p3, p4, and p5 in the URQ(q) quadrant, yet
it does not dominate p2. The grey shaded area is the dominance area of p1 in
URQ(q).

Definition 8 Let R ⊆ <2 be a rectangle that contains a query point q, a
point pi, and an MBR Rj :

– pi dominates Rj in ULQ(q), if pi dominates LRC(Rj).
– pi dominates Rj in URQ(q), if pi dominates LLC(Rj).
– pi dominates Rj in LLQ(q), if pi dominates URC(Rj).
– pi dominates Rj in LRQ(q), if pi dominates ULC(Rj).

Definition 9 Let R ⊆ <2 be a rectangle that contains a query point q and
two MBRs, Ri and Rj , being i 6= j:

– Ri dominates Rj in ULQ(q), if LRC(Ri) dominates Rj and Ri ∩ Rj = ∅
(i.e. Rj does not overlap with Ri and Rj is dominated by the lower-right
corner of Ri).

– Ri dominates Rj in URQ(q), if LLC(Ri) dominates Rj and Ri ∩Rj = ∅.
– Ri dominates Rj in LLQ(q), if URC(Ri) dominates Rj and Ri ∩Rj = ∅.
– Ri dominates Rj in LRQ(q), if ULC(Ri) dominates Rj and Ri ∩Rj = ∅.

12 Gilberto Gutiérrez et al.

Definition 10 Let R ⊆ <2 be a rectangle that contains a query point q and
an MBR Ri fully inside a quadrant x. The dominance area of Ri covers the
space of x where any MBR completely within that area is dominated by Ri.

In Figure 5(b) is shown the dominance relationships between points and
MBRs. p dominates all MBRs except R6. For the MBRs, we can see in grey
the dominance area of R1 in URQ(q), and we can deduce that R1 dominates
R3, R4, and R5 (equivalently, R3, R4, and R5 are dominated by R1), while R2

and R6 are not dominated by R1.

Dominance relationships are the key for the algorithms q−MERD1 and
q−MERD2. Basically, when a point or an MBR dominates another point or
MBR, these algorithms can discard those dominated items, since a QMER
can not have edges supported by dominated points. However, the dominant
elements are kept, because those points or points inside those MBRs might
support the edges of a QMER.

As a remainder, Table 2 briefly describes the definitions not covered by
Table 1.

QMER maximal empty rectangle only containing the query
point

QCER candidate maximal empty rectangle, a QMER
computed from a set of points C extracted from
the R-tree

Supported an edge of a rectangle is supported by a point p
if that edge contains p

LQMER largest maximal empty rectangle containing
the query point

pi dominates pj in URQ(q) pi.x ≤ pj .x and pi.y ≤ pj .y
pi dominates pj in ULQ(q) pj .x ≤ pi.x and pi.y ≤ pj .y
pi dominates pj in LRQ(q) pi.x ≤ pj .x and pj .y ≤ pi.y
pi dominates pj in LLQ(q) pj .x ≤ pi.x and pj .y ≤ pi.y
Dominance area of pi in the rectangle bounded by pi and the Upper-Right
quadrant URQ(q) corner of R
Dominance area of pi in the rectangle bounded by pi and the Upper-Left
quadrant ULQ(q) corner of R
Dominance area of pi in the rectangle bounded by pi and the Lower-Left
quadrant LLQ(q) corner of R
Dominance area of pi in the rectangle bounded by pi and the Lower-Right
quadrant LRQ(q) corner of R
pi dominates Rj in ULQ(q) pi dominates LRC(Rj)
pi dominates Rj in URQ(q) pi dominates LLC(Rj)
pi dominates Rj in LLQ(q) pi dominates URC(Rj)
pi dominates Rj in LRQ(q) pi dominates ULC(Rj)
Ri dominates Rj in ULQ(q) LRC(Ri) dominates Rj and Ri ∩Rj = ∅
Ri dominates Rj in URQ(q) LLC(Ri) dominates Rj and Ri ∩Rj = ∅
Ri dominates Rj in LLQ(q) URC(Ri) dominates Rj and Ri ∩Rj = ∅
Ri dominates Rj in LRQ(q) ULC(Ri) dominates Rj and Ri ∩Rj = ∅
Dominance area of Ri the space of x where any MBR completely within that
in quadrant x area is dominated by Ri

Table 2 Additional definitions. pi and pj are points and Ri and Rj are MBRs.

The largest empty rectangle containing only a query object in Spatial Databases 13

4 Algorithms

In this section we present our algorithms. We show the rationale behind
them and we prove their concreteness by means of the appropriate lemmas,
theorems, and corollaries. Our algorithms assume that the points of S are
stored in an R-tree and are based on the general idea of discarding points
using the properties of R-trees and the dominance relationships defined in
Section 3.2.

4.1 q−MER algorithm

This algorithm requires two main steps:

1. First, it computes a set of QCERs, which, in turn, requires two substeps:

(a) The computation of the set of points C: QCERs are QMERs computed
using as input a set of points C extracted from the R-tree, rather than
computing them from the real points in S. For the computation of C,
the algorithm processes the MBRs in parent nodes of the leaves of the
R-tree. For each MBR, one or two points can be added to C. Those
points are the most distant points to the query point q that could be
located in that MBR (that is, it is likely those points are not part of the
real set of points). Figure 6 displays an example. From the MBRs in
parent nodes of leaves (the rectangles) and the query point q, q−MER
produces the set of points C = {c1, c2, c3, c4, c5, c6, c7, c8, c9, c10}.
When the MBR is completely inside one quadrant, the algorithm adds
only one point. For example, R5 produces the point c1, since it is the
farthest point with respect to q that could be located in that MBR,
but, c1 is probably not part of the set of points actually stored in the
R-tree. When the MBR overlaps two quadrants, two points are added.
For example, the processing of R6 produces two points c4 and c5, those
are the most distant points in each of the two quadrants that intersect
with R6: c4 is the farthest point with respect to q that could be located
in the part of R6 in the ULQ(q) quadrant, and c5 the one with the same
properties in the LLQ(q) quadrant. The rest of points are computed
similarly.

(b) The actual computation of the QCERs: A computational geometry
algorithm is run (in our experiments, we used the Orlowski’s algorithm
[19]) using the set C as input. We use the variant of the computational
geometry algorithm that obtains all QMERs, instead of only computing
the largest one, that is, in our case, we obtain all the QCERs. Figure
7(a) shows a QCER (again, there are others, but to simplify the figure,
we only show one), denoted as A′. The points of C are the barrels that
do not allow to expand A′ in any direction. Figure 7(b) shows a real
QMER A overlaid over the QCER A′ and the real points. Observe that
A′ is an upper bound of A since is computed using the farthest points
with respect to q that could be located in the MBRs of the R-tree.

14 Gilberto Gutiérrez et al.

6

5

9

8
7

11

12

10

q

c1
c2

c3

c4

c5

c6

c7

c8 c9 c10

Fig. 6 The set of points C.

6

5

9

8

7

11

12

10

q

c1
c2

c3

c4

c5

c6

c7

c8 c9
c10

6

5

9

8

7

11

12

10

p1

p2
p3

p6

p4

p5

p7
p8

p9

p10

p11

p12

p14

p13

p15

p17

p16

p19
p18

p20

p21

p22

p23

q

(a) A QCER. (b) A QCER (A′) and its corresponding
QMER (A).

Fig. 7 The computation of QCERs.

2. In the second step, QCERs are processed according to their area, from
largest to smallest. For each QCER, our algorithm accesses the leaves of
the R-tree that contain the real points that intersect with such a QCER.
Those real points, that we call C ′, are used to obtain a candidate solution,
by means of the same computational geometry algorithm used to obtain the
QCERs, this time with the variant that computes only the largest QMER.
This candidate solution is the real largest empty rectangle containing the
query point that is equal to or contained into the processed QCER. As
the processing of QCERs progresses, the candidate solutions may improve
previous ones. For example, when the QCER A′ of Figure 7 is processed,

The largest empty rectangle containing only a query object in Spatial Databases 15

it is necessary to access the children of the entries containing the MBRs
R5, R8, R6, R9, R11, and R12. Then q−MER inserts in C ′ the points
that intersect with A′, and processes C ′ with the computational geometry
algorithm. Finally, if the obtained candidate solution (A) is better than the
previous ones, then it passes to be considered the best candidate solution
found so far.

Next, we describe in detail each of these steps.

4.1.1 Obtaining the QCERs

Algorithm 1 First step of q−MER.
1: step1(q, R-tree T)
2: INPUT: q {the query point and the R− tree}
3: OUTPUT: LQCER {a set of QCERs}
4: Let C = ∅ {a set of points}
5: for each node n parent of the leaves of T do
6: for each MBR MBRi in n do
7: if q is not inside MBRi then
8: if MBRi intersects with only one of the quadrants ULQ(q), LLQ(q), URQ(q) or

LRQ(q)) then
9: add FARTHESTC(q,MBRi) to C

10: else
11: if MBRi intersects with ULQ(q) and LLQ(q) then
12: add ULC(MBRi) and LLC(MBRi) to C
13: else if MBRi intersects with LLQ(q) and LRQ(q) then
14: add LLC(MBRi) and LRC(MBRi) to C
15: else if MBRi intersects with URQ(q) and ULQ(q) then
16: add URC(MBRi) and ULC(MBRi) to C
17: else if MBRi intersects with LRQ(q) and URQ(q) then
18: add LRC(MBRi) and URC(MBRi) to C
19: end if
20: end if
21: end if
22: end for
23: end for
24: return LQCER = ComputeQCER(C, q)

As it can be seen in Algorithm 1, the first step of q−MER obtains zero,
one, or two points from each processed MBR, depending on three cases.

1. The first case is when the considered MBRi is completely inside one of the
quadrants defined by the query point (see Figure 8(a)). In this case, the
algorithm produces the point of the farthest corner of MBRi with respect
to the query point, i.e. FARTHESTC(q,MBRi). In Figure 8(a), it is
supposed that MBRi is in LRQ(q), and therefore the point LRC(MBRi)
is added to the set of points C.

2. Another treated case is when the MBRi intersects with two of the
quadrants defined by the query point (see Figure 8(b)). In this case, two
points are added to the set C, those in the farthest corners of MBRi with
respect to the query point. In Figure 8(b), MBRi intersects with quadrants
URQ(q) and LRQ(q), and therefore the algorithm adds URC(MBRi) and
LRC(MBRi) to C.

16 Gilberto Gutiérrez et al.

URC(MBRi)
ULC(MBRi)

LRC(MBRi)LLC(MBRi)

MBRi

(a) Example of the first case.

ii

ii

(b) Example of the second case.

Fig. 8 The two cases tackled by the first step of q−MER.

3. The last case appears when the query point is inside the considered MBRi.
For this situation, we had three options:
(a) The first option is to split C in two sets of points

C1 = C∪ {URC(MBRi), LLC(MBRi)} and C2 = C ∪
{ULC(MBRi), LRC(MBRi)}. Now each set should continue the
whole process independently. This apparently does not represent a big
issue. The problem arises when the query point is in more than one
MBR. In this case the number of set of points increases rapidly, since
for C1 two new sets should be created (C11 and C12), and the same for
C2. Furthermore, since for each set of points Ci, several QCERs could
be created, if the number of sets of points grows fast, the same will
happen with the number of QCERs.

(b) Another option is to access the leaf node corresponding to MBRi and
add to C all real points it contains. This significantly increases the
number of points in C and thus, the number of QCERs to be processed.
Observe again, that the query point might be inside several MBRs, and
then all the points in the leaves corresponding to the entries of those
MBRs should be added to C.

(c) No point is added to C.
We chose the third option, since we experimentally found that other two
options increase the computation time, whereas the benefits in the filtering
capability were not significant.

Once we have the set of points C, the algorithm runs theComputeQCER
to obtain the QCERs. Next we prove that LQMER can not be larger than,
at least, one of these QCERs.

Lemma 1 Let S be a set of points in a fixed axis-parallel rectangle R ⊆ <2,
which is stored in an R-tree, and a query point q /∈ S such that q ∩R 6= ∅. Let
LQCER the list of QCERs obtained by the first step of q-MER. LQMER can
not be larger than one of the QCERs in LQCER.

Proof: It is clear that LQMER should be one of the QMERs computed from
the points in S.

The largest empty rectangle containing only a query object in Spatial Databases 17

We are going to show that each QCER QCERi is supported by points of
C that ensure the existence of points in the real set of points (S) within the
limits of QCERi and, at least one of them is inside each of the quadrants
defined by q. Therefore those points allow the creation of a QMER within
QCERi.

Let MBRp be an MBR in an entry of a node of the R-tree, which is parent
of leaves. Let pru be a point extracted from MBRp by the step1 of q−MER,
that is pru ∈ C, and let us suppose without loss of generality that pru is in
URQ(q).

Let us consider that QCERi has an edge supported by pru. Assume that
there is a QMER QMERj with three edges supported by real points inside or
contained by the edges of QCERi. We are going to prove that there is a real
point pu within the limits of QCERi that allows QMERj keep its area inside
QCERi. We have two cases:

1. QCERi has its right side supported by pru.
By Property 2 (MBR face property), the existence of MBRp requires the
presence of at least one real point contained by U(MBRp) (pu ∈ S). Since
pru is the rightmost point of U(MBRp), pu.x ≤ pru.x, then QMERj can
have an edge supported by pu, and that edge is within the limits of QCERi.

2. QCERi has its upper side supported by pru.
In this case pu.y = pru.y, then again, QMERj can have an edge supported
by pu, and that edge is within the limits of QCERi.

Then, we have shown, that the existence of QCERi implies the existence
of a point (pu in this case) that allows the creation of a QMERj within the
area covered by QCERi.

Observe that, since we assumed that pru is in URQ(q), if QCERi has its
lower or left edge supported by pru, QCERi will not contain q and thus it
would not be a QCER.

The only exception to this proof is when the step1 does not produce points
in a quadrant, in such a case we assume that the algorithm includes in C the
farthest corner of such quadrant with respect to the query point. Thus QCERi

can not be shortened by a point of C in URQ(q), and hence a QMER can not
expand beyond the area of QCERi in URQ(q).

Finally, the proof can be extended to points in the rest of quadrants with
similar reasonings. ut

In Figure 7(a), by Property 2, U(R8) must contain a point of S, and in our
example that point is p9 (see Figure 7(b)), yet could be the case that c3 ∈ S.
p9 and any point in U(R8), excepting c3, would shorten the candidate solution
with respect to the QCER A′. Even if c3 ∈ S and is the only point in U(R8),
in our example, the obligatory point in L(R8) would shorten A with respect
to A′.

18 Gilberto Gutiérrez et al.

4.1.2 Computing the rectangle with the largest area containing q

Algorithm 2 shows the second step of q−MER, which obtains the largest
QMER. The set of QCERs obtained from the first step are stored in a heap
(binary max-heap, called HQCER) where the QCER with the largest area is
at the top.

The algorithm starts by checking the QCER with the largest area. The
function RemoveMax() extracts the top of the heap. Now the corresponding
candidate solution is computed by accessing the real points stored in the leaves
of the R-tree. We run the computational geometry algorithm computeER1 with
the real points that intersect the considered QCER. To obtain them, we check
all the MBRs of nodes that are parents of leaves and intersect with the current
QCER. Moreover, from the points inside those MBRs, we only consider those
that actually intersect with the considered QCER.

The result of running computeER is stored in a temporary object
(TMPQMER). The function area computes the area of TMPQMER, and if
its area is greater than that of the current largest QMER (MaxMer), then
TMPQMER becomes MaxMer.

The process ends when the heap becomes empty or the area of the QCER
at the top of the heap is smaller than that of the current MaxMer.

Algorithm 2 Second step of q−MER
1: Step2(Heap HQCER, point q, R-tree T)
2: INPUT: {heap with the QCERs, query point, and the R− tree}
3: OUTPUT:MaxMer {the largest rectangle containing only q}
4: Let a = 0 {The area of the candidate solution currently stored at MaxMer}
5: repeat
6: Let C′ = ∅ {A set of points}
7: Let QCER = HQCER.RemoveMax() {Extracts the first QCER of the heap HQCER}
8: for each entry e in nodes of T parent of leaves whose MBR intersects with QCER do
9: Obtain the leaf node Node pointed by the entry e

10: for each point r ∈ Node that intersects with QCER do
11: Let C′ = C′ ∪ r
12: end for
13: end for
14: Let TMPQMER = computeER(C′, q) {Computes LQMER considering the points in

C′}
15: if area(TMPMER) > a then
16: Let MaxMer = TMPQMER
17: Let a = area(TMPMER)
18: end if
19: until (HQCER.isEmpty()) OR (area(QCER)< a)
20: return MaxMer

Theorem 1 Given a set of points S in a fixed axis-parallel rectangle R ⊆ <2,
which is stored in an R-tree, and a query point q /∈ S and q ∩ R 6= ∅. Let
MaxMer the output of algorithm q−MER. MaxMer is LQMER.

1 computeER only computes LQMER, instead of computing all QMERs.

The largest empty rectangle containing only a query object in Spatial Databases 19

Proof: Step2 computes the largest QMER inside each QCER obtained by
Step1. By Lemma 1, no QMER can be larger than one of the QCERs computed
by Step1, then the largest QMER computed by Step2 is LQMER. ut

4.2 Dominance-based algorithms

4.2.1 q−MERD1 algorithm

This algorithm processes the R-tree level by level from the root to the leaves
discarding MBRs in inner levels and points in the leaves. When an MBR is
discarded, the algorithm does not take into account its children, which are not
further inspected by taking advantage of the Property 1.

The algorithm basically works in inner levels as follows. Considering a
level l, for each of the four quadrants defined by q, the algorithm chooses the
MBR of l that is completely contained in that quadrant and whose farthest
corner with respect to q is nearest to that point. That is, for each quadrant
x ∈ {LRQ(q), LLQ(q), ULQ(q), URQ(q)}, the algorithm chooses the MBR
MBRx such that:

dist(q, FARTHESTC(q,MBRx)) = min{dist (q, FARTHEST (q,MBRi))}
∀MBRi completely inside x

(1)

6

5

9

8

7

11

12

10

q

6

5

9

8

11

12

p1

p2

p3

p6

p4

p5

p9

p10

p11

p12

p14

p13

p19p18

p20

p21

p22

p23

q

(a) Discarding complete MBRs in (b) Discarding points in the last level.
intermediate levels.

Fig. 9 q−MERD1 procedure.

Then for each quadrant x, the algorithm discards all the MBRs of l
dominated by MBRx. In the example of Figure 9(a), from the MBRs fully
inside URQ(q), since R8 dominates R7, the algorithm discards R7. In LRQ(q),

20 Gilberto Gutiérrez et al.

R9 dominates R10, which is discarded. In the other two quadrants, there are
not dominance relationships.

After this, the MBRs that are not discarded are replaced by the MBRs in
their children, that is, the algorithm continues in the next level of the R-tree.
The process described above continues while it does not reach the parent level
of the leaves of the R-tree. When this condition becomes true, for each of the
MBRs that have not been discarded, the algorithm obtains from the children
of their entries, the real points they contain. Now the algorithm computes the
nearest neighbor nnx point for each of the quadrants x ∈ {LRQ(q), LLQ(q),
ULQ(q), URQ(q)}, which is the real nearest point to q in the quadrant x
considering only the points that were not discarded by the filtering of MBRs
in previous steps. Next, from the remaining points, the algorithm discards in
each quadrant x, those points dominated by nnx. Finally, the points that were
not discarded are provided as input to ComputeER, which obtains the final
answer.

In Figure 9(b), in the ULQ(q) quadrant, nnULQ(q) = p3, then p2 is
discarded since that point is dominated by p3. However, since p3 does not
dominate p1 and p4. Those points, as well as p3, are provided as input to
ComputeER. Algorithm 3 presents a detailed description.

Algorithm 3 q−MERD1

1: q−MERD1(point q, R-tree T)
2: INPUT: {the query point and the R-tree}
3: OUTPUT: MaxMer {LQMER}
4: Let MBRroot the MBR that includes all the MBRs at the root of the R-tree T
5: Let E,Ex be sets of MBRs
6: Let C be a set of points
7: Insert in E the element MBRroot

8: Let l = h {h is the height of the R-tree T}
9: while l ≥ 0 do

10: if l > 0 then
11: for each MBRi in E do
12: Substitute MBRi in E by the MBRs in the child node corresponding to its entry

{the node in the next level pointed by the entry containing MBRi is read}
13: end for
14: for each x ∈ (LLQ(q), LRQ(q), URQ(q), ULQ(q)) do
15: Let Ex the set of MBRs of E that are completely inside the quadrant x
16: Let MBRx an MBR in Ex such that

dist(q, FARTHESTC(q,MBRx)) = min{dist(q, FARTHEST (q,MBRi))}
∀MBRi in Ex

17: Discard from E all the MBRs of Ex that are dominated by MBRx

18: end for
19: else
20: Let C = ∅
21: for each MBRi in E do
22: Add to C the points in the children of MBRi

23: end for
24: for each x ∈ (LLQ(q), LRQ(q), URQ(q), ULQ(q)) do
25: From the points in C, Let nnx the nearest point to q in quadrant x
26: Remove from C the points dominated by nnx in the quadrant x
27: end for
28: Let MaxMer = ComputeER(C, q)
29: return MaxMer
30: end if
31: Let l = l− 1
32: end while

The largest empty rectangle containing only a query object in Spatial Databases 21

Line content of E content of C

7 MBRroot ∅
12 R1,R2,R3, R4 ∅
12 R5,R6,R7, R8,R9,R10, R11,R12 ∅
17 R5,R6,R7, R8,R9,R10, R11,R12 ∅
22 R5,R6, R8,R9, R11,R12 p1, p2, p3, p4, p5, p6, p9, p10, p11, p13, p12,

p14, p18, p19, p20, p21, p22, p23
26 R5,R6, R8,R9, R11,R12 p1, p2, p3, p4, p5, p6, p9, p10, p11, p13, p12,

p14, p18, p19, p20, p21, p22, p23

Table 3 A trace of q−MERD1.

Using the example of Figure 9, whose R-tree is shown in Figure 2, Table 3
shows a trace of the Algorithm 3. The algorithm starts considering the MBR
(MBRroot) that encloses the MBRs at the root node, which is immediately
substituted by those MBRs (second row of Table 3). The MBRsR1, R2, R3, and
R4 are the rectangles with dotted lines in Figure 2. Since there is no dominance
relationships between those MBRs, they are replaced by their children (third
row of Table 3). Then the dominance relationships between R8 and R7 discards
R7 and that between R9 and R10 discards R10 (fourth row). Since we have
reached the parent level of leaves, those MBRs are used to build a first version
of the set of points C, which contains the points of each MBR in E (fifth row).
Next, the dominance relationships between points remove points: p3 discards
p2, and p6 discards p5, p18, and p20 (sixth row). Finally, the remaining points
in C are provided, along with the query point, to the computational geometry
algorithm ComputeER to obtain the final result.

Lemma 2 Let S be a set of points S in a fixed axis-parallel rectangle R ⊆ <2,
which is stored in an R-tree, and let q be a query point q /∈ S such that
q ∩ R 6= ∅. Given a point pi ∈ S, there can not be a QMER QMERpj

, which
overlaps the dominance area of pi.

Proof: Without loss of generality let us suppose that pi is in URQ(q).
Assume that QMERpj

overlaps the dominance area of pi. Therefore, it
should have an edge supported by a point pj such that pi dominates pj , and
thus pj should be in URQ(q) as well. Without loss of generality suppose that
edge is the upper edge.

Observe that when considering the URQ(q) quadrant, if QMERpj
has its

lower or left edge supported by pj , it will not be a QMER, since it would not
contain q. Therefore, QMERpj

should have its left edge to the left of q and
the lower edge below q.

Since pi.y ≤ pj .y, pi.x ≤ pj .x and QMERpj has its left edge to the left of
q and the lower edge below q, if QMERpj overlaps the dominance area of pi,
then QMERpj

will contain pi, and thus it would not be a QMER. We reach
a contradiction because we supposed that QMERpj

overlaps the dominance
area of pi. ut

Corollary 1 Let S be a set of points in a fixed axis-parallel rectangle R ⊆ <2,
which is stored in an R-tree. Given a query point q /∈ S and two MBRs Ri

22 Gilberto Gutiérrez et al.

and Rj of the R-tree, where i 6= j, all contained in R, if Ri dominates Rj in
a quadrant defined by q and a QMER QMERa has an edge e supported by a
point pw, pw ∩Ri 6= ∅, there can not be another QMER QMERb with an edge
supported by a point pk, pk ∩Rj 6= ∅.

Proof: Without loss of generality let us suppose that Ri and Rj are in
URQ(q). By Property 2, there should be a point pd in D(Ri) and another
one pl in L(Ri). By the definition of dominance between MBRs, every point
in Rj is dominated by pd and/or by pl, therefore by Lemma 2, QMERb can
not exist. ut

Theorem 2 Given a set of points S in a fixed axis-parallel rectangle R ⊆ <2,
which is stored in an R-tree, and a query point q /∈ S and q∩R 6= ∅. Algorithm
q−MERD1 obtains LQMER.

Proof: When the algorithm removes an MBR Rj when processing inner levels,
that MBR is dominated by another MBR Ri (i 6= j) in that quadrant, therefore
by Corollary 1, Rj can be removed safely because any QMER will have its
edges supported by points of Ri rather than having them supported by points
in Rj .

Similarly, when the algorithm removes points in the leaves, any discarded
point pk is dominated by another point pw in the same quadrant, then by
Lemma 2, pk can be safely discarded because there can not be a QMER with
an edge supported by pk rather than by pw, otherwise that QMER will overlap
the dominance area of pw. ut

4.2.2 q−MERD2 algorithm

This algorithm is a variant of the previous one. q−MERD2 begins computing
for each quadrant defined by q, the nearest point with respect to q (nnURQ(q),
nnLLQ(q), nnULQ(q), and nnLRQ(q)), by using a combination of window query
and nearest neighbor query in each quadrant. These searches take logarithmic
time since we can use the R-tree.

Now the algorithm works similarly to q−MERD1. The R-tree is traversed
level by level from the root to the leaves. In non-leaf levels, the algorithm
discards the MBRs fully inside one quadrant, which are dominated by the
nearest neighbor of that quadrant. In the last level, it discards real points in
nodes descendant of the MBRs that were not discarded in previous levels and
that are dominated by the nearest neighbor of its quadrant. Finally, again, the
remaining points are provided to computeER to obtain the final solution.

For example, suppose that q−MERD2 processes the MBRs and points of
Figure 10. Focusing on the LLQ(q) quadrant, the algorithm discards the MBR
R11 given that is fully inside LLQ(q), and it is dominated by nnLLQ(q) = p6.
R6 and R12 can not be discarded because they are not fully inside LLQ(q).
When the algorithm reaches the leaves, p5 is discarded since it is dominated
by nnLLQ(q), whereas the points that are not dominated by nnLLQ(q) (p22 and
p23) are kept.

The largest empty rectangle containing only a query object in Spatial Databases 23

10
p15

p17

p16

7

p7
p8

6

5

9

8

11

12

p1

p2

p4

p5

p9

p11

p12=nnLRQ(q)

p14

p13

p19p18

p20

p21

p22

p23

q

p10=nnURQ(q)

p3=nnULQ(q)

p6=nnLLQ(q)

Fig. 10 q−MERD2 procedure.

Line content of E content of C

7 MBRroot ∅
12 R1,R2,R3, R4 ∅
12 R5,R6,R7, R8,R9,R10, R11,R12 ∅
17 R5,R6,R7, R8,R9,R10, R11,R12 ∅
22 R5,R6, R8,R9, R12 p1, p2, p3, p4, p5, p6, p9, p10, p11,

p13, p12, p14, p21, p22, p23
26 R5,R6, R8,R9, R12 p1, p2, p3, p4, p5, p6, p9, p10, p11,

p13, p12, p14, p21, p22, p23

Table 4 A trace of q−MERD2.

Algorithm 4 describes the algorithm in detail.

Using the example of Figure 10, Table 4 shows a trace of the Algorithm 4.
Again, the algorithm starts considering the MBR at the root node (MBRroot).
Next, the nearest neighbor to q in each quadrant is computed (nnLRQ(q) =
p12, nnLLQ(q) = p6, nnULQ(q) = p3, nnURQ(q) = p10). Now, MBRroot is
substituted by the MBRs it contains (R1, R2, R3, and R4 of the second row
of Table 4), which correspond to the rectangles with dotted lines in Figure 2.
Since there are no dominance relationships between the nearest neighbors of
q and R1, R2, R3, and R4, such MBRs are substituted by the MBRs in their
children (third row of Table 4). Then the dominance relationships between p10

and R7 discards R7, that between p12 and R10 discards R10, and p6 dominates
and discards R11 (fourth row). In the level containing parent of leaves, MBRs
are used to build a first version of the set of points C, which contains the
points of each MBR in E (fifth row). Next, the dominance relationships
between points performs the last prune: p3 discards p2 and p6 discards p5

(sixth row). Finally, the remaining points in C are provided, along with the
query point, to the computational geometry algorithm ComputeER to obtain
the final solution.

24 Gilberto Gutiérrez et al.

Algorithm 4 q−MERD2

1: q−MERD2(point q, R-tree T)
2: INPUT: q and T {the query point and the R-tree}
3: OUTPUT:MaxMer {Largest empty rectangle only containing q}
4: Let MBRroot the MBR that includes all the MBRs at the root of the R-tree T
5: Let E and Ex be sets of MBRs
6: Let C be a set of points
7: Insert in E the element MBRroot

8: for each x ∈ (LLQ(q), LRQ(q), URQ(q), ULQ(q)) do
9: Let nnx be the nearest neighbor to q in quadrant x.

10: end for
11: Let l = h− 1 {h is the height of the R-tree}
12: while l ≥ 0 do
13: if l > 0 then
14: for each MBRi in E do
15: Substitute MBRi in E by the MBRs in the child node corresponding to its entry

{the node in the next level pointed by the entry containing MBRi is read}
16: end for
17: for each x ∈ (LLQ(q), LRQ(q), URQ(q), ULQ(q)) do
18: Let Ex the set of MBRs of E that are completely inside the quadrant x
19: Discard from E all the MBRs in Ex dominated by nnx

20: end for
21: else
22: Let C = ∅
23: for each MBRi in E do
24: Add to C the points in the children of MBRi

25: end for
26: for each x ∈ (LLQ(q), LRQ(q), URQ(q), ULQ(q)) do
27: Remove from C the points dominated by nnx in the quadrant x
28: end for
29: Let MaxMer = ComputeER(C, q)
30: return MaxMer
31: end if
32: Let l = l− 1
33: end while

Theorem 3 Given a set of points S in a fixed axis-parallel rectangle R ⊆ <2,
which is stored in an R-tree, and a query point q /∈ S and q∩R 6= ∅. Algorithm
q−MERD2 computes LQMER.

Proof: When the algorithm removes an MBR Rj when processing inner levels,
that MBR is dominated by the nearest neighbor (nnx) in that quadrant,
therefore since, by construction, nnx dominates all the points in Rj , by Lemma
2, Rj can be removed safely because any QMER will have its edges supported
by nnx, rather than by any point in Rj .

Similarly, when the algorithm removes points in the leaves level, any
discarded point pk is dominated by nnx in the same quadrant, then by Lemma
2, pk can be safely discarded. ut

4.3 Combination of the algorithms

As we will see, our experiments show that depending on the data distribution,
one of the algorithms performs better than the others. To solve this
problem, we propose two combinations of the previous basic algorithms. Each
combination chooses one of the basic algorithms depending on a heuristic that
tries to anticipate which algorithm will work better with the input data. One

The largest empty rectangle containing only a query object in Spatial Databases 25

combination includes the q−MER and q−MERD1, whereas the other combines
q−MER and q−MERD2.

In the case of the combination q−MER+q−MERD1, the heuristic uses
the MBRs in the entries of the root node of the R-tree and computes for
each quadrant x ∈ (LLQ(q), LRQ(q), URQ(q), ULQ(q)) the MBR MBRx

that satisfies the Formula 1 (see page 19). Then the heuristic computes the
dominance area created by each MBRx in its corresponding quadrant. The
percentage of space (R) covered by these dominance areas are stored in a
variable called δheur1 (0 ≤ δheur1 ≤ 1).

In the case of the combination q−MER+q−MERD2, the heuristic computes
the nearest neighbor to q in each quadrant and computes the dominance areas
of those points in each quadrant. Now, the percentage of space (R) covered by
these dominance areas are stored in a variable called δheur2 (0 ≤ δheur2 ≤ 1).

In any case, if the percentage of the space of R covered by the dominance
areas computed by the heuristics showed above is less than a given threshold,
then the q−MER algorithm is used, otherwise the dominance-based algorithm
is used. When using the combination of q−MER+q−MERD1, the threshold
is 20%, whereas when combining q−MER+q−MERD2, the threshold is 80%.
More formally:

Heuristic 1 Let S be a set of points in a fixed axis-parallel rectangle R ⊆ <2

stored in an R-tree, a query point q /∈ S and q ⊆ R, and a variable (0 ≤
δheur1 ≤ 1). An efficient algorithm to obtain LQMER can be designed as
follows:

1. if δheur1 < 0.2 then the algorithm q−MER is chosen.
2. if δheur1 ≥ 0.2 then the algorithm q−MERD1 is chosen.

Heuristic 2 Let S be a set of points in a fixed axis-parallel rectangle R ⊆ <2

stored in an R-tree, a query point q /∈ S and q ⊆ R, and a variable (0 ≤
δheur2 ≤ 1). An efficient algorithm to obtain LQMER can be designed as
follows:

1. if δheur2 < 0.8 then the algorithm q−MER is chosen.
2. if δheur2 ≥ 0.8 then the algorithm q−MERD2 is chosen.

The values of the threshold are quite different. The reason is the
mechanism used by the two combinations to compute the dominance areas.
q−MER+q−MERD1 uses the MBRs at the root of the R-tree, those MBRs are
usually large. This means that it is difficult to find an MBR completely inside
one of four quadrants defined by q. Therefore the algorithm that computes
δheur1 has problems to create dominance areas. However, the combination
q−MER+q−MERD2 easily obtains the largest possible dominance areas, and
thus, the threshold must be higher to balance this ability.

These thresholds were chosen from our experience with different data
distributions. Their values depend on where q is located and the distribution of
the points. As the points approach to a uniform distribution, the dominance-
based algorithm performs better, whereas when the distribution is far from

26 Gilberto Gutiérrez et al.

uniform, the q−MER algorithm usually performs better. The basic idea is
that q−MER works better when there are large empty spaces, this happens
mostly in real data distributions. The reason is that in empty spaces there are
no points to create dominance relationships, and therefore discarding is low.

The query point also plays an important role. When there are large empty
spaces and the query point is in a empty space, q−MER quickly obtains a good
candidate solution since, the QCERs are processed from largest to smallest.
This allows the algorithm to discard many other QCERs that are already
smaller than that candidate solution. On the contrary, when the query point
is in a zone densely populated, the QCERs are small and therefore they are
not capable of discarding most of the QCERs computed by the first step of
q−MER, and then they should be checked.

However, algorithms q−MERD1 and q−MERD2 lose effectiveness when the
query point is in a empty space, as they have less chances to find points to
produce dominance relationships, and then the percentage of points that are
dominated is smaller, and hence the discarding is lower. On the contrary, if
the query point is in a dense populated area, this favors the dominance-based
algorithms, as they have good chances to find nearby points that dominate big
amounts of points.

The combinations of algorithms take advantage of this behavior, obtaining
q−MER + q−MERD2 the best performance in most cases.

Now the question that might arise is, what happens if the heuristic chooses
the wrong algorithm. In Section 5, we will show that in any case, q−MER,
q−MERD1, and q−MERD2 perform better than computing the solution with
a computational geometry algorithm. Therefore in case of a wrong guess, the
chosen algorithm will still get significant improvements.

5 Experimental results

We compared our algorithms against a naive algorithm that retrieves all
the points stored in the R-tree by reading all the disk blocks (nodes) and
then solving the problem in main memory with the computational geometry
algorithm. In any case (naive approach, ComputeQCER, and ComputeER), we
used Orlowski’s algorithm [19]. The restriction of the query point allows some
improvements in the algorithm that speed up the execution times. Orlowski’s
algorithm computes several types of MERs. For example, the MERs of Type
bt are obtained by drawing a vertical line from the top to the bottom of the
space passing through each point (see Figure 11). In our case, we only have
to compute the MER delimited by the lines that intersect with points W and
Z, since that MER is the only one (of this type) that contains q (that is, it
is a QMER). To compute this type of MERs, Orlowki’s algorithm sorts the
points by the X coordinate; we take advantage of this ordering by breaking
the process when the QMER is found. Similar improvements were applied to
the rest of types of MERs.

The largest empty rectangle containing only a query object in Spatial Databases 27

Fig. 11 Orlowki’s bt MERs.

We suppose that it is possible to store all the points in main memory.
This eliminates the effect of the memory over our experiments, since the
computational geometry algorithm has all the memory it needs that, as we
will see, it is much more than our algorithms.

The algorithms were implemented in Java and the programs were run on
an isolated Intel R©Xeon R©-E5520@2.26GHz with 72 GB DDR3@800MHz RAM
with a SATA hard disk model Seagate R© ST2000DL003-9VT166. It ran Ubuntu
9.10 (kernel 2.6.31-19-server).

We used Marios Hadjieleftheriou’s Java Implementation of an R*-tree.2

5.1 Experimental setup

We considered the following sets of points in a two-dimensional space [0, 1]×
[0, 1].

1. Sets of 200K3, 500K, 1,000K, 2,000K, and 5,000K points with uniform
distribution (see Figure 12(a)).

2. Sets of 200K, 500K, 1,000K, 2,000K, and 5,000K points with Gaussian
distribution (see Figure 12(b)).

3. Four real datasets denoted by RD1 (see Figure 12(c)), RD2 (see Figure
12(d)), RD3 (see Figure 12(e)), and RD4 (see Figure 12(f)), with 2,249,727,
556,696, 194,971, and 699,900 points, respectively. The real datasets are the
California Roads (RD1), Tiger Census Blocks (RD2), and Tiger Streams
(RD3) datasets from the web site rtreeportal4 and a dataset (RD4) that was
given by a Chilean company provided that the source were not published.

In our experiments, we considered two different disk block sizes, namely
1KB and 4KB. With these disk block sizes (nodes), the maximum capacity of
leaf(internal) nodes of the R*-tree were 51(28) and 204(112) points(entries),
respectively.

The performance of all algorithms was measured comparing the number
of accessed blocks and the response time (it represents the overall execution

2 http://libspatialindex.github.com/
3 1K = 1,000 points
4 http://rtreeportal.org

28 Gilberto Gutiérrez et al.

time –elapsed time or wall-clock time– of the algorithms, which is measured in
seconds) that each algorithm required to find the solution. The response time
includes the time required to read the points from disk. We assume that the
R*-tree is already built (that is, the time required to build it is not included
in our times) since it is the structure that stores the points. The algorithms
use the appropriate structure (a stack for depth-first search or a FIFO queue
for breadth-first search) to traverse the R*-tree. The reads of nodes in the
stack or the queue are not counted. We do not consider any other read buffer,
therefore whenever the algorithms read a node (disk block) that is not in the
stack or the queue, that read is counted regardless of whether the node comes
from disk or from the operating system buffer cache. Therefore, the measure
of accessed blocks ignores the effect of any type of buffer cache (excepting
the simple structures commented above). For all measures, we computed the
average of 100 random queries.

The effect of any read buffer, for example the operating system buffer cache,
would benefit only the q−MER algorithm, since it might access several times
the same R*-tree leaf node when processing different QCERs. However, the
naive approach would not improve its performance as it reads from disk each
leaf node once, since the repetitive reads of intermediate nodes are solved by
the stack or queue. To study this effect, we show the response time required
by all algorithms. As we will see, the presence of different buffers (OS buffer
or different hardware caches) does not change the values of disk accesses.

5.2 Evaluation

A first test compares all our algorithms against the naive approach using only
the synthetic data (uniform and Gaussian distributions).

Figures 13, 14, and 15 show the performance of the algorithms when applied
over the datasets with uniform distribution. Figure 13 shows the percentage of
disk blocks with respect to the total amount of blocks of the R*-tree that each
algorithm needs to access in order to solve the queries. Observe that the naive
approach has to access all of them, hence it is not shown in the charts. As it can
be seen, q−MERD1 and q−MERD2 present a better behavior than q−MER
in this experiment. The dominance-based algorithms need only around of the
25% of the disk block accesses required by q−MER.

The same magnitude of differences can be observed in Figures 14 and 15,
which consider the total amount of accessed blocks and the response time
required to solve the queries, respectively. Figures 14 and 15 make clear the
difference between the naive approach and our algorithms, observe that those
figures use a logarithmic scale in the Y axis. For example, when using a block
size of 1 KB, q−MER, q−MERD1, and q−MERD2 require only 8.08%, 4.8%,
and 4.6%, respectively, of the time required by the naive approach (Figure
15(a)), and the dominance based algorithms around a 40% of that required by
q−MER. We have not presented the results of the combined algorithms since
with these datasets, they achieve marginal improvements.

The largest empty rectangle containing only a query object in Spatial Databases 29

(a) Uniform distribution (b) Gaussian distribution

(c) Real data (RD1) (d) Real data (RD2)

(e) Real data (RD3) (f) Real data (RD4)

Fig. 12 The datasets used in the experiments (to avoid cluttering the graphs, only some
of the points were drawn).

Figures 16, 17, and 18 show the results obtained when using the Gaussian
data distribution as input. When the values of the combination of algorithm are
not shown in Figures 16 and 17, this means that those values are practically the
same as those obtained by the basic algorithms. As in the case of the uniform
distribution, all our algorithms significantly overcome the naive approach.
For example, observe that in Figure 18(a), q−MER, q−MERD1, q−MERD2,

30 Gilberto Gutiérrez et al.

 0

 10

 20

 30

 40

 50

 60

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

%

set size (K, 1K=1,000 points)

q−MER
q−MERD1
q−MERD2

 0

 10

 20

 30

 40

 50

 60

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

%

set size (K, 1K=1,000 points)

q−MER
q−MERD1
q−MERD2

(a) size of block 1 KB (b) size of block 4 KB

Fig. 13 Percentage accessed blocks (data with a uniform distribution).

 100

 1000

 10000

 100000

 1e+06

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

B
lo

ck
s

set size (K, 1K=1,000 points)

Naive
q−MER

q−MERD1
q−MERD2

 100

 1000

 10000

 100000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

B
lo

ck
s

set size (K, 1K=1,000 points)

Naive
q−MER

q−MERD1
q−MERD2

(a) size of block 1 KB (b) size of block 4 KB

Fig. 14 Amount of accessed disk blocks (data with uniform distribution). Observe that the
Y axis uses a logarithmic scale.

q−MER + q−MERD1, and q−MER + q−MERD2 require only 7.1%, 5.7%,
6.2%, 5.5%, and 5.5%, respectively, of the time required by the naive approach.

In order to avoid any distortion due to the arrangement of the data in an
R*-tree that might increase the disk seek times, we stored all the points in
a sequential file, in such a way that the naive approach can read the points
sequentially. The results of this experiment can be seen in Figure 19. Observe
that, our algorithms also overcome the naive approach in this scenario. The
disk blocks were of 1 KB, but the results with 4KB were similar.

Tables 5 and 6 show the performance of our algorithms and the naive
approach over the real datasets. In this experiment, we used only one size of
disk block of 1KB, and the results for 4KB followed the same trend. Table
5 summarizes the disk block accesses, whereas Table 6 shows the response
time consumed to solve the queries. In Table 5, the five rows under the title
#Accessed blocks show the total amount of blocks accessed, while the last five

The largest empty rectangle containing only a query object in Spatial Databases 31

 0.01

 0.1

 1

 10

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

S
ec

o
n

d
s

set size (K, 1K=1,000 points)

Naive
q−MER

q−MERD1
q−MERD2

 0.01

 0.1

 1

 10

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

S
ec

o
n

d
s

set size (K, 1K=1,000 points)

Naive
q−MER

q−MERD1
q−MERD2

(a) size of block 1 KB (b) size of block 4 KB

Fig. 15 Response time required by the algorithms (data with uniform distribution).
Observe that the Y axis uses a logarithmic scale.

 0

 5

 10

 15

 20

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

%

set size (K, 1K=1,000 points)

q−MER
q−MERD1
q−MERD2

q−MER + q−MERD2

 0

 5

 10

 15

 20

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

%

set size (K, 1K=1,000 points)

q−MER
q−MERD1
q−MERD2

q−MER + q−MERD2

(a) size of block 1 KB (b) size of block 4 KB

Fig. 16 Percentage accessed blocks (data with a Gaussian distribution).

rows present the percentage of blocks accessed by each algorithm with respect
to the total amount of blocks. In the case of Table 6, the upper data rows
show the response time required by each algorithm, whereas the last five data
rows show the percentage of time required by our algorithms with respect to
the naive approach.

As in previous data distributions, our algorithms overcome the naive
approach. For example, in the case of the RD1 dataset, q−MER needs only
6.48% of the time required by the naive approach. Table 5 shows an excellent
performance of q−MER in the RD1 and RD2 datasets, where it outperforms
q−MERD1 and q−MERD2. Yet, datasets RD3 and RD4 show the opposite
behavior. If we analyze the distribution of the four real datasets, as we can
see in Figure 12, RD1 and RD2 have cluttered zones, whereas others are
completely empty. Instead, in RD3 and RD4, the objects occupy almost all
the space, having a distribution close to uniform. Therefore, as explained

32 Gilberto Gutiérrez et al.

 100

 1000

 10000

 100000

 1e+06

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

B
lo

ck
s

set size (K, 1K=1,000 points)

Naive
q−MER

q−MERD1
q−MERD2

 100

 1000

 10000

 100000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

B
lo

ck
s

set size (K, 1K=1,000 points)

Naive
q−MER

q−MERD1
q−MERD2

(a) size of block 1 KB (b) size of block 4 KB

Fig. 17 Accessed disk blocks with Gaussian data distribution. The Y axis is a logarithmic
scale.

 0.1

 1

 10

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

S
ec

o
n

d
s

set size (K, 1K=1,000 points)

Naive
q−MER

q−MERD1
q−MERD2

q−MER + q−MERD1
q−MER + q−MERD2

 0.1

 1

 10

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

S
ec

o
n

d
s

set size (K, 1K=1,000 points)

Naive
q−MER

q−MERD1
q−MERD2

q−MER + q−MERD1
q−MER + q−MERD2

(a) size of block 1 KB (b) size of block 4 KB

Fig. 18 Response time required by the algorithms (Gaussian distribution). The Y axis uses
a logarithmic scale.

above, q−MER has a better behavior with datasets with large empty spaces,
and worse when the distribution gets closer to uniform. On the contrary,
the dominance-based algorithms show a better performance with uniform
distributions.

Next we focus our study in the storage required for each algorithm. The
second step of q−MER obtains several sets of points C ′, one for each QCER
computed by the first step. Each set is provided as input to the algorithm
ComputeER (line 14 of Algorithm 2), which obtains the LQMER. We denote
each run of ComputeER with a set of points as a case. The dominance-based
algorithms only run ComputeER once, and therefore they always tackle just
one case. In this experiment, we are not interested in the number of cases, as
this parameter is captured by the response time needed to solve the queries.
We are interested in the size of the cases, which measure the memory needed

The largest empty rectangle containing only a query object in Spatial Databases 33

 0.01

 0.1

 1

 10

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

S
ec

o
n

d
s

set size (K, 1K=1,000 points)

Naive
q−MER

q−MERD1
q−MERD2

 0.1

 1

 10

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

S
ec

o
n

d
s

set size (K, 1K=1,000 points)

Naive
q−MER

q−MERD1
q−MERD2

q−MER + q−MERD1
q−MER + q−MERD2

(a) Uniform distribution. (b) Gaussian distribution
(the Y axis is in logarithmic scale).

Fig. 19 Experiment where the naive approach reads the points from a sequential file.

RD1 RD2 RD3 RD4

Size of set(points) 2,249,727 556,696 194,971 699,900
Size of R*-tree(# blocks) 71,720 18,509 6,245 21,066
Algorithm #Accessed blocks
q−MER 4,799 1,614 1,199 2,416
q−MERD1 9,478 2,414 448 971
q−MERD2 11,627 2,354 350 825
q−MER + q−MERD1 8,866 1,611 448 2,346
q−MER + q−MERD2 3,093 938 340 659

Percentage accessed blocks with
Algorithm respect the total
q−MER 6.7 8.7 19.2 11.5
q−MERD1 13.2 13.0 7.2 4.6
q−MERD2 16.2 12.7 5.6 3.9
q−MER + q−MERD1 12.4 8.7 7.2 11.1
q−MER + q−MERD2 4.3 5.1 5.4 3.1

Table 5 Blocks accessed with real data, using a disk block size of 1 KB.

by each algorithm. Table 7 describes each of those cases considering several
datasets and using a size of disk block of 1KB, and the results for 4KB followed
the same trend.

Observe that q−MER needs to process many cases to solve a query.
However, the average size of those cases is small compared to the total
number of points. Moreover, the maximum size of a case is still very small; 3%
approximately of the total amount of points. These values remain invariant
regardless of the distribution of the considered dataset. The maximum size
of a case indicates the amount of space needed to process a query. In our
experiments, assuming that each point occupies 20 bytes, 4 bytes for an integer
that stores an identifier, and 16 bytes to store two coordinates (two double
precision real numbers), q−MER needs around 1.1 MB with a dataset of size
2000K points (around 38.1 MB) and uniform or Gaussian distribution.

34 Gilberto Gutiérrez et al.

RD1 RD2 RD3 RD4

Algorithm time (seconds)
Naive 15.60 3.22 1.27 5.10
q−MER 1.01 0.29 0.15 0.37
q−MERD1 1.88 0.44 0.09 0.28
q−MERD2 2.33 0.44 0.09 0.27
q−MER + q−MERD1 1.77 0.31 0.11 0.28
q−MER + q−MERD2 0.89 0.21 0.08 0.25

Percentage of time required with
Algorithm respect to the naive approach
q−MER 6.48 9.00 11.81 7.25
q−MERD1 12.05 13.66 7.08 5.49
q−MERD2 14.93 13.66 7.08 5.29
q−MER + q−MERD1 11.34 9.62 8.66 5.49
q−MER + q−MERD2 5.70 6.52 8.12 4.90

Table 6 Performance with real datasets and disk block size 1KB.

q−MERD1 and q−MERD2 only need to solve one case for each query,
yet the maximum size of a tackled case can reach around the 70% of the
total amount of points, when the distribution is far from uniform. However,
the space consumed gets lower as the distribution approaches to the uniform
distribution, until they reach a 0.3% when it is completely uniform.

This confirms even more the adequacy of q−MER to real data with empty
spaces and the dominance-based algorithms to the uniform distributions. Once
again, the combination of algorithms (q−MER + q−MERD1 and q−MER +
q−MERD2) take advantage of each approach, that is, they reduce the size of
the cases (the main advantage of q−MER) and the number of cases (the main
advantage of the dominance-based algorithms). In Table 7, it can be seen that
the algorithm q−MER + q−MERD2 achieves a good balance between the size
of the cases and the number of cases; this added to the low number of blocks
that this algorithm needs (see Table 5), yielding a good average performance.

6 Conclusions

In this work, we have presented three basic algorithms to solve the problem of
finding the largest axis-parallel empty rectangle containing only a query point
q in a rectangular space that contains a set of points stored in an R*-tree.
We also presented two heuristics that choose the basic algorithm that better
adapts to the input data distribution in order to obtain the best performance.

We performed a set of experiments to measure the performance of our
algorithms considering several synthetic and real datasets. The results show
that our algorithms only need to access 3%-55% of the nodes of the R*-tree,
that is, they are able to discard a big amount of the points stored in the R-
tree. Obviously, this implies that our algorithms require much less response
time than the naive approach; in the range 0.8%-15.0% of the time required
by the naive algorithm. Regarding space, our algorithms require 0.3%-73% of
the space required by the naive algorithm. Moreover, the algorithm with best

The largest empty rectangle containing only a query object in Spatial Databases 35

RD1 RD2 RD3 RD4 Uniform Gauss
Algorithm Size 2,249K 556K 194K 699K 2,000K 2,000K

q−MER #p 29 20 40 47 70 34
Avg 2,489 1,040 328 617 997 1,904
Max 68,214 17,805 6,090 20,371 57,555 57,642
PMax 3.0 3.2 3.1 2.9 2.9 2.9

q−MERD1 #p 1 1 1 1 1 1
Avg 258,814 55,946 3,177 13,229 3,584 14,464
Max 1,472,361 266,253 34,140 126,629 6,887 151,746
PMax 65.4 47.8 17.5 18.1 0.3 7.6

q−MERD2 #p 1 1 1 1 1 1
Avg 349,679 61,367 3,484 15,402 3,624 21,377
Max 1,634,021 268,257 37,465 145,641 6,992 393,380
PMax 72.6 48.2 19.2 20.8 0.3 19.7

q−MER #p 3 4 1 45 3 2
+ Avg 97,908 9,458 3,177 618 2,146 10,212
q−MERD1 Max 1,472,361 148,993 34,140 20,371 57,555 151,746

PMax 65.4 26.8 17.5 2.9 2.9 7.6
q−MER #p 7 2 2 3 1 3
+ Avg 8,683 9,200 2,960 3,933 3,624 11,212
q−MERD2 Max 417,966 122,151 25,921 80,726 6992 393,380

PMax 18.6 21.9 13.3 11.5 0.3 19.7

Table 7 Description of the cases solved by each algorithm. #p indicates the number of
cases; Avg the average size of the cases; Max the maximum size of the tackled cases; and
PMax the size of the largest case solved with respect to the total amount of points (in
percentage).

average behavior requires 0.8%-8% of the time and 0.3%-21.9% of the space
required by the naive approach.

To the best of our knowledge, this is the first work that solves this problem
considering that the points are stored in a spatial data structure as the R*-
tree. As future work, we want to extend our proposal to objects with more
dimensions and to rectangles with sides that are not necessarily parallel to the
axes of the original space. We plan also to work in developing a cost model to
predict the time and space consumed by our approach.

Acknowledgements This work was supported in part by the project MECESUP UBB0704
(Chile) in the context of a postdoctoral stay of the first author at the University of A Coruña
(Spain). For the second and third authors by Ministerio de Educación y Ciencia [TIN2009-
14560-C03-02] and [TIN2010-21246-C02-01], and Xunta de Galicia [grant 2010/17]. Finally,
for the last author, his work has been supported by the Ministerio de Educación y Ciencia
[TIN2008-003063], and the Junta de Andalućıa research project [TIC-06114].

References

1. G. Gutiérrez, J. Paramá, Finding the largest empty rectangle containing only a query
point in large multidimensional databases, in: Proceedings of SSDBM 2012, Springer,
2012.

2. J. Augustine, S. Das, A. Maheshwari, S. C. Nandy, S. Roy, S. Sarvattomananda,
Localized geometric query problems, Computational Geometry 46 (3) (2013) 340 – 357.

3. G. T. Toussaint, Computing largest empty circles with location constraints,
International Journal of Computer and Information Sciences 12 (5) (1983) 347 – 358.

4. J. Edmonds, J. Gryz, D. Liang, R. J. Miller, Mining for empty spaces in large data sets,
Theoretical Computer Science 296 (2003) 435–452.

36 Gilberto Gutiérrez et al.

5. H. Kaplan, S. Mozes, Y. Nussbaum, M. Sharir, Submatrix maximum queries in monge
matrices and monge partial matrices, and their applications, in: Proceedings of SODA
2012, SIAM, 2012, pp. 338–355.

6. V. Gaede, O. Günther, Multidimensional access methods, ACM Computing Surveys
30 (2) (1998) 170–231.

7. S. Shekhar, S. Chawla, Spatial databases - a tour, Prentice Hall, 2003.
8. A. Guttman, R-trees: A dynamic index structure for spatial searching, in: Proceedings

of SIGMOD ’84, ACM, 1984, pp. 47–57.
9. G. R. Hjaltason, H. Samet, Incremental distance join algorithms for spatial databases,

in: Proceedings of SIGMOD ’98, ACM, 1998, pp. 237–248.
10. A. Corral, Y. Manolopoulos, Y. Theodoridis, M. Vassilakopoulos, Algorithms for

processing k-closest-pair queries in spatial databases, Data & Knowledge Engineering
49 (1) (2004) 67–104.

11. N. Roussopoulos, S. Kelley, F. Vincent, Nearest neighbor queries, SIGMOD Rec. 24 (2)
(1995) 71–79.

12. C. Böhm, H.-P. Kriegel, Determining the convex hull in large multidimensional
databases, in: Proceedings of DaWaK ’01, Springer, 2001, pp. 294–306.

13. Y. Manolopoulos, A. Nanopoulos, A. N. Papadopoulos, Y. Theodoridis, R-Trees: Theory
and Applications (Advanced Information and Knowledge Processing), Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2005.

14. Oracle spatial user’s guide and reference (Mar. 2012).
URL http://docs.oracle.com/html/A88805 01/sdo intr.htm

15. Postgis 1.5.3 manual (Mar. 2012).
URL http://postgis.refractions.net/documentation/manual-1.5/

16. A. Naamad, D. T. Lee, W.-L. Hsu, On the maximum empty rectangle problem, Discrete
Applied Mathematics 8 (1984) 267–277.

17. B. Chazelle, R. L. Drysdalet, D. T. Lee, Computing the largest empty rectangle, SIAM
Journal Computing 15 (1986) 300–315.

18. A. Aggarwal, S. Suri, Fast algorithms for computing the largest empty rectangle, in:
Proceedings of SCG ’87, ACM, 1987, pp. 278–290.

19. M. Orlowski, A new algorithm for the largest empty rectangle problem, Algorithmica 5
(1990) 65–73.

20. M. De , S. C. Nandy, Inplace algorithm for priority search tree and its use in computing
largest empty axis-parallel rectangle, CoRR abs/1104.3076.

21. S. Nandy, B. Bhattacharya, Maximal empty cuboids among points and blocks,
Computers and Mathematics with Applications 36 (3) (1998) 11 – 20.

22. D. Minati, S. Nandy, Space-efficient algorithms for empty space recognition among a
point set in 2d and 3d, in: Proceedings of the 23rd Annual Canadian Conference on
Computational Geometry, 2011, pp. 347–353.

23. J. Augustine, S. Das, A. Maheshwari, S. C. Nandy, S. Roy, S. Sarvattomananda,
Recognizing the largest empty circle and axis-parallel rectangle in a desired location,
CoRR abs/1004.0558.

24. J. Augustine, S. Das, A. Maheshwari, S. C. Nandy, S. Roy, S. Sarvattomananda,
Querying for the largest empty geometric object in a desired location, CoRR
abs/1004.0558v2.

25. H. Kaplan, M. Sharir, Finding the maximal empty disk containing a query point, in:
Proceedings of SCG 2012, SoCG ’12, ACM, New York, NY, USA, 2012, pp. 287–292.

26. J. Augustine, B. Putnam, S. Roy, Largest empty circle centered on a query line, Journal
of Discrete Algorithms 8 (2) (2010) 143–153.

27. L. P. Chew, R. L. S. Drysdale, Finding largest empty circles with location constraints,
Tech. Rep. PCS-TR86-130, Dartmouth College, Computer Science, Hanover, NH (1986).

28. S. Börzsönyi, D. Kossmann, K. Stocker, The skyline operator, in: Proccedings of ICDE
’01, 2001, pp. 421–430.

29. D. Papadias, Y. Tao, G. Fu, B. Seeger, Progressive skyline computation in database
systems, ACM Transactions on Database Systems 30 (1) (2005) 41–82.

30. E. Dellis, B. Seeger, Efficient computation of reverse skyline queries, in: Proceedings of
VLDB ’07, ACM, 2007, pp. 291–302.

31. N. Beckmann, H. Kriegel, R. Schneider, B. Seeger, The R*-tree: An efficient and robust
access method for points and rectangles, in: H. Garcia-Molina, H. V. Jagadish (Eds.),
Proceedings of SIGMOD ’09, ACM Press, 1990, pp. 322–331.

