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Benchmarking real-time vehicle data streaming models for a
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Miguel R. Luaces c,  Victor Corcoba Magaña d 

a b s t r a c t 

The information systems of smart cities offer project developers, institutions, industry and experts the 
possibility to handle massive incoming data from diverse information sources in order to produce new 
information services for citizens. Much of this information has to be processed as it arrives because a
real-time response is often needed. Stream processing architectures solve this kind of problems, but 
sometimes it is not easy to benchmark the load capacity or the efficiency of a proposed architecture. 
This work presents a real case project in which an infrastructure was needed for gathering

information from drivers in a big city, analyzing that information and sending real-time

recommendations to improve

driving efficiency and safety on roads. The challenge was to support the real-time recommendation

ser- vice in a city with thousands of simultaneous drivers at the lowest possible cost. In addition, in

order to estimate the ability of an infrastructure to handle load, a simulator that emulates the data

produced by a given amount of simultaneous drivers was also developed. Experiments with the

simulator show how recent stream processing platforms like Apache Kafka could replace custom-made

streaming servers in a smart city to achieve a higher scalability and faster responses, together with

cost reduction.
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1. Introduction

Today’s cities face a growing demand of real-time service

while at the same time new urban sensors produce new valuable

information that has to be processed swiftly. In fact, smart cities 

are evolving into larger interconnected ecosystems with many ap-

plications and services that provide real-time information to users,

such as the number of parking spaces available or the amount of

water needed by plants in gardens [1].  As a consequence, the in

formation systems of smart cities have to deal with massive in

coming data from hasty diverse data sources while facing the

chal- lenge of minimizing any possible loss of information. To

process 

data as they arrive, the paradigm has changed from the tradi- 

tional all at once data handling procedure to stream processing, 
which grants a continuous and flexible way of processing data. A 

data stream is defined as a sequence of digitally encoded signals 
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t

sed to represent information in transmission. Smart cities pro-

uce huge volumes of varied datasets, which make up big data 

roblems that need to be dealt with new techniques and appli-

ations. Those datasets are commonly clustered in data streams in

rder to get information processed and mined [2].  However, 
here 

re still many challenges in big data applications, such as difficul-

ies in data capture, data storage, data analysis and data visualiza-

ion [3].  One of the main concerns of smart cities is the difficulty

o achieve high-throughput stream processing to support a large 

umber of simultaneous users. 

The case study presented in this work explains how the HER

MES project (Healthy and Efficient Routes in Massive open-data

basEd Smart cities) [4] had to manage the challenging task of 

han- dling large amounts of real-time vehicle data to make 

personal- ized safe driving recommendations. In order to develop

the best state of the art platform that fulfills a near real-time 

service for 

them, several proposals of smart cities infrastructures were ana- 

lyzed, including the technologies they used, the parameters to set
them up and the real-scale tests performed on them. To the best 

of our knowledge there is no benchmark to test the efficiency of 

he smart cities’ infrastructures dealing with real-time data pro- 
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s 
essing, so this paper proposes a case of study consisting on a

eal use case scenario (a real-time information service for drivers in

he city) and a client-side simulator to check the number o

oncurrent drivers that can be served in near real time by the

nfrastructure. These two contributions can help future works to

enchmark their proposals. 

The remainder of this paper is organized as follows

ection 2 analyzes the architectures proposed in some of the

ost important smart cities that uses real-time processing and

torage of data streams. Section 3 presents the SmartDriver case

tudy for this architecture. Section 4 outlines the simulator used

n this work. Section 5 exposes the streaming server and the

mplemented alternatives. Section 6 reports the results of the 

val- uated streaming servers and improved configurations to 

upport more simultaneous users. Conclusions and future lines of 

ork are presented in Section 7.  

. State of the art: smart cities infrastructure

In recent years, smart cities are increasingly producing new

datasets due to the development of ubiquitous computing and the

ise of the Internet of Things (IoT). There are currently 9 billion in-

erconnected devices, and the number is expected to grow to 24 

illion devices by 2020 [5].  Therefore, their information system

ace a big data challenge because they must manage massive, dy-

amic, varied, detailed, inter-related, low cost datasets that can be 

onnected and utilized in diverse ways [6].  Moreover, smart 
ities 

eed to be able to combine services offered by multiple stakehold- 

rs and scale to support a large number of users in a reliable and

ecentralized manner. The success of the smart city depends heav-

ly on the architecture of its information systems, and there have

een some successful experiences in this area. 

In Spain, SmartSantander [1] is a success case of IoT infrastruc

ture including wireless nodes that measure carbon monoxide, ligh

ntensity, noise, temperature, and car presence. To deal with the in-

reasing load of information that is continuously generated by the 

oT deployment rolled-out in the city of Santander, a software plat-

orm enabling the management of the data has been designed and

mplemented [7].  The SmartSantander platform follows a three

iered architecture, where the server tier hosts IoT data reposito

ies and services, and it uses virtualization in a cloud infrastructure

n order to ensure high reliability and availability of all the com-

onents and services. In this architecture, systems communicate

hrough a topic-based publish-subscribe event bus. This architec-

ure is designed to be asynchronous, distributed and multi-party,

ut subscribers need to be notified when an event is received, 

hich involves an additional burden on the streaming server. San-

ander has been used also as a IoT experimental testbed for the 

latform CiDAP (City Data and Analytics Platform) [8] to set the

tage for a big data platform toward smart cities. 

Barcelona Smart City [9] is another example of a successfu

mart city, being recognized as the 2nd world’s smartest city

revailing over New York (USA), London (UK) or San Francisco

USA), by the smart cities top ranking Smart Global City 2016

10].  Barcelona has a powerful platform with ubiquitous

nfrastructures. Its technology enables the interconnection o

ity elements and 

ets them interact effortlessly with each other and with their ad-

inistration through electronic means. The Barcelona smart city

odel identifies 12 areas with initiated projects: environmental, 

CT, mobility, water, energy, waste management, nature, built do
ain, public space, open government, information flows, and ser- 

ices. The infrastructure uses a platform called Sentilo 1 designed 

1 http://www.sentilo.io/xwiki/bin/view/Sentilo.About.Product/Whatis 
2017-03-13).
following the publish-subscribe pattern. It is responsible fo

aiding the city in bringing all of its sensor data together. In thi

case, it uses Redis 2 as the data streaming aggregation system, bu

although 

Redis is a mature and widely-used technology, it is based on an in-

memory database, which means that it needs more memory than

the incoming data requires, and the number of producers and con-

sumers can affect its performance. Additionally, if a Redis instance

restarts or crashes, all data between consecutive snapshots will be

lost. 

A smart city event-driven architecture is presented in [11].  I

allows the management and cooperation of heterogeneous sensor

for monitoring public spaces. Its design is structured in knowl-

edge processors and semantic information brokers, implementing

a publish-subscribe paradigm. A knowledge processor receives no

tifications from a semantic information broker on the subscribed

events. It also provides composite events, which are published 

when a certain pattern of events occurs, preventing subscribers 

from being overwhelmed by a large number of raw event publi-

cations. The authors use a subway station scenario as a testbed for

the architecture, enhancing the detection of anomalous events and

simplifying both the operators’ tasks and the communications to

passengers in case of emergency. 

Oulu Smart City [12] has created a middleware for ubiquitous-

computing researchers, offering opportunities to enhance and facil-

itate communication between citizens and government. This mid-

dleware uses asynchronous communications based on the publish-

subscribe model. An important part of the communications solu-

tion is the content-based routing of messages, which enables the

accurate allocation of information for subscribers. For example, a

message can be directed into a certain logical or physical space,

such as to all users in a marketplace who have been there for ten

minutes. This event-based communication and content-based rout-

ing was implemented with the open source Fuego-architecture. 3

However, Fuego had not matured enough to be used in real world

deployments. Client support in Fuego was limited, and the stabil

ity issues it suffered did not generate enough trust among

applica- tion developers, so it was abandoned and a new

middleware was 

implemented using the RabbitMQ message broker model, as ex-

plained in [13].  

Within the Asian continent, one of the most important smar

cities is Songdo, in South Korea, which was built from scratch to

be a ubiquitous eco-city. Ubiquitous cities (or U-cities) are consid-

ered an evolution of digital cities where all information systems

are linked, and virtually everything is linked to an information sys-

tem [14].  It creates an environment that connect citizens to 

any 

services through any device. Songdo is known in the urban studies

literature as a model smart city and an example of testbed urban-

ism on a grand scale. However, this top-down infrastructure is no

free from problems, as it is considered to promote private business

interests while ignoring society’s needs [15].  Asian emerging u-

city projects have their own ad-hoc service platforms in which 

sensors 

and devices are connected to servers dedicated to a particular ap-

plication domain, and networks are separated from each other. 

Singapore is another blooming smart city. Singapore’s Smar

Nation project, launched in November 2014 [16] and relies heavily

on cloud computing in its infrastructure. The aim is to get Smar

Nation ready in less than ten years, in the Prime Minister’s wishes

Focusing on smart transportation challenges, in [17],  it wa
de- veloped an evaluation data streaming framework, including a 

traf- fic simulation, to check the influence of parameters of road 

net- works and traffic scenarios as well as data mining algorithms 

in order to estimate the state of the traffic. However, there is no 

in- 
2 https://redis.io/ (Visited 2017-03-13).
3 http://www.ubioulu.fi/en/UBI-middleware (Visited 
2017-03-15).
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the speed limit. It is used by SmartDriver to warn drivers that

exceed the speed limit and to evaluate their driving style. This 
message is 100 bytes long on average.
formation about the underlying infrastructure used to support

the stream management or the stream rates from vehicles

sending and requesting information that could support. 

Traffic jams is one of the most common problems in modern 

cities. Thanks to new urban sensors scattered over the city, devel-

opers could subscribe to these real time data streaming sources to

predict traffic hazards in routing. Dynamic route planning systems

are able to give user alternative routes in real time. In [18],  it is 

used the data provided by SCATS sensors in Smart Dublin, to 

make traffic predictions and suggest different routes to avoid 

congested streets. 

Problems appear when it is increased the rate of data

produced by sensors, or when the number of sensors arise. In

the recent paradigm of Social Sensing, it is proposed an

integrated model in which citizens them-selves are turned into

sensors, thanks to 

the use of smart phones and social networks [19],  bu

unfortu- nately, there are no details on how many social stream

of human- generated data are able to process in real-time or the

system ar- chitecture used to tackle the problem. 

A particularly interesting case is the real-time tracking of dan-

gerous good transport. In [20],  it is proposed an architecture for 

real-time collection of telemetry and event data conveyed by the 

vehicle on-board system, allowing to monitor up to 4600 oil 

trucks sending data every 5 s, but although it is a good solution 

to solve their truck fleet monitoring, its middleware does not 

seem easily 

scalable to a higher number of vehicles, as it is not a fully dis-

tributed solution. 

The importance of real-time data management in transpor

could be also seen in accident prevention works like [21],  where

having real-time traffic variables like traffic volume, average

speed, 

standard deviation of detector occupancy or volume difference be-

tween adjacent lanes could prevent crashes, or even after a first 

ac- cident, help taking actions to decrease the likelihood of 

secondary crashes [22].  

Parallel and distributed systems are needed in smart cities in

order to address massive datasets and provide efficient real-time

services [23].  Distributed publish-subscribe architectures are one

of the most used paradigm in smart cities projects. A message-

oriented middleware is essential for this kind of platforms that

involve asynchronous data exchange, decoupling senders from re-

ceivers and providing the flexibility to defer tasks to separate 

pro- cesses. Furthermore, there is no need to maintain any in-

memory information about senders and receivers [24],  hence the

hardware 

requirements are affordable. However, as far as we know, no pro-

posal describes a method to benchmark the capacity of the system

architecture in terms of the number of users that can be supported

simultaneously, as well as the scalability of the architecture. 

Therefore, we implemented and benchmarked two publish

subscribe architectures for our case study, described in Section 5

In many cases it is difficult to evaluate the effectiveness of pro

posed solutions, because only specific parts of the infrastructure

are exposed. Other works explore big data platforms for smart 

cities, but they only introduce high level platform architecture de-

signs [25,26].  There are also works which introduce an empirical

based framework to offer a holistic picture of how smart cities

can be analyzed. In [27],  it is taken into account the Seoul 

and San Francisco smart cities to understand the process of 

building a smart city. 

3. The SmartDriver case study

In order to test smart cities infrastructures, a real-world use- 
case scenario has been considered: the SmartDriver mobile appli- 

cation [28,29],  which is used to monitor the location and a col- 

lection of driving parameters (speed, acceleration, etc.) as well as 

a series of biometric information (e.g., heart rate) to analyze the h
tress level of drivers and assist them to improve their driving ef-

ciency, minimizing the waste of fuel, reducing their stress by no-

tifying them about the profiles of the surrounding drivers (i.e., ag

ressive, calm, etc.), and warning them when speed limits are ex-

eeded. In order to provide this information, SmartDriver has to 

end periodically the current location and user driving 

nformation to the server. Then, it requests information about the 

urrounding drivers and the road (e.g., road type and speed limit)

uring the driving, SmartDriver sends two types of events: 

• Vehicle Location. It contains information about the location of

the vehicle and driving variables measurements (600 bytes on

average). It is posted every 10 s in order to reduce battery us-

age. It includes:

– Timestamp  of the sample.

– Latitude  and longitude of the vehicle in that moment.

– An  estimation of the accuracy of the location.

– Instantaneous vehicle speed.
• Data Section. It contains detailed information about the vehicle

and the driver in the last 500 m of road (50 0 0 bytes on aver-

age). It includes one sample per second containing the vehicle

location, the vehicle speed and certain information from driver

heart rate, such as R-R intervals. 4 It also includes a summary

with the following statistics computed for the whole 500 m 
driving section:

– Maximum,  minimum, average and standard deviation of ve- 

hicle speed.

– Number  of times a sharp acceleration or deceleration was 
detected.

– Average acceleration and deceleration.

– Average and standard deviation of R-R intervals.

– Average and standard deviation of heart rate.

– PKE  (Positive Kinetic Energy) [30],  which is an indication

of the aggressiveness of driving and depends on the
frequency and intensity of positive accelerations, computed

as:

(1)

The SmartDriver application encodes each event using JSON and

compresses the result with ZIP before transmission in order to

eliminate the high internal redundancy these events exhibit. Sim-

ilarly, every second during the driving, SmartDriver requests from

the server information about the surrounding environment: 

• Surrounding drivers. Inside the streaming server, all the vehi-

cles’ locations are analyzed to determine moving vehicles close

to each SmartDriver connected to the platform. Two Smart-

Drivers are considered to be close if they are separated no more

than 100 m, so that the SmartDriver application has enough

time to advise the driver if required. In order to save re-

sources, the current position of all drivers is hold in a memory

database in the streaming server only for those that keep mov-

ing. Drivers that remain still for more than 60 s are removed

from the database.

• Current road. It contains information about the road type and

∑ 

(v 2
f 
 − vs

2
 

 

 )

x 
when 

�v
�t 

> 0 

where: 
∗ vf  : Final speed 
∗ vs  : Initial speed 
∗ �v > 0:  For positive acceleration only
∗ �t
x: Distance travelled
4 https://courses.kcumb.edu/physio/ecg%20primer/normecgcalcs. 

tm#TheR-Rinterval (Visited 2017-03-19).
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Fig. 1. Bytes sent covering a pre-defined route at 50 Km/h.

Fig. 2. Bytes sent covering a pre-defined route at 100 Km/h.

Table 1

Relationship between speed and data traffic.

Driving speed No. of messages Bytes sent

100 Km/h 73 74,784

50 Km/h 129 ( + 76.71%) 134,017 ( + 79.20%) 
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5 https://www.postgresql.org/ (Visited 2017-03-19).
6 http://postgis.net/ (Visited 2017-03-19).
7 https://www.openstreetmap.org/ (Visited 2017-03-18).
8 https://projects.spring.io/spring-boot/ (Visited 
It is important to show that variations on the speed of the

river affect the amount of data transmitted, so the server-side

f the infrastructure must resist any driver’s scenario. In a study

ith real users, it was examined a range of journeys from 1 Km

o 30 Km, bearing in mind that all drivers have their own driving

ehaviour that affects the speed. Hence, the realm of data trans- 

itted for each SmartDriver varied from almost 23 kilobytes for

he shortest journeys to about 1 megabyte for the longest jour-

eys. Figs. 1 and 2 represent the amount of data sent along the

ame pre-defined route of approximately 10 Km at different con

tant speeds (50 Km/h and 100 Km/h). The faster driver finishe

efore and sends less data than the slower one. In the figures

he lower marks correspond to vehicle location messages which

re far more numerous but smaller, while higher mark

orrespond to data section messages, which are less frequent bu

arger. 

Table 1 shows the number of messages and total bytes sen

onsidering the same pre-defined path, but two different drive

peeds. 

Regarding response time when sending data to the server-side

nd taking into consideration current high-speed network coverage

nd the fact that mobile data communications are also limited in 

rder to save battery, a reasonable time delay of 5 s has been con-

idered between the instant a SmartDriver location is sent to the
erver and the instant the ACK response is received. 
The server-side of the infrastructure is composed of two lay

ers ( Fig. 3 ): a streaming server component that is responsible o

eceiving all the events from all the SmartDriver users and an-

wering real-time requests regarding the surrounding driver, and

 long-term storage component that is responsible for storing the

nformation to be used on offline analysis and answering requests

egarding the road network. The bottleneck of the server-side is

he streaming server component, because it has to deal with data

treams and real-time requests from many SmartDriver applica-

ions. Two different approaches has been implemented for this

omponent, which are described in Section 5.  

The long-term storage component is not considered a bottle- neck

in this scenario because delaying the final data storage of the

vents is not considered harmful. Furthermore, the long-term stor

ge does not require to consume the vehicle location events be

ause their information can be recovered from the data section 

events, and waiting some seconds until a data section event ar-

rives from the SmartDriver does not affect the system. Thus, in

our tests, the workload on the long-term storage component has

been around a 10% of the streaming server processing. Therefore,

it was resolved to use a traditional relational database manage-

ment system (PostgreSQL 5 ) with a spatial data management ex-

tension (PostGIS 6 ). PostgreSQL manages two databases: a road net-

work database created from OpenStreetMap 7 data and a Smart-

Driver application database that stores the information received

in the data section events. The requests are handled by a REST

service developed and deployed using Spring Boot. 8 Even though
2017-03-19).

4
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a  
this component has all the advantages of a relational DBMS, it was

observed that this component does not scale horizontally easily.

Therefore, in order to keep all the system layers equally scalable,

a non-relational database alternative should be considered for the

long-term storage component. 

4. The simulator

In order to test the performance and the strength of the de-

veloped SmartDriver platform, a large number of people using the

mobile application was necessary. However, despite the applica-

tion being free of charge at Google Play 9 , it was difficult to achieve

enough engaged Android users that actively used the application.

To overcome this problem, a configurable simulator has been im-

plemented, which is able to create thousands of simulated Smart-

Driver users, each of them generating data with the same pattern

as the original Android application. 

There are already some spatio-temporal simulators in the litera-

ture. In [31],  it is dealt with the generation of network-based 

mov- ing objects and tries to be very precise on the capacity of 

roads 

and speed (external objects decrease the speed of the moving ob-

jects in their vicinity), whereas in [32],  it is described a micro- 

scopic traffic simulation package called SUMO, aimed to help to 

investigate urban mobility research topics. However, none of them

focus on simulating a high volume of simultaneous drivers. 

Within the framework of HERMES project, HERMES-Simulator, 

which is open source and available at https://github.com/

hermes- smartcity/hermes- simulator , generates concurrent Smart-
Driver users driving along a real road network extracted from 

9 https://play.google.com/store/apps/details?id=uc3m.enti.smartDriver 
2017-03-15).

l

b

H

oogle Maps 10 or OpenStreetMap, although not with microscopic 

raffic or a very realistic road capacity model. Each simulated 

river runs in a separate thread within the simulator and its be- 

avior can be considered, from the point of view of the data it 

ends and receives, equivalent to an actual driver using the 

mart- Driver application. Although it involves a significant 

verhead in 

erms of CPU, memory and use of network connections in an at- 

empt to be closer to reality, the simulator was designed to repli- 

ate the publisher/producer, as well as the subscriber/consumer

odules on each simulated SmartDriver. The two simulator archi-

ecture alternatives are shown in Fig. 4.  Simulator Model 1 was

hosen for the benchmarks because it emulates the real scenario

etter, where SmartDrivers cannot share a TCP connection since

ach driver uses its own mobile device. 

his simulator was designed to generate tracks from the out- 

kirts of a city to the center itself, because this is one of the

ost common cases of travels nowadays, but it could also gen-

rate tracks inside the center and even only on the outskirts.

ig. 4 shows the simulator executing a user defined configuration.

n our simulator, the influence among drivers is graphically repre-

ented changing the color of the circle that represents their prox-

mity area. As a reference, a video with a running simulation can 

e seen at: https://goo.gl/V3rQMb.  

y using the control panel, it is possible to configure a wide 

ange of scenarios, to modify the average path lengths and the 

imulation speed, and to increase or reduce the amount of simu- 

ated SmartDrivers driving through each generated path. Addition-

lly, the service that generates simulated paths is configurable, al-

owing the use of the Google Maps API or an internal service 
uilt on top of OpenStreetMap cartography and provided by the 

ER- 
10 https://www.google.es/maps/ (Visited 2017-01-08).

5
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ES platform. Because these services offer the minimum set of

oints that define the path, the simulator is configured to interpo-

ate points in the path and thus achieve enough resolution along

he journey. This is necessary for computing the second-by-second

osition of simulated drivers. All the generated paths consist of a 

eries of sections, each one with its own speed limits ( Fig. 5 ). 
All simulated drivers will have their own random factor that al-

ers their speed through each section. This random factor varies

he speed from 50% slower to 50% faster, but always with a min-

mum speed of 10 km/h in order to ensure that the simulation

s completed within a reasonable period of time. This way, if a

ection is limited to 50 km/h, the speed of simulated drivers will
6



Table 2

Traffic and inhabitants in Seville at rush hour.

Year Rush hour vehicles Inhabitants Ratio

2015 66,634 693,878 10.41

2014 59,516 696,676 11.71

2013 56,934 700,169 12.30

2012 57,770 702,355 12.16

2011 56,614 703,021 12.42

2010 51,933 704,198 13.56

2009 71,758 703,206 9.80

2008 78,628 699,759 8.90

2007 86,485 699,145 8.08

2006 90,710 704,414 7.77

2005 83,359 704,154 8.45
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feedback data.
• Main stream: Data items received by the collectors are then ag- 

gregated into the main stream, which is managed by a separate

Ztreamy server.
range from 25 km/h to 75 km/h. The heart rate information is also

simulated for each driver with a value that starts at 70 beats per

minute and is influenced by a random factor that ranges from 10%

lower to 10% higher. 

Since drivers are simulated, there is no way to measure their

actual stress, so certain custom conditions have been added to re-

produce stressful situations. Thus, sudden increases or decreases

of speed, sharp turns, or the proximity of stressed drivers cause

a weighted degree of stress that is accumulated, leading to an in-

crease of heart rate, a decrease of R-R intervals and different levels

of stress. Similarly, relaxing situations like straight roads, continu-

ous speed, or the absence of other drivers around, cause a gradual

decrease of heart rate, incrementing R-R intervals and lower levels

of stress. 

Regarding the rest of options, it is possible to send the events

to two different versions of the streaming server component ex-

plained in Section 5.  Moreover it has the possibility to start to

simulate all the SmartDrivers at once, randomly or following a lin-

eal progression that starts a 10% of the drivers every 10 s, which

means that 100 s are needed to have all the simulated drivers run-

ning. This is the approach used on the comparative tests carried

out in this paper in order to study the performance of each system

under an increasing load of clients. 

In order to be as close as possible to the original mobile appli-

cation, the simulator has been implemented in Java 8 and creates

independent threads with the same logic the SmartDriver applica-

tion implements, particularly with respect to the communications

with the streaming server. Since the simulator creates thousands of

threads, enough CPU processing power as well as a big quantity of

free RAM is needed. Therefore, the simulator had to be distributed

across multiple machines to achieve enough number of simulated

SmartDrivers. As a reference, an i5 desktop computer with 8GB

RAM could run up to 20,0 0 0 simultaneous SmartDrivers. 

Even though this simulator is specific for the SmartDriver sce-

nario, its model can be easily expanded to send additional in-

formation regarding each driver and to request different informa-

tion from the server-side. Furthermore, implementing the receiv-

ing component of the server-side that stores the event informa-

tion is quite simple. Thus, the simulator can be used as a bench-

marking tool to perform stress tests on a smart city infrastructure.

Our particular challenge was to estimate the hardware infrastruc-

ture needed to support a medium-sized city such as Seville (Spain).

Seville city is close to 70 0,0 0 0 inhabitants 11 and in 2006 there

were more than 90,0 0 0 drivers commuting at rush hour (from

14:00 to 15:00) 12.  Table 2 shows these data during the last years

where the effects of the last economic recession can also be no-

ticed. 
11 http://www.ine.es/jaxiT3/Datos.htm?t=2895 Visited 

(2017-03-15). 12 http://trafico.sevilla.org/imd.html Visited 

(2017-03-15).
. Streaming server

Considering that the infrastructure was intended to be used on

 smart city, it was necessary to implement a publish-subscribe

essage platform that could serve as many simultaneous users as

ossible and almost in real-time. Besides, it also had to be scal- 

ble and interconnectable with other smart cities. Although there 

re several well-known alternatives that fit the requirements, like

ctiveMQ, 13 RabbitMQ 

14 or Kestrel, 15 Apache Kafka has emerged

n the last few years as a powerful and capable platform for build-

ng real-time streaming applications [33].  It is horizontally scalable

ault-tolerant, fast, and nowadays runs in production in important

ompanies such as LinkedIn, Twitter, Netflix or Spotify among 

th- ers. 16 We therefore consider that Apache Kafka is the most 

de- quate alternative for our case study described in Section 3.  

n order to compare the efficiency of different infrastructures, two

ptions were implemented and explored: a solution based on the 

treamy framework [34] and another based on Apache Kafka 

treams [35].  

n both cases, the same data format was used to send the informa-

ion from SmartDriver and to receive it from the Streaming Server.

s detailed in Section 3,  each SmartDriver will send two types 

f information: vehicle locations and data sections, and will 

eceive data about surrounding vehicles. 

.1. Ztreamy-based streaming server 

By the time the architecture of the HERMES project was de

signed, there was no data streaming solution that fitted its needs

herefore, an ad-hoc solution built on top of the Ztreamy HTTP-

ased publish-subscribe system was developed. This solution con-

isted in several stream processing entities as well as REST ser-

ices whose operations were based on a short-term geographical

ata base. Since the system needed to handle a high rate of HTTP

equests from the SmartDriver mobile application, the NGINX 

17 

pen source web server was deployed to act as a load balancer.

GINX shows superiority in handling concurrent connections, re-

ponse time and use of resources compared to the Apache HTTP

erver 18 or Lighttpd 19,  and it is considered to be the most 
fficient 

nd lightweight web server today [36].  Fig. 6 shows the 

rchitec- ture of the Ztreamy-based stream server from the point 

f view of 

he SmartDriver application. The different com ponents communi-

ate through HTTP. They may run on a single server machine or

hey may be distributed on several server machines. 

The stream server consists of the following main components: 

• Load balancer: In order to increase the number of SmartDrivers

that Ztreamy is able to handle, an NGINX server applies HTTP

load balancing and distributes the requests among the collec- 

tors.
• Collectors: Ztreamy servers to which the SmartDriver applica- 

tion posts data. These servers validate the received data items

and orchestrate the interactions with other services needed

to handle them. They are also responsible of responding with
13 http://activemq.apache.org/ (Visited 2017-02-15).
14 https://www.rabbitmq.com/ (Visited 2017-02-15).
15 https://github.com/twitter-archive/kestrel (Visited 2017-02-15).
16 https://cwiki.apache.org/confluence/display/KAFKA/Powered+By/ 

17 https://www.nginx.com/ (Visited 2017-03-01). 
18 https://httpd.apache.org/ (Visited 2017-03-08). 
19  https://www.lighttpd.net/ (Visited 2017-03-08). 7

http://www.ine.es/jaxiT3/Datos.htm?t=2895
http://trafico.sevilla.org/imd.html
http://activemq.apache.org/
https://www.rabbitmq.com/
https://github.com/twitter-archive/kestrel
https://cwiki.apache.org/confluence/display/KAFKA/Powered+By/
https://www.nginx.com/
https://httpd.apache.org/
https://www.lighttpd.net/


Fig. 6. Partial view of HERMES Ztreamy streaming server infrastructure.
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• Storage stream: This stream filters the data items that do not

need to be stored out of the main stream. The HERMES servers

that manage data persistence consume this stream in order to

receive the data they have to store.
• Short-term location-based services: the streaming infrastruc-

ture needs to perform some real-time computations and keep

some short-term data, like information about surrounding

drivers.

.2. Kafka-based streaming server 

Apache Kafka [6] is an open-source distributed streaming plat

orm that was initially developed by LinkedIn in 2010 and is now

aintained by the Apache Software Foundation. Written in Scala

nd Java, it implements a publish-subscribe messaging system that

s designed to be fast and scalable. Applications can publish and

ubscribe to streams of records, with fault tolerance guarantees

nd the possibility of processing streams as they occur. Since Kafka

oes not use HTTP for ingestion, it delivers better performance and

cale. As other publish-subscribe messaging systems, Kafka stores

treams of records in categories called topics, and each record is

asically made up of a key-value pair with a timestamp. In our

mplementation those values are JSON objects with the driving

elemetry sent by SmartDriver. A topic is a category for grouping

f messages of a similar type, so one topic for each type of infor-

ation is needed: Vehicle Location, DataSection and Surrounding

ehicles. 

Producers in the Kafka architecture publish messages to a topic

nd consumers subscribe to topics in order to receive those mes-

ages. In this scenario, the SmartDriver mobile application under-

akes the producer role, publishing all the information about their

ocation as well as driver’s heart rate information and stress re-

ated data. This information is sent periodically to the VehicleLoca-

ion and DataSection Kafka topics. Then, those topics are consumed

y a Java application using Kafka Streams. The application, called

ata Analyzer, processes the vehicle locations and data sections

treams to produce information about surrounding drivers for each

ser, which is then sent to the SurroundingVehicles topic. Smart-

river application also plays the role of consumers, subscribing to

he SurroundingVehicles topic and consuming the published mes-

ages by pulling data from the brokers. An overview of the process

s shown in Fig. 7.  
In order to set an optimal configuration, message size limits

have been set in Kafka after an analysis of the messages sent by

he SmartDriver application. As commented in Section 3,  data

ec- tion messages are the largest pieces of information sent by

mart- Driver. They are aggregations of vehicle locations and

eart rate information, as well as some statistical calculations, bu

o single one goes over 1MB. On the other hand, if there is any

ailure that makes sending any given message at its due time

mpossible, it is temporary stored and SmartDriver tries to send i

ater, together 

ith the next messages. Given this fact, Kafka brokers and

roduc- ers have been configured to accept messages up to 2MB

 repli- cation factor of one was used in all cases, since

erformance de- creases as the replication factor increases and

ecause failure tol- erance measurement is out of the scope o

his paper. 

To evaluate the Apache Kafka solution, we have set up three

ifferent Kafka based scenarios: 

• Kafka configuration 1: This is the minimum configuration, con-

sisting of a single node with a single broker, as can be seen at

Fig. 8.  In this situation, all simulated SmartDrivers send their 
data to a unique node. One single broker can handle thousands

of the incoming streams seamlessly. The main limitations are

network capacity and server write throughput. However, this is

only half of the problem. Our simulated SmartDrivers act also

as consumers, and therefore they request information from the

broker. Apache Kafka uses partitioning as the unit of parallelism

to serve consumers. Each partition is related to a directory in

the server file system, so more partitions lead to more open

file handlers, which could turn to be a configuration issue.
• Kafka configuration 2: This setting consists of a single node 

with multiple brokers, as can be seen at Fig. 9.  Despite still 

run- ning on a single node, a multiple-broker architecture is a

first step towards distributing the system. Zookeeper is 

responsible for managing the load over the nodes, distributing 

the brokers among them. This architecture is able to handle 

more produc- ers. However, this is still a basic configuration 

and, since Kafka is distributed in nature, a cluster typically 
consists of multiple nodes with several brokers. The results 

shown in this paper are based on a two-brokers architecture in

order to reveal the first step up in scale in relation with the 
one-broker solution.

8



Fig. 7. Overview of information flow using Kafka.

Fig. 8. Kafka configuration 1: Minimum Kafka cluster consisting of only one node with one single broker.
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• Kafka configuration 3: This is an intermediate model that con-

sists of multiple nodes with multiple brokers, managed by a

replicated Zookeeper inside each node.
• Kafka configuration 4: This architecture consists of multiple

nodes with multiple brokers with Zookeeper as an indepen- 

dent unit, as can be seen at Fig. 10.  Although it is possible to

setup a highly-distributed solution, our experiments are based

on a 5 server configuration, being 3 servers for the Kafka dis-

tributed network. This configuration is enough to support our

study case, yet scalable. Moreover, it is easy to manage and

monitorize to prevent possible overloading of any node and to

take corrective actions.
c

. Evaluation and results

A series of simulations were carried out in order to validate and

ompare the alternative architectures. The three different Kafka

onfigurations previously introduced were tested, as well as a pre-

efined Ztreamy setup that was used as reference. To avoid per-

ormance fluctuations, server and clients were set to maximum

erformance and the systems were booted directly into terminal

ode to avoid interferences from desktop applications. Moreover,

o minimize network problems such as rejected connections, fire-

alls were disabled for all the machines involved. Furthermore, at

east 5 simulations were performed for each setup and the worst

ase is presented. 

The tests were performed using 2 different types of servers: 
9



71

Fig. 9. Kafka configuration 2: Kafka cluster consisting of one node, using different number of brokers.

Fig. 10. Kafka configuration 4: Kafka cluster consisting of three nodes deployed on three different machines, using different number of brokers.
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• Server type 1: The first one was a mid-range desktop PC con-

sisting of a 4 cores Intel(R) i5-4 4 40 CPU at 3.1 GHz and 8GB of

RAM with 64 bits Ubuntu 16.04 LTS.
• Server type 2: The second one used FIWARE 20 virtual machines.

Every FIWARE virtual machine instance commented in this pa-
per consisted of 4 cores Intel(R) Xeon E312xx 2.6 GHz and 8GB
of RAM with 64 bits Ubuntu 14.04 LTS.

In all cases, the servers were configured with Apache Kafka ver-

ion 0.10.1.1 and Java Runtime Environment version 8 (update 121),

hich were the latest versions available at the time of writing this
20 https://account.lab.fiware.org/ (Visited 2017-01-18).

 

t  
aper. Additionally, the operating system was configured to allow

he use of an unlimited number of open file descriptors because

he simulator was configured to use persistent connections both

n Ztreamy and Apache Kafka. In addition, in the case of Apache

afka the settings that protect against client connection leaks had

o be disabled in order to allow an unlimited number of connec-

ions per IP, because each simulator instance creates multiple con-

ections using the same IP. Each test consisted in finding the max-

mum number of clients that a given streaming server setup can

erve. 

On the other hand, to monitor the server side during the execu-

ion of the simulators, Ztreamy and Apache Kafka were configured
10
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Fig. 11. Ztreamy using server type 1 and errors occurred during the simulation.
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to log all the events produced. Additionally, Munin 21 was also used

to keep track of server resources and network throughput. 

With respect to the machines running the simulators, 5 iden-

tical FIWARE virtual machines were created to run an instance of

the HERMES simulator each one. Each simulator was configured to

create 10 paths of 10 Km each one, increasing progressively the

number of clients until a set number, logging the delay produced

during the communications. All the simulators were synchronized

to start simultaneously in order to achieve the peaking concurrent

drivers. 

6.1. Ztreamy vs Kafka 

In [37],  it is explained that the Ztreamy infrastructure was 

able to handle up to 40 0 0 simultaneous drivers using a single 

server with 12 Intel Xeon E5-2430 2.5 GHz cores and 64GB of RAM,

which represents a rate of approximately 28,0 0 0 events per 

minute. The 

authors also show that at larger data rates collectors began to re-

ject some events due to saturation. 

As a base case, an initial experiment has been configured to 

create 40 0 0 simultaneous SmartDrivers with the simulator 

settings commented in the previous section on the server type 1, 

which has far less cores and RAM, so the expected results should 

be worse 

than those described in [37].  The chart in Fig. 11 shows the evo- 

lution of concurrent SmartDrivers and errors in the Ztreamy in- 

frastructure as a result of timeouts due to server saturation. After 

analyzing the server and the simulators logs, it was revealed that 

the server failed to respond in about 100 s in all the simulations. 

Network problems were discarded because all tests were executed

in different days and firewalls were disabled. 

Moving to Kafka, we started from the most basic Kafka con- 

figuration 1, in which the cluster is composed by only one node, 

having one broker, managed by a single instance of Zookeeper. 

The chart in Fig. 12 shows the evolution of concurrent 

SmartDrivers. 

No errors occurred during the simulation because, even with a sin-

gle node, Kafka is able to deal with thousands of streams. The key

to the success lies in its storage system. Apache Kafka uses a log-

based system and is extremely efficient using it. Hard disks and 

RAM have the highest throughput when they are read and 

written sequentially. Because of that, input streams are attended 
promptly, freeing up the server for other processes. Equally 

important is the fact that Kafka lets consumers read messages at 

their own pace and they are responsible for managing their own 

offset over the 

1 http://munin-monitoring.org/ (Visited 2017-01-18).

i  

s  

s  
opic they are reading, releasing the server from the burden of

eeping any kind of per-consumer state. 

Although there were no errors during the previous test, it was

ested the same simulation conditions using a custom distributed

afka configuration architecture within the server type 1. This cus-

om configuration consisted of 2 nodes and 2 brokers by node. The

oal of this setting was to study the load balancing between the

odes and the resources usage of a distributed design within the

ame server. It resulted on a 34% more RAM and 17% more CPU us-

ge over the initial configuration, so this pseudo-distributed model

oes not seem effective, at least in low-performance servers. As

or the 40 0 0 simultaneous SmartDrivers, neither errors were pro-

uced, nor remarkable changes compared to the previous test, as a

ingle node was enough to support the load. 

Tables 3 and 4 summarize the average and maximum resource

sage during the tests with Ztreamy and Kafka on server type 1. 

It can be seen that even with limited resources machines,

pache Kafka supports the amount of simultaneous drivers that

treamy was able to tackle with a expensive high-performance

erver. In a production environment, it would be desirable to use

 customized configuration that optimize performance at the low-

st cost. Additionally, other factors like availability, scalability or

anageability are also decisive in order to choose a solution, so 

n Section 6.2,  different Kafka configuration models are studied 

o analyze their performance. 

.2. Comparing Kafka configuration models 

Apache Kafka is a flexible publish-subscribe messaging system,

o the cluster can be transparently expanded without downtime.

ifferent configurations have been tested to have an overview of

he possibilities and the amount of users that could be served in

he case study. To this end, the first scenario consisted in test-

ng how many SmartDrivers could a single node support on an

nstance of server type 2, commented in the previous subsection.

atency is considered to be unacceptable if it exceeds 5 s. In this

est, the instances of the simulator were used to continuously cre-

ate new simulated SmartDrivers until delays begun to occur and

the server became saturated. It can be seen in Fig. 13 that a single

ode can support almost 41,0 0 0 simultaneous SmartDrivers before

xceeding the delay threshold. The amount of RAM memory plays

n important role in performance because Kafka stores the disk

uffer cache in RAM, which means that enough memory is needed

n order to keep messages yet to be consumed by belated con-

umers. In the simulations, when the number of those belated con-

umers increased, the number of supported simultaneous Smart-
11
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Fig. 12. Kafka configuration 1 using server type 1.

Table 3

Munin indicators for Ztreamy and Kafka streaming server.

Streaming server CPU usage Memory usage Memory allocated I/O wait TCP established connections

Ztreamy Avg 15.36% 6.40GB 11.19GB 1.42% 0.61 ·10 3 
Max 51.39% 7.13GB 11.96GB 2.78% 3.84 ·10 3 

Kafka Avg 1.99% 1.24GB 6.55GB 0.80% 2.91 ·10 3 
Max 5.55% 1.58GB 7.10GB 1.08% 7.80 ·10 3 

Table 4

Stream rates for Ztreamy and Kafka streaming server.

Error rate First try success rate Error recovering rate Traffic increase due to errors

Ztreamy 5.52% 94.48% 99.31% 5.40% ≈ (8.64MB) 

Kafka 0% 100% – –

Fig. 13. Kafka configuration 1 using server type 2. Incrementally increasing simultaneous SmartDrivers and delay detected.
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rivers decreased, because of the overload caused by transferring

isk data to RAM. 

One of the strengths of Kafka is its scalability. Hence, the next

tep was to test a distributed multi-node configuration. Increasing

he number of nodes allows the creation of more partitions and

preading the data to scale the architecture horizontally. 

On the other hand, Apache Zookeeper manages the cluster and

s responsible of synchronizing the nodes. It is worth mentioning

hat, for production environments, it is also recommended to con-

gure Zookeeper in replicated mode to warrant availability in case

f failures. Zookeeper has a master-slave architecture and is recom-

ended to be run in an odd number of machines to create what is

alled an ensemble, being one of them the master and the others
laves. 
Thus, as there were not enough machines to replicate

ookeeper, it was tested a Kafka distributed configuration using 3

afka nodes with 6 brokers, managed by a replicated Zookeeper

eployed together with the Kafka nodes, so each machine had an

nstance of Zookeeper and a Kafka node. 

As before, we consider that a given latency value is acceptable

f it remains under 5 s, in order to ensure a quick response

lients ( Fig. 14 ). 

In this case, the cluster is able to support more simultaneous

rivers before reaching an excessive delay, but the traffic generated

o synchronize contents between the nodes required them to be in

 fast network as the number of simulated SmartDrivers increased.

One important improvement was to separate Zookeeper to 

eave it enough resources, resulting in a cleaner architecture of the
12



Fig. 14. Kafka configuration 3 using servers type 2. This setting uses 6 brokers per node.

Fig. 15. Kafka configuration 4 using servers type 2. This setting uses 8 brokers per node. Full-size trace of best result achieved covering almost 10 0,0 0 0 simultaneous

SmartDrivers.

Table 5

Kafka model configuration comparison.

Kafka config. Machines Nodes Brokers per node SmartDrivers Delay (s)

1 1 1 1 40,989 6

3 4 3 6 78,849 5

4 5 3 8 10 0,0 0 0 2.3
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whole cluster. Thus, in Kafka configuration 4, we have used only

one instance of Zookeeper as the coordinator for our tests, as it

was enough for the test cases. Hence, for this distributed config-

uration, we set up the 3-node cluster using 5 identical trial FI-

WARE servers with the previously commented features, defining 3

of them as Kafka nodes, one for setting Zookeeper and the last one

to deploy the Data Analyzer. The proposed cluster architecture can

be seen in Fig. 10.  

At this point, it is proved that a distributed solution works

better when the number of potential users grows, but adjusting

and testing different configurations is advisable to better meet the

needs of each particular case. 

The final test was carried out using the Kafka configuration 4

nd increasing the number of brokers from 6 to 8. With this 

rchi- tecture, there were achieved the best results, as shown in 

ig. 15.  These tests are summarized in Table 5,  where it can be 

een how configurations 1 and 3 were not suitable to serve at 

east 90,0 0 0 simultaneous drivers whereas configuration 4 
chieved this goal with some margin. 
. Conclusions and future work

As data sources and the volume of information increase, be-

ng able to process quickly vast amounts of information becomes

ore necessary. Until a few years ago, the best solution was to

evelop a custom platform to solve the problem, but with the

trong rise of Big Data, new initiatives to deal with large vol-

mes of information have emerged. Thus, several options are avail-

ble when a Smart City scenario has to be solved. After study-

ng a wide range of smart cities infrastructures, it has been found

hat smart transportation sector has to tackle some of the most

emanding requirements, such as real-time services. The publish-

ubscribe paradigm is a popular solution for handling large vol-

mes of inbound and outbound data flows asynchronously and

ould be used to manage transport logistics processes. The case

hown in this paper demonstrates how was tested the previous

treaming server used in HERMES, exposing the SmartDriver real

cenario and the simulator implemented to solve the shortage of

sers in order to test the platform. The open source simulator,
13
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available on GitHub, allows the generation of thousands of simul-

taneous drivers commuting through routes generated by Google

Maps or OpenStreetMap, including driver data (heart rate, stress

etc.) and vehicle data (accelerations, speed, etc.) This simulator

can help other researchers to test their infrastructure or compare

ith other alternatives. Furthermore, two alternative server infras- 

ructures have been implemented in the context of the HERMES

roject, one based on Ztreamy and other one based on Kafka, the

latter achieving considerable better results. The Kafka base infras-

tructure used Zookeeper, Kafka and Kafka-Streams. It enhances ef-

ficiency of data management and reduces costs. Moreover, the use

of Apache Kafka to build the distributed architecture yields a high

scalability and ease of maintenance. The initial goal of the project

hich was to serve more than 90,0 0 0 drivers with a maximum de-

ay of 5 s, was overtaken using a distributed solution based on 3 

irtual machines with only 8GB each one. This decentralized archi-

ecture avoided the need of expensive high-end equipment. 

In our humble opinion, one of the best current alternative

as been proposed to achieve a publish-subscribe infrastructure

o solve the SmartDriver study case, providing also a simulator to

est the load capacity of the system. Future work will take into

ccount these and other factors that affect the streaming serve

erformance, as well as different Apache Kafka configurations on

igh performance servers and more distributed solutions based on

ow performance systems like Raspberry Pi boards, analyzing the

ost and benefit of different alternatives to serve the larger number

f concurrent users. Moreover, existing vulnerabilities and coun-

ermeasures will be considered in order to ensure the maximum

vailability of the service. Finally, the advantages of integrating

other platforms from the Apache Big Data ecosystems will be stud-

ied. Moreover, other robust open source message brokers such as

RabbitMQ or ActiveMQ, among others, will be evaluated, aiming at

supporting the greatest number of users in a smart city, whether

hey are citizens or Internet of Things (IoT) applications that lever-

ge ubiquitous connectivity. The proposed simulator will also be

mproved to make it interoperable with other infrastructures. 

Finally, as we mentioned previously, the long-term storage com

ponent of the architecture is not considered a bottleneck, and a

traditional relational DBMS has been used to store the event infor-

mation generated by the SmartDrivers. However, in a real use sce-

nario, it will be necessary to query and visualize the information

generated by 90.0 0 0 simultaneous drivers, which implies solving

patio-temporal queries on a large collection of data and visual- 

zing massive amounts of geographic information on a map. This

cenario poses another interesting research challenge. 

To conclude, it is worth mentioning that simply increasing the

umber of nodes or brokers in the Apache Kafka architecture

oes not always improve global performance. For example, in ou

ase study and with the hardware configuration we presented

aising the number of brokers beyond 8 led to a performance

rop. There 

re also other factors that affect the performance of a Kafka clus- 

er to a greater or lesser extent, such as distributed storage us- 

ng RAID configurations, compression codec, consumer’s fetch size

atch size for producers, socket buffer sizes, etc. that will be also 

tudied in future works. 
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