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Abstract

In this work, we propose a framework to store and manage spatial data, which includes
new efficient algorithms to perform operations accepting as input a raster dataset and a
vector dataset. More concretely, we present algorithms for solving a spatial join between
a raster and a vector dataset imposing a restriction on the values of the cells of the
raster; and an algorithm for retrieving K objects of a vector dataset that overlap cells of
a raster dataset, such that the K objects are those overlapping the highest (or lowest)
cell values among all objects. The raster data is stored using a compact data structure,
which can directly manipulate compressed data without the need for prior
decompression. This leads to better running times and lower memory consumption. In
our experimental evaluation comparing our solution to other baselines, we obtain the
best space/time trade-offs.

Introduction

When dealing with spatial data, depending on the particular characteristics of the type
of information, it may be more appropriate to represent that information (at the logical
level) using either a raster or a vector data model [1]. The advance of the digital society
is providing a continuous growth of the amount of available vector data, but the
appearance of cheap devices equipped with GPS, like smartphones, is responsible for a
big data explosion, mainly of trajectories of moving objects. The same phenomenon can
be found in raster datasets, where the advances in hardware are responsible for an
important increment of the size and the amount of available data. Only taking into
account the images acquired by satellites, several terabytes of data are generated each
day [2], and it has been estimated that the archived amount of raster data will soon
reach the zettabyte scale [3].

This big increase in the variety, richness, and amount of spatial data has also led to
new information demands. Nowadays, many application areas require the combination
of data stored in different formats [4] to run complex analysis. Obviously, combining
different data models becomes more difficult when dealing with large amounts of data.

Although there is a large body of research regarding the size, the analysis, and the
heterogeneity of data, in the case of spatial data, in most cases, that research is focused
either on the vector model or on the raster model separately. The two models are rarely
handled together. For instance, the usual solution for queries that involve (together)
raster and vector datasets is to transform the vector dataset into a raster dataset, and
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then to use a raster algorithm to solve the query. This is the solution for the zonal
statistics operation of Map Algebra in, at least, ArcGIS and GRASS [5,6].

However, some previous research has addressed the problem using a joint approach.
In [4], a single data model and language is proposed to represent and query both vector
and raster data at the logical level. Even a Join operator is suggested, which allows
combining, transparently and interchangeably, vector datasets, raster datasets, or both.
As an example, the authors propose the query “return the coordinates of the trajectory
of an aircraft when it was over a ground with altitude over 1,000”. Unfortunately, no
implementation details are given.

Other previous contributions deal with the implementation of query operators that
are explicitly defined for querying datasets in different formats [7–10]. Some of them
tackled the Join, or a close query, but in this case, these works suffer from limitations
(data structures not functional enough, too restrictive join operations, size problems)
that will be explained more in detail in the next section.

On the other hand, compression has been used traditionally with the aim of just
reducing the size of the datasets in disk and during network transmissions. However, it
has recently begun to be used as a way to obtain improvements in other dimensions,
such as processing time or scalability [11]. In the last few years, several authors [12–15]
have proposed the use of modern compact data structures [16] to represent raster
datasets. Compact data structures use compression to reduce the size of the stored
dataset, but with the novelty that the compressed data structure can be managed
directly in compressed form, even in main memory. By saving main memory, we obtain
a more scalable system, but at the same time, we take advantage of a better usage of
the memory hierarchy, and thus obtain better running times. This strategy is sometimes
called “in-memory” data management [17]. In addition, many compact data structures
are equipped with an index that, in the same compressed space, speeds up the queries.
This feature is known as “self-indexation”. One example of these compact data
structures designed for raster data, and the one achieving the best space/time
trade-offs [15], is the k2-raster [14], which will be used in this work, thus extending its
functionality.

In this work, we propose to use a new framework to store and manage raster and
vector datasets. The vector dataset is stored and indexed in a traditional way, using an
R-tree [18]. For the raster data, instead, we propose to use a modern compact data
structure, the k2-raster, which improves the performance of traditional methods.

The algorithms to manage independently each type of data and its corresponding
data structure are well-known [14,19]. However, as explained, the algorithms to process
both types of data jointly have been much less studied. Therefore, our proposal requires
the design of new algorithms. In this work, we present two new algorithms that are able
to efficiently answer two operations having as input a vector dataset and a raster
dataset. The first one is a spatial join between the two input datasets imposing a range
restriction on the values of the raster dataset. The second algorithm obtains the top-K
different objects of the vector dataset overlapping the highest (or lowest) values of the
raster dataset.

Our proposal obtains important savings in disk space, which are mainly due to the
use of a k2-raster for representing the raster data. In our experiments, the compressed
raster data occupied between 9% and 73% of the disk space needed by the original
uncompressed raster data. However, the main contributions of this paper are the
algorithms for solving the aforementioned operations, which obtain savings also in main
memory consumption and processing time. Although the k2-raster was designed to be
used directly in compressed form, it is not trivial to save main memory while processing
it. Thus, designing these algorithms becomes challenging, as the direct management of
compressed data and indexes requires complex data structures and processes, which
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could negatively impact the results in main memory consumption and running time.

Related work

Spatial data can describe the space using two levels of abstraction. On the conceptual
level, models describe the space using two different approaches: object-based spatial
models and field-based spatial models [20]. It is in the logical level where spatial data
models are divided into vector models and raster models.

Few data models consider the possibility of jointly using the object-based and the
field-based spatial models. Even international standards separate both views [21,22].
The same situation can be found at the logical level, where international
standards [23,24] separate again both views and do not provide languages, data
structures, or algorithms to perform queries that use information from both data models
simultaneously.

Those geographical information systems that are capable of managing raster data
are usually equipped with the operators of Map Algebra [25,26]. Sometimes, as in the
case of ArcGIS or GRASS, they support a variation of the zonal statistics operation
that, instead of receiving two input rasters, admit one vector dataset and one raster
dataset. However, the vector dataset is first internally transformed into a raster dataset,
such that a usual zonal statistics operation is executed over two raster datasets [5, 6].

The works in [27–29] provided the definition of data models and query languages to
manage vector and raster data, but using a different set of query operators for each type
of data.

Grumbach et al. [4] proposed a data model to represent vector and raster data with
the same data abstraction. It includes spatial versions of relational model operations
like Projection, Selection, and Join. These operations can manipulate vector and raster
information without having to separate or distinguish the type of operands.

Brown et al. [30] presented a data model that represents vector and raster data with
a data abstraction based on multidimensional arrays. These works present data types,
storage structures, and operators to query vector and raster data, sometimes jointly, but
unfortunately no details of implementation issues are provided (neither about the data
structures nor the algorithms needed to support the model and the queries).

Corral et al. [7] presented five algorithms for processing a join between a vector
dataset, indexed with an R-tree, and a raster dataset, indexed with a linear region
quadtree. In [8], it is shown an operation between regions and moving objects that
obtains the predictive overlapping between them. A linear region quadtree is used again
to index the raster dataset, whereas the predictive nature of the operation requires a
different index for the vector data, namely a TPR*-tree. Unfortunately, these works
tackled only binary rasters, cells contain only black or white colours, and therefore they
have a very limited real application.

In [10], it was presented the scanline method, which is an algorithm to run the zonal
statistics operation between a raster and a vector datasets without any previous
transformation.

Brisaboa et al. [9] presented a framework to store and manage vector and
compressed raster data, as well as an algorithm to solve a query that, given a vector
and a raster dataset, returns the elements of the vector dataset overlapping regions of
the raster dataset that fulfill a range constraint. For example, having a vector dataset
representing the neighbourhoods of a city and a raster storing the amount of nitrogen
oxides in the air, a query could be “return the neighbourhoods overlapping points where
the concentration of nitrogen oxide is above 0.053 ppm”. However, their solution does
not return the exact cells of the raster fulfilling the range constraint. The vector dataset
is indexed with an R-tree. The raster dataset is represented and indexed with a compact
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data structure called k2-acc [12], which needs a separate tree-based data structure for
each distinct value in the raster. More concretely, they use a compact data structure
called k2-tree [31] for each value. The k2-tree is a space- and time- efficient version of a
region quadtree [32–34], the typical index for binary raster data. To solve the query, the
algorithm just requires the k2-trees representing the values at the extremes of the range
and the R-tree. The search starts at the root of the three trees and then proceeds in
parallel a top-down traversal over all of them, pruning the branches of the trees when
possible. The k2-acc has two problems. First, it works well for range queries, that is,
those specifying a range of values of the raster dataset (like the nitrogen oxide example
just exposed); but obtains modest response times for other queries, such as obtaining
the value of a given cell. The other problem of the k2-acc concerns the size of the
dataset. It is a compact data structure that gives good compression rates when the
number of distinct values in the dataset is low. However, when the number of different
values is large, the dataset occupies much more space than its uncompressed
representation [13,14], and scales really poorly when executing most queries.

The framework proposed in this paper does not have any of these two problems
of [9], due to the use of a k2-raster to represent raster datasets. Therefore, as the
k2-raster works well for all types of queries, and compresses the dataset even when the
number of different values in the dataset is large, the framework achieves significant
savings in query time, as well as, in space, in both disk and main memory. In addition,
the join operation included in our proposal differs from the one presented by Brisaboa
et al., as our join algorithm also returns the cells of the raster dataset fulfilling the
query constraints, that is, it is a real join.

Background

In this section, we review the main techniques that will be used as basis of our proposal,
and also some baselines that will be used to evaluate its performance.

Since it is a well-know data structure, we are not going to introduce here the
R-tree [18], but we will include a brief explanation of the k2-raster, the k2-treap, and
NetCDF to represent raster data.

k2-raster

The k2-raster [13, 14] is a compact data structure for storing an integer raster matrix in
compressed form and, at the same time, indexing it. It consists in a compressed
representation that allows fast queries over the raster data in little space. It efficiently
supports queries such as retrieving the value of a specific cell or finding all cells
containing values within a given range.

The k2-raster exploits the uniformity of the integer matrix to obtain compression.
Following an analogous strategy to that of the k2-tree [31], given a raster matrix and a
parameter k, the k2-raster recursively subdivides the matrix into k × k submatrices and
builds a conceptual tree representing these subdivisions and the minimum and
maximum values of each submatrix. The subdivision stops in case that the minimum
and maximum values contained in the submatrix are equal. This conceptual k2-ary tree
is then compactly represented using binary bitmaps and efficient encoding schemes for
integer sequences. This leads to a compressed representation of the raster matrix with
efficient indexing capabilities.

More concretely, let n× n be the size of the input matrix, being n a power of k. To
build the k2-raster, it is necessary, first, to compute the minimum and maximum values
of the matrix. If these values are different, they are stored in the root of a tree, and the
matrix is subdivided into k2 submatrices of size n/k × n/k. Each of these submatrices
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generates a child node in the tree, where its minimum and maximum values are also
stored. In case that these values are the same, the corresponding submatrix is not
further subdivided. In case that these values are different, then this procedure continues
recursively until the subdivision stops due to finding a uniform submatrix, where all the
values are the same, or until no further subdivision is possible due to submatrices of size
1× 1.

In case that the raster matrix is not squared or n is not power of k, the matrix can
be easily expanded to the squared matrix with size the following power of k, without
imposing significant extra space.

Fig 1 shows an example of the recursive subdivision (top) and how the conceptual
tree is built (centre-top), where the minimum and maximum values of each submatrix
are stored at each node. The root node corresponds to the original raster matrix, nodes
at level 1 of the tree correspond to submatrices of size 4× 4, and so on. The last level of
the tree corresponds to cells of the original matrix. Notice, for instance, that all values
of the bottom-right 4× 4 submatrix are equal; thus, its minimum and maximum values
are equal, and it is not further subdivided. This is the reason why the last child of the
root node has no children.

To obtain a compressed representation of this conceptual tree, the k2-raster uses two
different approaches, one for representing the topology of the tree, and another for the
maximum and minimum values stored at its nodes. On one hand, the shape of the tree
is encoded using a bitmap, indicating in level-wise order whether a node has children or
not. This corresponds to a simplified variant of LOUDS (level-ordered unary degree
sequence) tree representation [35], which is a compact representation for trees. On the
other hand, the maximum and minimum values are compactly encoded as the difference
with respect to the maximum/minimum value stored at the parent node. These
non-negative differences are stored as arrays, following the same level-wise order of the
tree. The fact that the differences tend to be small is exploited using Directly
Addressable Codes (DACs) [36], an encoding scheme for integer sequences that provides
good compression and direct access to any given position. At leaf nodes of the tree, only
the maximum value is stored (as the minumum is the same).

We illustrate at Fig 1 the final representation of the example matrix included at the
top. In the centre-bottom part of the figure, we show the tree with the differences for
the maximum and minimum values, whereas the data structures that compose the final
representation of the k2-raster are shown at the bottom part. Hence, the original raster
matrix is compactly stored using just a bitmap T , which represents the tree topology,
and a series of compressed integer arrays, which contain the minimum and maximum
values stored at the tree. Notice that when the raster matrix contains uniform areas,
with large areas of equal or similar values, this information can be very compactly
stored using differential and DACs encodings.

The k2-raster not only obtains a very compressed representation of the raster matrix,
but it also self-indexes the data, enabling fast queries over the raster matrix. These
queries can be efficiently computed by navigating the k2-raster; it is possible to simulate
a top-down traversal over the conceptual tree by accessing the bitmap and the compact
integer sequences in a very efficient way. In fact, some queries, such as finding cells
having values within a specific range, can be answered faster with a k2-raster
representation than having the raster matrix in plain form, even when the k2-raster
requires much less memory space.

It is possible to obtain better compression and navigation efficiency by using
different k values for each level. In particular, using just two values of k works well in
practice. This hybrid variant will be used in the experimental evaluation. It requires
three parameters: n1, k1, and k2, which indicate that k = k1 for the first n1 levels, and
then k = k2 for the rest.
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Fig 1. k2-raster example. Example of integer raster matrix (top), conceptual tree of
the k2-raster (centre-top), conceptual tree using differential encoding (centre-bottom),
and final representation of the raster matrix using compact data structures (bottom).
rMax and rMin denote the maximum and minimum values of the root node. Lmax and
Lmin contain the maximum and minimum values of each node, following a level-wise
order and using differential encoding. This example uses k = 2.

As a summary, the k2-raster joins three interesting characteristics in just one data
structure: i) it compactly stores the data; ii) the tree is a spatial index, in fact it is built
with the same procedure used by quadtrees, the typical index for raster datasets; and
iii) the minimum and maximum values stored at the nodes of the tree index the values
stored at cells. This last indexation is usually known as lightweight indexing, as it is
inexpensive to offer [37–39].

Compared to k2-acc, the technique used in [9], the k2-raster not only obtains less
space consumption and query performance, but it also scales better when increasing the
size of the input data or when the raster matrix contains a large number of different
values.

k2-treap

The k2-treap [40] is a data structure designed for answering fast top-K queries over a
grid of points, where the points have weights. It conceptually combines a k2-tree with a
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treap data structure. Thus, thanks to the k2-tree properties, it obtains compact spaces
for representing the grid of points; and as it follows the ideas of a treap, it allows fast
ranked queries.

The k2-treap shares some common strategies with the k2-raster. Conceptually, it is
also a k2-ary tree with some extra information in the nodes. Given a grid of points with
weights (an integer matrix where some of the cells may contain no data), it locates the
maximum value of the grid and stores this value along with its coordinates in the root
node. Then, this maximum value is removed from its position, and the grid is
subdivided into k × k submatrices. Each submatrix is represented in the tree as a child
node, and the same procedure is repeated recursively. Leaf nodes in the k2-treap
represent submatrices where there are no more points with weights. This k2-ary tree is
also represented using compact data structures, including succinct bitmaps, differential
encoding and DACs. Top-K queries over the grid are solved very fast, as the maximum
values are indexed in the tree.

The k2-raster and k2-treap structures have not been compared before, as they have
been designed for representing different types of data. The k2-treap can also be used for
representing raster data, where the grid is full of points with weights, and to solve
access queries efficiently. However, the k2-raster indexes the values of the raster better,
as it stores not only the maximum, but also the minimum values, thus allowing us to
search for cells with values in a specific range. Space requirements would depend on the
uniformity of the raster matrix, as k2-rasters can compact large areas of equal values,
whereas k2-treaps cannot exploit that property.

NetCDF

Network Common Data Form (NetCDF) [41] includes the data format and software
libraries to compress, access and share array-oriented scientific data. More particularly,
it can also be used for compressing raster matrices and allows accessing compressed
datasets transparently without performing any explicit decompression procedure.
Internally, NetCDF uses Deflate [42], which can be configured in ten compression levels.
The compressed file is divided into blocks in such a way that when a portion of the
raster is required, the library has to decompress one or more of those blocks.

NetCDF and k2-raster have been compared recently [14]. k2-raster obtains
compression ratios close to those achieved by NetCDF. NetCDF is faster than k2-raster
when accessing large portions of the data sequentially. On the other hand, k2-raster
obtains better access times to individual raster cells and when solving queries specifying
conditions on the values of the raster. These queries are solved orders of magnitude
faster, even compared with querying uncompressed NetCDF files, thanks to the
indexing capabilities of the k2-raster. Moreover, these two techniques follow different
approaches, as NetCDF follows a classical disk-based approach, whereas k2-raster is
designed to operate completely in main memory.

A framework to store and process vector and raster
data

In our framework, the vector datasets are stored using a traditional setup indexed with
R-trees, and the raster datasets are stored and indexed using k2-rasters. Next, we
present two operations over that framework, which admit as input a vector dataset and
a raster dataset.

Throughout the article, we will use the example of Fig 2 to illustrate our
explanations. The left part of the figure shows a vector dataset, and the right part
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shows a raster dataset. Using solid lines, the vector objects (labeled with lowercase
letters) are depicted surrounded by their Minimum Bounded Rectangles (MBRs) that,
for our example, are also the MBRs at the leaves of the R-tree indexing them. The
MBRs surrounded by rectangles with thick and very sparse lines (M1, M2, and M3) are
the MBRs of the children of the root of the R-tree.
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Fig 2. A vector dataset (left) and a raster dataset (right). A vector dataset
(left), and its MBRs, and a raster dataset (right), with the regions (quadrants) delimited
by the divisions of the k2-raster. For clarity, the last level of the k2-raster is omitted.

Regarding the raster dataset at Fig 2 (right), we show its cell values in light grey.
The dotted lines are the regions of the space delimited by the splitting process of the
k2-raster (a hybrid one, n1 = 2, k1 = 2, and k2 = 4). We call these regions quadrants.
The thicker and densely dotted lines delimit the first level quadrants, denoted as q1, q2,
q3, and q4. The thinner and sparser dotted lines delimit the second level quadrants
(q11, q12, . . . , q43, q44). In the raster dataset, we also draw the MBRs of the vector
objects, with solid lines too, in order to easily see the overlays between the two datasets.
Under the raster, we also show the conceptual k2-raster without the last level, since it
just includes all the cells shown in the raster.

Basic definitions

We will use the following notation during the next sections:

• pr denotes a pointer to an R-tree node;

• pr.MBR denotes the MBR stored at node pr;

• pr.ref denotes the list of pointers to the children of an internal node pr, or the list
of objects identifiers of a leaf node pr;
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• pk denotes a pointer to a k2-raster node;

• pk.quad denotes the quadrant corresponding to pk;

• pk.max denotes the maximum value stored at pk; and

• pk.min denotes the minimum value stored at pk.

Efficient spatial join between raster and vector datasets

In this section, we present an algorithm to compute the join between a raster and a
vector dataset, imposing a range constraint on the values of the raster. Therefore, the
algorithm returns the elements of a vector dataset (polygons, lines, or points) and the
position of the cells of the raster dataset that overlap each other, such that the cells
have values in a given range [vb, ve]. Formally, the query can be defined as:

Definition 1. Let V be a set of vector objects, R be the set of cells of a raster, and
[vb, ve] a range of values. For any Ou ∈ V and Cw ∈ R, let OSc

u and CSc
w be the spatial

components of those elements and CV al
w the value stored at that cell. The join between

the raster and the vector datasets, V on R[vb,ve], returns the set of tuples
{(O1, 〈CSc

11 , . . . C
Sc
1l1
〉), (O2, 〈CSc

21 , . . . C
Sc
2l2
〉), . . . , (On, 〈CSc

n1
, . . . CSc

nln
〉)} such that

OSc
i ∩ CSc

iy
6= ∅ and vb ≤ CV al

iy
≤ ve, for 1 ≤ i ≤ n, 1 ≤ y ≤ li.

That is, for each object of the vector dataset fulfilling the query constraints, the
query returns the spatial component of the cells overlapping that object and having
values in the queried range.

It is also possible to apply spatial restrictions on both datasets, that is, to restrict
the join to windows or regions of the vector and the raster dataset.

In an index, handling directly the exact geometries of indexed spatial objects would
require complex and slow computations, thus making the index ineffective. Thus, when
a query with spatial restrictions is run on a dataset indexed using MBRs, it is
performed in two steps [43, p.203]. The first step, usually called filter step, retrieves the
objects with MBRs fulfilling the constrains of the query. This step traverses the index
applying the spatial constraints to the MBRs. The output can contain MBRs that
satisfy the spatial constraints, whereas the exact geometry of the objects it contains
does not. Then a second step, usually called refinement step, traverses the output of the
filter step using the exact geometries of the objects to test if they are actually part of
the solution. This second step is costly but it is generally applied over a much smaller
number of objects. For the operation tackled in this section, we focus on the filter step.

In our algorithm, in order to reduce even more the burden of the refinement step,
our filtering step separates all the selected MBRs into separate lists of definitive results
and probable results. Both lists include tuples formed by an object Oi and the spatial
component of the cells overlapped by the leaf MBR surrounding Oi (MBRi) that have
values within the queried range.

• For any tuple of the definitive list, it holds that all the cells overlapped by MBRi

fulfill the range criterion, and thus, it is known for sure that Oi is part of the final
result (and does not need to be processed during the refinement step).

• For any tuple of the probable list, it holds that only some cells overlapped by
MBRi fulfill the range criterion. Therefore, the refinement step must be applied
on Oi to check if it is part of the final result.
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Checking the overlap

The most critical operation of the join operation is to check whether a MBR of the
vector dataset overlaps a region of the raster dataset having values within the queried
range. This operation should be fast to obtain good running times. Therefore, our
algorithm first tries a less accurate check (checkQuadrantJ ) that sometimes is enough to
make a decision. When it is not, the algorithm runs a second and more precise check
(checkMBR), which is obviously more expensive.

checkQuadrantJ (pr, pk, CellsRange) receives as input a pointer pr to an R-tree node,
a pointer pk to a k2-raster node, and the range of values of the query. It outputs a pair
(typeOverlapQuad , pkdeep

), where pkdeep
is a pointer to the deepest quadrant descendant

of pk, which completely contains pr.MBR. The value of typeOverlapQuad depends
exclusively on the raster values distribution inside the selected quadrant, and is one of
the following:

• TotalOverlap indicates that all the cells within pkdeep
.quad have values in the

queried range. Thus, in this case, without any further check, the algorithm
determines that all the objects within pr.MBR are part of the solution and can be
included in the definitive list.

• PossibleOverlap indicates that pkdeep
.quad contains some cells having values within

the queried range, but also some cells with values outside that range. Therefore, it
is not possible to make a decision at this point of the algorithm, and thus a more
thorough analysis is required.

• NoOverlap indicates that pkdeep
.quad contains only cells of the raster that do not

have values in the queried range. Thus, in this case, the algorithm can determine
without any further check that all the objects within pr.MBR are not part of the
solution, and thus, the subtree rooted at that node can be discarded.

checkMBR(pr, pk,CellsRange) receives as input a pointer pr to a leaf R-tree node, a
pointer pk to a k2-raster node, and the range of values of the query. It returns only a
variable typeOverlapMBR whose possible values are:

• TotalOverlap indicates that all the quadrant cells overlapping pr.MBR have values
in the queried range. Thus, this implies that all the objects within pr.MBR and
the overlapping cells do not need to go through the refinement step, and therefore,
they are included in the definitive list.

• PartialOverlap indicates that the geometry of pr.MBR overlaps some quadrant
cells having values in the queried range, but some others that do not. Thus, this
implies that the objects within pr.MBR and the overlapping cells must go through
the refinement step, and therefore, they are included in the probable list.

• NoOverlap indicates that the exact geometry of pr.MBR overlaps only cells of the
raster quadrant that do not have values in the queried range. Therefore, all the
objects within pr.MBR are not part of the result.

checkQuadrantJ performs an preliminary less accurate check that, in some cases,
allows the algorithm to make a decision. The key idea is that checkQuadrantJ is very
fast. It starts at the node of the k2-raster provided as input, and then navigates the
tree downwards selecting at each node the unique child that completely contains the
MBR of the R-tree node, as long as the range of values delimited by the minimum and
maximum values of the k2-raster node intersect the query range. The navigation stops
when none of the children of the reached k2-raster node completely contains the MBR
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of the R-tree node, or when the minimum and maximum values of the k2-raster node do
not intersect the query range.

checkMBR is the more accurate operation. Obviously, this operation is more
expensive, as it needs to navigate downwards all the children of the processed k2-raster
node that overlap the MBR of the R-tree node, until reaching all the cells (leaves of the
k2-raster) overlapping the MBR.

Example: Let us take our running example at Fig 2 to illustrate these operations.
Considering as input a pointer to the R-tree node whose MBR is m12, a pointer to the
root node of the k2-raster, and the range of cell values [4,5], checkQuadrantJ starts
comparing the minimum and maximum values of the root ([1,5]) with the queried range
([4,5]). Since these ranges intersect, the navigation continues by checking if one of the
children of the root of the k2-raster completely contains m12. This holds for q2, and
thus the process continues, again checking if the minimum and maximum values at that
node ([1,3]) intersect the queried range ([4,5]). Since this is not the case, the operation
ends outputting typeOverlapQuad = NoOverlap. This is a good example to see that it is
possible to conclude that the content of m12 can be discarded already at the upper levels
of the k2-raster, in a fast way and without any further inspection of the input data.

Now, let us consider checkQuadrantJ having as input the R-tree node corresponding
to the leaf MBR m22, the root node of the k2-raster, and the queried range [4,5]. After
checking the minimum and maximum values at the root of the k2-raster, the navigation
goes to q3, the child that completely contains m22. The maximum and minimum values
at that node ([1,5]) intersect the query range, but they are not fully within the queried
range [4,5]. Since no smaller quadrant of q3 completely contains m22, the
checkQuadrantJ procedure ends outputting typeOverlapQuad = PossibleOverlap.
Therefore, the algorithm has to continue performing a deeper analysis using checkMBR
procedure, taking as input a pointer to the R-tree node of m22 and a pointer to the
k2-raster node of q3. Now the output is typeOverlapMBR= TotalOverlap, therefore all
the objects inside m22 and the overlapping cells are added to the definitive list. This
example shows that even when calling checkMBR, we take advantage from using the
R-tree index, avoiding any further inspection of spatial objects inside some of the MBRs.

The algorithm

Algorithm 1 shows the pseudocode of the procedure that computes the filter step of the
join of Definition 1. It receives as parameters a pointer to the root node of both the
R-tree and the k2-raster, and the query range of values of the cells of the raster. The
two lists of definitive and probable results are declared in Line 1. Line 2 defines a stack
used throughout the process, which keeps the nodes of both trees to be processed.

In Lines 3–4, for each child of the root of the R-tree, the stack is initially filled with
a pair containing a pointer to that child and a pointer to the root of the k2-raster. The
while in Line 5 is the main loop of the algorithm, which in each iteration processes the
top of the stack. As explained, it first tries a checkQuadrantJ operation. In Line 8, a
TotalOverlap result allows the algorithm to make a decision and Lines 9–12 add the
affected objects and cells to the definitive list.

In case typeOverQuad is PossibleOverlap, the algorithm is forced to continue
performing a deeper analysis. In Line 14, if the processed node of the R-tree is internal,
the algorithm adds its children to the stack, along with a pointer to the deepest
quadrant containing the node (pkdeep

), and a new iteration of the main while starts. If
the R-tree processed node is a leaf, then a checkMBR call is issued. If the answer is
TotalOverlap, the objects and the overlapping cells are added to the definitive list. A
PartialOverlap implies the same addition but, this time, to the probable list. In both
cases, the ExtractCells method uses the k2-raster to retrieve the coordinates of all the
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valid cells of pkdeep
overlapping the MBR.

Algorithm 1: Join (prRoot , pkRoot , [vb, ve])

Let Def and Prob be lists of tuples of the form (Oi, 〈CSc
i1

, . . . CSc
iln
〉) /* The lists

of definitive and probable results */

Let S be a stack with pairs (pr, pk) /* pr is a pointer to an R-tree node

and pk a pointer to a k2-raster node */

forall the prChild ∈ prRoot .ref do
push(S, (prChild , pkRoot)) /* For each child of the root node of the

R-tree, insert into the stack a pair with pointers to that node

and to the root of the k2-raster */

end
while S 6= empty do

(pr, pk)← pop(S)
(pkdeep

,typeOverlapQuad)← checkQuadrantJ(pr, pk, [vb, ve])
if typeOverQuad = TotalOverlap then

if isLeafNode(pr) then
addResult(pr, ExtractCells(pr, pkdeep

), Def) /* Adds spatial

objects and overlapping cells (having values in the

queried range) to Def */

else
addDescendantsLeaves (pr.ref , pkdeep

,Def ) /* Adds spatial objects

and overlapping cells in descendant leaves to Def */

end

else if typeOverlapQuad = PossibleOverlap then
if isInternalNode(pr) then

forall the prChild ∈ pr.ref do
push(S, (prChild , pkdeep

))
end

else
typeOverlapMBR← checkMBR(pr, pkdeep

, [vb, ve])
if typeOverlapMBR = TotalOverlap then

addResult(pr, ExtractCells(pr, pkdeep
), Def )

else if typeOverlapMBR = PartialOverlap then
addResult(pr, ExtractCells(pr, pkdeep

), Prob)
end

end

end

end
return (Def,Prob)

As explained, the basic idea is to try to solve the query in the highest possible level
of the two trees with the faster CheckQuadrantJ, and only when this is not possible, and
we reach a leaf node, checkMBR is issued.

Example: Using our running example and the query range [4,5], we are going to
illustrate the operation of the algorithm. The stack is initially filled with three pairs,
each containing a pointer to the root of the k2-raster and a pointer to one of the
children of the root of the R-tree, that is, to the nodes corresponding to M1, M2, and
M3 (see Step 1 of Table 1).

First, checkQuadrantJ is called (Line 7) with the top of the stack (M1, qroot), which
outputs (NoOverlap, q2), given that the minimum-maximum values corresponding to q2
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Table 1. Content of the stack during the example.
Step Stack (S)
1 (M1, qroot), (M2, qroot), (M3, qroot)
2 (M2, qroot), (M3, qroot)
3 (m21, q3), (m22, q3), (M3, qroot)
4 (M3, qroot)
5 (m31, q4), (m32, q4)

([1,3]) do not intersect [4,5]. Therefore, in this case, we can see one of the best cases for
our algorithm, since it prunes a whole subtree rooted at one of the children of the root
of the R-tree.

Then, the next top of the stack, (M2, qroot), is processed. The checkQuadrantJ call
returns (PossibleOverlap, q3), and then, since M2 is not a leaf, Line 16 adds to the stack
an entry, for each of its children (m21,m22), with a pointer to that node and another to
q3 (see Step 3 of Table 1).

Now, the next top of the stack, (m21, q3), is provided as input to checkQuadrantJ,
which returns (NoOverlap, q32), and then, it is discarded. With (m22, q3),
checkQuadrantJ returns (PossibleOverlap, q3); observe that no child of q3 completely
contains m22. Therefore, since m22 corresponds to a leaf, now the algorithm has to issue
a checkMBR call, which returns a TotalOverlap value, and thus all the objects within
m22 and the overlapping cells are added to the definitive list.

The next top of the stack is (M3, qroot), as shown in Step 4 of Table 1.
checkQuadrantJ returns (PossibleOverlap, q4), and then, since M3 is not a leaf, Lines
14–16 push its children into the stack producing the result shown in Step 5.

checkQuadrantJ, with (m31, q4) as input, outputs (PossibleOverlap, q4). So, a call to
checkMBR is issued, which returns a PartialOvelap, and therefore, the objects inside
m31 and the overlapping cells having values in [4,5] are added to the probable list. The
call to checkQuadrantJ with the last stack entry (m32, q4) returns (TotalOverlap, q44),
and thus the objects within m32 are added to the definitive list.

Top-K algorithm

This query returns the K objects of a vector dataset that overlap cells of a raster
dataset, such that the K objects are those overlapping the highest (or lowest) cell values
among all objects. Formally, we can define the top-K query for the highest values as
(the definition for the lowest values is analogous):

Definition 2. Let V be a set of vector objects, and R be the set of cells of a raster. For
any Ou ∈ V and Cw ∈ R, let OSc

u and CSc
w be the spatial components of those elements

and CV al
w be the value stored at that cell. The top-K query topK(V,R) returns a set of

K tuples {(O1, C
V al
l1 ), (O2, C

V al
l2 ), . . . , (OK , CV al

lK )}, such that OSc
i ∩ CSc

li 6= ∅,
1 ≤ i ≤ K, and CV al

li ≥ CV al
j , for all pairs (Oj , C

V al
j ) such that they are not part of in

any tuple of topK(V,R) and such that OSc
j ∩ CSc

j 6= ∅ and, Oj ∈ V and Cj ∈ R.

An example of this query could be: let Z be a region of the space, R a raster dataset
representing daily maximum temperatures in Z, and V a vector dataset with polygons
representing farms, distributed along Z. Then, a top-K query could be “Obtain the 10
farms in V where the highest temperatures have been registered today”.

Checking the overlap

As in the previous query, the top-K algorithm uses the same basic idea of
checkQuadrantJ and checkMBR, but with some modifications. For instance, the
two-step separation (filtering, refining) is no longer possible in this case, as we will see;
and we need new versions for the check operations.
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The new checkQuadrantT receives a pointer pr to an R-tree node and a pointer pk
to a node of the k2-raster and returns a pair (pkdeep

,maxdeep). The component pkdeep
is

a pointer to the deepest descendant of pk that completely contains pr.MBR, and
maxdeep is the max value stored at pkdeep

. Observe that maxdeep is a tentative
maximum value for the real maximum value in the raster area overlapped by pr.MBR.
The more accurate check is now checkGeometry(pr, pk), where pr is a leaf node. It
returns a list of tuples (Oi, C

V al
li

), with one tuple for each object in pr.ref , and where

CV al
li

is the value stored at the cells of the raster, among those overlapped by the object,
that contain the maximum value.

Again, checkQuadrantT is very fast, since it only checks the max/min values of the
internal nodes of the k2-raster. The operation checkGeometry is more complex, because
it obtains the raster portion that intersects with pr.MBR, and then, for each object in
pr.ref , a computational geometry algorithm is used to obtain the real maximum value
overlapped by that object, and the cells having that value. Observe that the
computational geometry algorithm is essential here, and can not be postponed to a later
refinement step. We are not able to discard candidates based on the tentative max value
identified by checkQuadranT, because it is possible that none of the objects inside
pr.MBR overlaps with any of the cells with that value.

The algorithm

Algorithm 2 shows the pseudocode of the operation top-K, for the highest values; the
version for the lowest values is obtained by simply changing the max values by min
values and vice-versa.

It receives, as input, pointers to the root of the R-tree and k2-raster, along with the
value of K. The algorithm processes both trees in parallel again. When traversing
internal nodes, only when a uniform raster quadrant is processed, a decision can be
taken, since it is sure that all objects within that quadrant overlap cells having the
maximum/minimum value stored at the corresponding node of the k2-raster.

If this is not enough to obtain K objects, the algorithm finally reaches the leaf
MBRs, and processes them in an order defined by the maximum value inside the raster
region which they overlap. However, it is possible that only few, or even none, of the
objects within each MBR overlap the cells with that maximum value. Therefore, all
those objects cannot still be added to the final result. They must be kept in a priority
queue, and wait to be processed in the proper order, since the queue could still contain
any pending object with a higher real maximum value, or any pending leaf MBR with a
higher tentative value.

In the algorithm, the priority queue stores entries following the format
(vect, pk,max, tent). tent is a flag to indicate whether the component max is tentative
or a real value. Depending on the value of this flag, the values of the rest of components
are: (i) tent=true, then vect is a pointer to an R-tree node and pk is a pointer to a
k2-raster node; and (ii) tent=false, then vect is an object id and pk is a null value.

For each child of the root of the R-tree, Lines 3–5 add to the priority queue a pointer
to that child, a pointer to the deepest node of the k2-raster that completely contains the
MBR of that child, and the maximum value at that k2-raster node, and thus, the tent
flag is set to true.

The iteration of the while loop in Line 6 starts by checking the tent component of
the head of the queue. If it is false (Lines 9–10), then the algorithm extracts the head of
the queue and its values are added to the result. Observe that a non tentative value
means that the vect component is the id of an object, whose exact geometry had been
already checked before by the checkGeometry procedure.

If the tent value is true, then the algorithm checks if the pointer to the k2-raster node
points to a uniform area (the maximum and minimum values at the node are equal) in
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Line 13. In such a case, without checking the exact geometry of the objects at the leaves
of the subtree rooted at prq, it is sure that those objects overlap cells with the retrieved
maxq value, and thus they are added to the result (up to K entries) with the procedure
addDescendantsLeaves, which traverses the R-tree downwards to retrieve them.

If the quadrant is not uniform, the algorithm checks if the pointer to the R-tree is a
leaf or not (Line 15). If it is a leaf, since the max value obtained from the queue was
tentative, the algorithm performs a call to checkGeometry. That call returns a list of
tuples (Oi, C

V al
li

), with one tuple for each polygon in the R-tree leaf. For each of those
tuples, if the real maximum is equal to the tentative maximum value (Line 18), then
that object is added to the response. If it is lower (Line 23), then it is added back to the
priority queue, but now with the format (Oi, null, C

V al
li

, false). If the pointer to the
R-tree is not a leaf (Line 25), the algorithm adds to the priority queue each of the
children, along with the deepest quadrant that completely contains it, along with its
tentative maximum value.

Example: Let us illustrate the algorithm computing a top-1 query over the example
of Fig 2. Lines 3–5 add each child of the root of the R-tree to the priority queue. The
first row of Table 2 shows the queue content after this first step.

Line 7 obtains the tent value of the head, and since it is true, Line 12 extracts the
head (M2, q3, 5, true); since q3 is not uniform (the maximum and minimum values of q3
are different), and M2 is not a leaf, the flow reaches Line 25 and then, the children of
M2 are added to the queue (see Step 2). Observe that, for each child, a call to
checkQuadrantT provides the deepest quadrant that completely contains that child and
the maximum value at that quadrant.

In the next iteration of the while loop, given that the head (m22, q3, 5, true) has a
tentative maximum, q3 is not uniform, and m22 is a leaf, then the flow reaches Line 16
and checkGeometry(m22, q3) is issued. The response is (d, 4), and thus, the for loop of
Line 17 only checks that entry; and since the real maximum is smaller than the
tentative one (Line 18), the tuple (d, null, 4, false) is added to the queue in Line 23 (see
Step 3). Observe that, with a tentative maximum value of 5, which is greater than 4,
M3 is still waiting in the queue, since it could contain objects overlapping cells with
value 5, that would be added to the final result before d.

In fact, the next iteration processes (M3, q4, 5, true). Since tent is true, q4 is not
uniform, and M3 is not a leaf, the flow reaches Line 26, and then the children of M3 are
added to the queue (Step 4).

The next dequeued head (m31, q4, 5, true) produces a call to checkGeometry that
returns a real maximum value (3) smaller than the tentative one, and thus
(e, null, 3, false) is added to the queue (see Step 5).

Finally, the next iteration processes (m32, q44, 5, true). After dequeuing it, since tent
is true, Line 14 checks the maximum and minimum values at q44; since they are equal
(it is a uniform quadrant), a call to addDescendantsLeaves adds the object in m32 to the
output (in this case the polygon f). This ends the computation of top-1.

A note on complexity

Time

Observe that our two algorithms can be modeled as a spatial join between an R-tree
and a raster where the spatial predicate is the intersection of areas or zones. When
using spatial data structures as, for example, the R-tree and quadtrees, the worst-case
analytical complexity for window queries, which include among others spatial joins, does
not reflect what really occurs in practice, because the behaviour depends on the size of
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Algorithm 2: Top-K (prRoot , pkRoot ,K)

Let T and L be lists of elements (Ou, C
V al
lu

) /* T holds the output of the

algorithm and L is a auxiliary list. */

Let Q be a priority queue with entries (vect, pk,max, tent)
forall the prRef ∈ prRoot .ref do

(maxdeep, pkdeep
)← checkQuadrantT(prRef ,pkRoot)

insert(Q, (prRef , pkdeep
,maxdeep, true))/* Inserts in the priority queue

each child of the root node of the R-tree */

end
while Q 6= empty and sizeOf(T)<K do

tent← tent(head(Q)) /* Obtains the tent flag of the head of the

queue */

if tent=false then
(Oq, null,maxq, tent)← head(Q) /* Extracts the head of the queue

*/

add(T, (Oq,maxq)) /* The max value at the priority queue is

real, add to the result */

else
(prq, pkq,maxq, tent)← head(Q)
if pkq.min = pkq.max then

addDescendantsLeaves(T, prq, pkq,maxq)/* A uniform quadrant,

all descendants can be added to the result */

else if isLeafNode(prq) then
L← checkGeometry(prq, pkq) /* Obtains a list of tuples */

forall the (Oi, C
V al
li

) ∈ L do
if CV al

li
= maxq then

add(T, (Oi,maxq)) /* The real value is equal to the

tentative, then add to the output */

if sizeOf(T)=K then break;

else
insert(Q, (Oi, null, C

V al
li

, false)) /* The real max is

smaller than the tentative one; the object is

inserted in the queue */

end

end

else
forall the prRef ∈ prq.ref do

(maxdeep, pkdeep
)← checkQuadrantT(prRef , pkq)/* It descends

one level of the R-tree, and adapts the nodes of the

k2-raster accordingly */ insert(Q,
(prRef , pkdeep

,maxdeep , true))

end

end

end

end
return T
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Table 2. Content of the priority queue during the computation of a top-1 query over
the example.

Step Priority queue (Q)
1 (M2, q3, 5, true), (M3, q4, 5, true), (M1, q2, 3, true)
2 (m22, q3, 5, true), (M3, q4, 5, true), (m21, q32, 3, true), (M1, q2, 3, true)
3 (M3, q4, 5, true), (d, null, 4, false), (m21, q32, 3, true), (M1, q2, 3, true)
4 (m31, q4, 5, true), (m32, q44, 5, true), (d, null, 4, false), (m21, q32, 3, true), (M1, q2, 3, true)
5 (m32, q44, 5, true), (d, null, 4, false), (e, null, 3, false), (m21, q32, 3, true), (M1, q2, 3, true)

the window and on the intersection area or zones at each level of the spatial
structure [44]. Recall that the k2-raster is conceptually a quadtree.

Therefore, to better predict the actual performance, the usual approach is to develop
cost models. For example, Theodoridis et al. [45] presented a cost model to approach
the cost of a window query using an R-tree. On the other hand, Theodoridis et al. [46]
and Corral et al. [47] proposed cost models that estimate the time required to calculate
a spatial join between two R-trees considering a spatial predicate and distance,
respectively.

The development of a cost model for our algorithms is beyond the scope of this
paper, becoming a result by itself. However, we present a preliminary analysis.

Let ` be the number of MBRs in the last level of the R-tree and let n be the number
of rows/columns of the raster. A simple baseline approach to solve the spatial join
would proceed first by obtaining the MBRs in the leaves of the R-tree, and then, for
each one, inspect all cells of the raster that overlap that MBR. The number of cells that
overlap an MBR is bounded by the size of the raster, that is, O(n2). Therefore the time
complexity of that baseline approach is Θ(`n2).

Now, we analyze the spatial join in our framework. The advantage of our algorithms
is that they do not need to always reach the last level of the R-tree to obtain the output.
There are several cases where the search from the root of the R-tree stops before the
last level:

• In the case of Algorithm 1:

1. When all the values of the region contain the exact same value, that is, when
the minimum and maximum values of the k2-raster node are equal, and that
value is not within the queried range.

2. When the maximum value of the processed k2-raster node is smaller than the
left extreme of the queried range, or when the minimum is greater than the
right extreme of the queried range.

• In the case of Algorithm 2, in addition to the previous cases, the algorithm stops
when the size of the resulting set reaches the desired K.

The worst case for Algorithm 1 corresponds to that where for all the MBRs of the
R-tree, we need to traverse all the nodes of the k2-raster. Considering the ` MBRs and

the number of nodes of a complete k2-raster
∑h

i=0 k
2i = k2h+1−1

k2−1 ≈ k2h = O(n2), where

h = O(logkn) is the height of the k2-raster, then the cost for the worst case is O(`n2).
In the case of Algorithm 2, the predominant costs are those corresponding to the

management of the priority queue Q and the cost of function checkGeometry. Let us
simplify the analysis considering just top-1 query (K = 1). On one hand, the worst case
would require that all MBRs need to be inserted in Q, as the maximum value is guiding
the search to areas close to (but not within) all the other MBRs different for the top-1.
This causes that the total cost of inserting and obtaining the head of the queue at each
step is O(` log2 `). On the other hand, checkGeometry requires a verification, in the
worst case, of O(n2) cells. Thus, the total cost for Algorithm 2 is
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O(` log2 `) + O(`n2) = O(`n2). It is noticeable that, for the worst case, the overall cost
of top-K does not depend on K ≤ `, and part of the O(`) inserted elements in Q will be
members of the solution and will be also inserted into list T .

Thus, the overall cost for the worst-case scenario of our algorithms is the same as
that of the baseline. However, it is a very pessimistic analysis that is not considering
the amount of searches that are not reaching the last level of the R-tree. Let us consider
the MBRs in the last level of the R-tree such that in some step of the tree traversal, the
search ended before reaching them, and denote R the percentage of those MBRs.
Therefore, the question is the size of R; that study would require a cost model, however,
as both our experimental results and previous work using lightweight indexation (which
include min, max values at nodes) [37–39] show, the real performance is improved.

Storage

The space consumption for the case of the R-tree was presented in the original work [18].
In the case of the k2-raster, it has not been presented previously, again, because a worst
case complexity does not fairly reflect the behaviour of the data structure.

However, we can compare the worst case of a baseline approach and that of the
k2-raster. Being M the highest value of the raster, a simple baseline that stores each
cell using dlogMe bits requires in total Nb = dlogMen2 = Θ(dlogMen2) bits.

The most unfavorable scenario for the k2-raster occurs when all cell values are
different. In this case, it has to store the topology of the tree (bitmap T ) and the two
sequences of minimum and maximum values for each level of the tree, except for the last
level, where only the sequence of maximum values is stored. Assuming h the height of
the k2-raster, the number of nodes at each level i, in a complete tree is k2i, being
0 ≤ i ≤ h. The number of internal nodes of a complete k2-raster is∑h−1

i=0 k2i = k2h−1
k2−1 ≈ k2h−1 = O(n2) and the number of leaf nodes k2h.

Therefore the required storage is Nr = k2h−1
k2−1 +

∑h−1
i=0 (c(min1,min2, . . . ,mink2i) +

c(max1,max2, . . . ,maxk2i)) + c(max1,max2, . . . ,maxk2h), where c(.) is the number of
bits required by DACs encoding. Since the internal nodes have two lists and the last
level only one, the size of these lists joined is s ≈ 2k2h. According to [36], the number of

bits of a compressed sequence of length s with DACs is N0 + 2s
√

N0

s , where

N0 =
∑s

j=1 blog xjc+ 1 ≤ dlogMe2k2h = O(dlogMen2) bits, thus the worst case space

of the k2-raster is Nr = O(dlogMen2).
Again the worst case is the same as that of the baseline. However, the baseline does

not benefit from Tobler’s law, thus the total cost will be exactly dlogMen2 bits always.
Nevertheless, in practice, the k2-raster can reduce significantly the storage due to two
effects:

1. Parts of the raster having the same value are simply represented by only one
number. This is a feasible assumption due to Tobler’s law.

2. The numbers are represented using difference encoding with respect to the
maximum value of the parent node, which decreases the magnitude of the
numbers when increasing the depth in the tree. In other words, there is a new
maximum value Mi, 0 ≤ i ≤ h for each level of the tree and, it is sure that
Mh <M and Mi ≤Mi−1 1 ≤ i ≤ h.

This reduction of the magnitude of the numbers is exploited by DACs encoding,
thus obtaining further compression.

Again, to determine the percentage of raster cells that are compacted in just one
number (uniform areas) and the effective reduction of magnitudes for the
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maximum-minimum sequences, better analysis can be obtained if a model of the data is
considered.

Experimental evaluation

Experimental Framework

In this section, we present a set of experiments to measure the space consumption and
processing time of the two algorithms.

The machine used in the experiments was equipped with an Intel® CoreTM i7-3820
CPU @ 3.60 GHz (4 cores) processor and 64 GB of RAM. The operating system was
Ubuntu 12.04.5 LTS with kernel 3.2.0-115 (64 bits). All the programs were coded in
C++ and compiled using gcc version 4.6.4 with -O3 options.

Time is measured using the sum of user and sys values provided by the Linux time
command, in seconds, except in the experiments of cold start that show the real value.
The memory consumption is measured taking the vmpeak value of the pseudo-file
system proc, in megabytes.

We obtained the R-tree implementation from
https://libspatialindex.github.io and we configured it with a page size of 4 KB
and a fill factor of 70%. We used the authors’ implementation of the k2-raster, available
at http://lbd.udc.es/research/k2-raster/. We chose the heuristic variant [14]
with a hybrid configuration using n1 = 4, k1 = 4, and k2 = 2. The bitmaps needed by
the k2-raster code were arranged with an implementation of the rank operation that
requires a 5% of extra space on top of the bitmap [48]. In addition, the code uses also a
DACs implementation configured to obtain the maximum compression restricting the
maximum number of levels to 3.

Baselines

There is no previous implementation for the spatial join operation in the literature. The
closest related works are those by Corral et al. [7] and Brisaboa et al. [9]. In the case of
the top-K operation, there is not even any close related work.

The work of Corral et al. only considers binary rasters, thus we run a separate
experiment for this software, as our algorithm is designed for rasters with different
values, which implies more complex data structures.

The work of Brisaboa et al. returns only the vector objects, but not the raster cells.
However, we modified the authors’ algorithm in order to obtain the same output as ours.
We made our implementation using the same R-tree used for the rest. The data
structure for storing the raster data, called k2-acc, was the authors’ implementation.

Furthermore, we programmed three additional baselines. Two of them load the
complete uncompressed dataset into main memory, where the data are kept as a simple
array following a simple filling curve row by row. One is denoted Plain-Ints and uses
a 32-bit integer representation for each cell value. The other is termed Plain-Bits and
uses dlog(#v)e bits for each cell value, being #v the number of different values in the
original matrix. Finally, the third baseline uses the NetCDF libraries from Unidata®,
available at http://www.unidata.ucar.edu/downloads/netcdf/, to compress and
decompress raster data, with the recommended deflate level 2.

For the baselines, we use two naive strategies:

I. The strategy labeled mbrs looks for all leaf MBRs in the R-tree and then overlaps
them with the raster dataset, where, for each intersection between an MBR and
the overlapping portion of the raster:
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Table 3. Raster dataset for Scenario I. Values in Megabytes.
# dif. Plain- Plain-

Name #rows #cols values Ints Bits k2-raster NetCDF k2-treap

DTM-1×1 4,100 5,849 868 91 30 10 10 15
DTM-2×2 8,242 11,737 1,201 369 126 38 38 58
DTM-3×3 12,403 17,643 1,503 835 296 81 84 132
DTM-4×4 16,564 23,564 1,761 1,479 535 143 151 236

• In the case of the join, it searches the cells having values in the queried range.

• In the case of the top-K query, it obtains the largest cell value, and it retains
those MBRs with the highest values.

II. The strategy labeled cells starts by the other side, that is:

• In the case of the join, it obtains the cells of the raster that meet the range
specified in the query, then those positions are checked using the R-tree to see
if they lie within an MBR.

• The cells with the top-K values (not necessarily different) in the raster
dataset are obtained. Then the R-tree is used to look for overlapping MBRs.
If not enough MBRs are found, the next top-K values in the raster are
obtained, and so on.

In the case of the join, for Plain-Ints, Plain-Bits, and NetCDF, we only included
the mbrs method, as the cells approach was too slow. However, we include the cells

version using a k2-raster representation (k2-raster-cells), in order to see the
difference with our algorithm.

For the top-K query, we replaced Plain-Bits by k2-treap, which is a baseline
based on k2-treap that uses the implementation published by the Database Lab research
group, available at http://lbd.udc.es/research/aggregatedRQ/. The reason is that
this structure, although it is very inefficient for other types of queries, including the join
operation, was specifically designed for the top-K query. There is just one
implementation for k2-treap, since strategy cells seems the best option in that
scenario (as it has an index that allows us to rapidly obtain the top-K cells). The code
of all these baselines is available at
https://gitlab.lbd.org.es/fsilva/basic_raster.

Another possible comparison is the traditional approach of translating the vector
dataset to raster, and then run a classical raster-raster algorithm. However, that
procedure is costly, for example, we used Grass (https://grass.osgeo.org/) latest
version (7.4) to translate our two vector datasets (see next section). This took 6 and 1.8
seconds, which is much more than the time needed by our algorithm to run the query,
and therefore we decided not to include this baseline in our experiments.

Datasets

The datasets used in our experiments, both the vector and the raster datasets,
correspond to real data that were scaled to fit in the same space. Notice that this is the
most demanding scenario for a spatial join, as it is not possible to exclude any branch of
the R-tree. We describe them more in depth in the following section.

Raster datasets

The raster datasets were obtained from Spanish Geographic Institute (SGI), which
includes several DTM (Digital Terrain Model) data files with the spatial elevation data
of the terrain of Spain. The complete DTM of Spain is divided in several tiles, and each
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Table 4. Raster dataset for Scenario II. Values in Megabytes.
# dif. Plain- Plain-

Name #rows #cols values Ints Bits k2-raster NetCDF k2-treap

DTM-4×40 16,564 23,564 2,153 1479 555 139 147 230
DTM-4×41 16,564 23,564 21,491 1479 693 362 322 361
DTM-4×42 16,564 23,564 208,493 1479 832 540 454 509
DTM-4×43 16,564 23,564 1,829,334 1479 970 708 611 659

tile is stored in a separate file. Each file contains a grid of regularly spaced points, with
5 metres of spatial resolution, storing their spatial elevation as real numbers of at most
3 decimal digits.

In order to evaluate the performance of our algorithms, we obtained two different
sets of rasters, which serve us to analyze the scalability of our algorithms in two
different scenarios:

• Scenario I: designed for analysis based on raster size. Table 3 shows the details of
our set of rasters of increasing size. The set is formed by four collections, each one
containing different matrices of the same size. Our initial collection, DTM-1×1,
was built selecting 25 samples of exactly one tile of the DTM; the collection
DTM-2×2 was built using 2×2 adjacent tiles, and so on. The data shown in the
table (e.g. the number of different values) correspond to the mean values obtained
for all the matrices in each collection. We will report the average values for space
and time results, in the experiments, for each collection, thus, avoiding the
dependence on the selection of a unique matrix. In this scenario, we only
considered the integer part of the value stored at each cell of the matrix.

• Scenario II: designed for analysis based on the distribution of raster values. Table
4 shows the details of the set of rasters that form a scenario of equal sized
datasets, but with increasing number of distinct values. We chose one of the
DTM-4×4 datasets, and generated a collection of matrices varying the number of
different values. For this, we truncated the original values by taking 0, 1, 2, and 3
decimal digits.

All measures are the mean resulting from running 10 queries with random query
ranges over each dataset for each collection. That means that, for example, in the
DTM-1×1 collection, 10× 25 = 250 queries were run. All queries are available at:
http://lbd.udc.es/research/k2-raster/

Tables 3 and 4 show that by using k2-raster, our framework obtains important
savings in disk space with respect to the uncompressed representations. In the datasets
of Scenario I, k2-raster occupies around 10% of the space occupied by Plain-Ints

and between 27% and 33% of that occupied by Plain-Bits. For Scenario II,
k2-raster occupies between 9% and 48% of the space occupied by Plain-Ints and
between 25% and 73% of that occupied by Plain-Bits.

With respect to the compressed representations, k2-raster obtains similar results
to those of NetCDF, except in the datasets with many different values of Scenario II,
where NetCDF occupies around 85% of the space required by k2-raster. Finally,
k2-raster occupies around 65% of the space used by k2-treap, except in the datasets
with many distinct values, where they are approximately on a par.

Vector datasets

We obtained two datasets from the ChoroChronos.org web site
(http://www.chorochronos.org/). In our experiments, the label vects refers to the
dataset Tiger Streams and the label vecca refers to the dataset California Roads of
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that site. These two datasets have a very different number of MBRs and spatial
distribution, as shown in Fig 3. More concretley, vects contains 194,971 MBRs and
vecca contains 2,249,727 MBRs.

Fig 3. Spatial distribution of the MBRs of the vector datasets vects (left)
and vecca (right).

Spatial Join

Before presenting the results of our experiment, we must make a point. The three
baselines, at the filtering step, use the rectangular shape of the MBRs to rapidly obtain
the cells of the raster overlapping each MBR, and thus they are also able to produce
two lists of definitive and probable results. Since these lists must be, necessarily, the
same as those produced by our algorithm, all our measurements in this experiment have
excluded, for practical reasons, the effects of the final refinement step.

Memory usage

In this experiment, we do not include the values of Brisaboa et al. [9] since the authors’
implementation of the k2-acc is very inefficient in managing the memory consumption,
yielding really bad results.

Fig 4 shows the main memory consumption for Scenario I. Our framework is denoted
as k2-raster. We can observe that, compared to the baselines with uncompressed
representations, our approach gets always the lowest memory consumption and the best
scalability when joining our raster collections with both vector datasets.

Fig 4. Memory consumption (in Megabytes) for rasters in Scenario I. (a)
vects dataset and (b) vecca dataset.
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However, comparatively speaking, the improvement in memory consumption is lower
than the one observed when we compared disk space consumptions. This could be
partially explained by the fact that the reported memory consumption includes the size
of the output. As such size, which is the same for all approaches, is usually large, it
represents a good part of the memory space consumed by all of them. This means that,
when expressing percentage differences between the approaches, the distances are
reduced, distorting the comparison.

Nevertheless, our method uses only 31–73% of the memory space used by
Plain-Ints-mbrs, and 60–89% of that used by Plain-Bits-mbrs. This is clearly an
important improvement, and shows, in addition, that the memory consumption of
k2-raster is not seriously harmed by the fact of having to manage data in a
compressed format.

The situation changes in the comparison with NetCDF. When checking for portions of
the raster, NetCDF loads the needed blocks of the file one by one. Each block is
decompressed, processed, and then removed from main memory. Therefore, this baseline
consumes less memory in the largest datasets, although differences are below 25%.

Finally, k2-raster-cells has the worst behaviour, since k2-raster consumes
between 23% and 48% of the space required by the baseline.

Fig 5 shows the results for Scenario II. Our algorithm consumes between 31% and
89% of the space used by the uncompressed baselines. On the contrary, NetCDF-mbrs
consumes between 43% and 87% of the space required by k2-raster.

Fig 5. Memory consumption (in Megabytes) for rasters in Scenario II. (a)
vects dataset and (b) vecca dataset.

Again, the worst values are those of the strategy cells using the k2-raster, since our
method uses between 24% and 38% of the space consumed by k2-raster-cells.

Time performance

In order to obtain compression, the k2-raster needs a complex arrangement of the data
it stores. Therefore, our uncompressed baselines are tough competitors since they keep
the raster data in main memory uncompressed and arranged as a simple space-filling
curve row by row.

This problem is common to all compact data structures. However, many of them
obtain better usage times than managing directly uncompressed data. The main reasons
are: (i) the dataset representation is smaller, yielding a better usage of the memory
hierarchy; and (ii) most of them include, in the same compressed space, indexes that
speed up queries.

In our case, k2-raster uses the quadtree arrangement of the data, which cleverly
obtains compression and, at the same time, obtains a spatial index. In addition, it
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couples the quadtree with lightweight indexation, to index the values at cells. Therefore,
part of the improvements in processing time of our framework comes from the capacity
of the indexes of the k2-raster to prune the search space.

Figs 6 and 7 show outstanding improvements, even using a logarithmic scale on the
y-axis. The indexes of the k2-raster do their job and thus our method is between 1.21
and 3.55 times faster than Plain-Ints-mbrs and between 1.72 and 8 times faster than
Plain-Bits-mbrs.

Fig 6. Processing time (in seconds and log scale) with rasters of Scenario I.
(a) vects dataset and (b) vecca dataset.

Fig 7. Processing time (in seconds and log scale) with rasters of Scenario
II. (a) vects dataset and (b) vecca dataset.

NetCDF, which uses a traditional compression method, competes with our framework
in space consumption, both in disk and main memory, obtaining better results in some
cases. However, when measuring processing time, results are clearly worse. As
explained, each time a portion of the raster is demanded, this requires to decompress
one or more blocks storing that information. This costly process should be carried out
for each MBR in the leaves of the R-tree. The blocks must also be loaded from disk, but
remember that disk access times are not taken into account in this experiment. As we
can see in the plots, our approach outperforms this baseline in around three orders of
magnitude. The results show that a reasonable sacrifice of memory space clearly
improves response times.

The cells baseline using k2-raster has the worst behaviour, even one order of
magnitude worse than NetCDF.

Finally, the approach of Brisaboa et al., denoted in the experiments as k2-acc, was
only able to run over the two smallest datasets of Scenario I, as it works really badly
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already when the raster has a moderate number of different values [9, 14].

Main memory consumption versus processing time trade-off

As a summary, Fig 8 includes two plots showing the trade-off between main memory
consumption and processing time achieved with the largest dataset of Scenario I, using
logarithmic scale in the x-axis. Again the k2-acc is omitted since its memory
consumption is very high. Clearly, we can see that our method is the best choice.

Fig 8. Memory consumption vs Processing time with the largest raster of
Scenario I. Memory consumption (in Megabytes) vs Processing time (in seconds and
log scale) with the largest raster of Scenario I. (a) vects dataset and (b) vecca dataset.

Cold start

Previous experiments were run in “warm” start, that is, the queries were run
sequentially, and thus, the operating system disk buffer keeps, with high probability,
important parts of the input datasets in main memory. This eliminates the effect of disk
access on times.

In order to show the impact of disk access, we designed an experiment in “cold”
start. This implies that:

• We measured real time to include disk access times.

• All data structures resided on disk and the operating system buffer was cleared
before the execution of each query.

We run 4 queries over each collection (recall that each collection contains several
datasets).

Fig 9 shows the results, which do not change the general picture with respect to the
performance of each method shown in Fig 6.

Comparison with classical approaches

One of the closest works is that of Corral et al. [7], but it only considers binary rasters.
Even thought the comparison can be considered unfair for our framework, which can
also represent integer rasters, we ran some experiments to study how our approach
performs compared to that baseline.

To obtain binary rasters, we took the datasets of our Scenario I and set to zero the
cells with values below the median, and to one the others. Table 5 shows the size of the
resulting datasets. The work of Corral et al. uses a classical setup, including a linear
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Fig 9. Processing time (in seconds and log scale) with rasters of Scenario I
and cold start. (a) vects dataset and (b) vecca dataset.

quadtree stored in a B+-tree to represent the binary raster. As a modern compact data
structure, the k2-raster obtains important savings in space.

Table 5. Size of the datasets in Kilobytes.

Linear Quadtree k2-raster
Binary DTM-1×1 3595.1 39.3
Binary DTM-2×2 12170.5 121.3
Binary DTM-3×3 24076.1 215.0
Binary DTM-4×4 27340.3 244.7
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Fig 10. Processing time (in seconds) of the comparison with a classical
data structure approach in Scenario I. (a) vects dataset and (b) vecca dataset.

As seen in Fig 10, our method is faster even though that the k2-raster has a complex
data structure designed to compress integers. Observe that each access to a node
requires two subtractions to obtain the values at that node, and in the leaves, it also
requires accessing to a compressed representation for integer sequences (DACs), which is
also costly. For binary rasters, instead of a k2-raster, we could use a simpler and faster
k2-tree, which does not need neither subtractions nor DACs representation.

However, the lightweight index at the nodes of the k2-raster plus its small size are
still able to improve times.
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Top-K

All the algorithms have been implemented, for practical reasons, in a simplified way. We
considered that the vector objects are the MBRs of the leafs of the R-tree. With this,
we avoid running the computational geometry algorithm, whose implementation is the
same in the code of both the baselines and k2-raster. Therefore, the checkGeometry
function uses a simple map between the MBRs and the corresponding overlapping cells.

Memory usage

Fig 11 shows the memory consumption for top-1, top-10, and top-100 for the datasets of
Scenario I. The uncompressed baselines that completely store the raster in main
memory are the worse alternatives, using between 3 and 9 times more memory than our
framework. Although k2-treap performs worse than the uncompressed baselines
dealing with small files, it scales better, but still, it is between 5 and 15 times worse
than k2-raster.

The traditional processing of NetCDF files by blocks makes this alternative the best
one dealing with large files. With small files, k2-raster consumes around 2 times less,
whereas in large files the behavior is just the opposite. Finally, the cells strategy with
k2-raster has exactly the same behaviour as our method.

Fig 12 shows the memory consumption for the datasets of Scenario II. We only
include the results for top-10. In this experiment, NetCDF is the clear winner,
consuming around 7 times less than k2-raster.

Time performance

Fig 13 shows the average time results for our experiments, performing, respectively,
top-1, top-10 and top-100 operations. For clarity, times are shown in logarithmic scale.

The main advantage of our algorithm is that it uses two indexes simultaneously and
synchronously. During a filtering process, discarding nodes of one index allows us to
also discard some nodes of the other, and the other way around. This fact saves time
with respect to the naive strategies of the baselines, which take as starting point one of
the datasets, and process some of their elements (MBRs, cells) in a certain order. Each
element examined implies a search in the other dataset (with or without the help of an
index), sometimes unsuccessfully. This means a great loss of time. This conclusion is
confirmed by the experiments: our algorithm obtains the best top-K retrieval times in
all scenarios, up to four orders of magnitude better than NetCDF-cells and
Plain-cells, up to 5 times faster than Plain-mbrs, and up to 33 times than
k2-treap and k2-raster-cells. Some other facts support these results:

– First of all, mbrs strategy works better than cells, as it can be seen with
Plain-mbrs and Plain-cells. Finding the MBRs that overlap with each cell is
fast thanks to the R-tree; but it may happen that most of the cells with the
highest values do not overlap with any leaf MBR, so that many searches in the
R-tree finally become a waste of time. Instead, Plain-mbrs starts processing leaf
MBRs (and there are fewer MBRs than cells), and for each of those MBRs it must
check just a few raster cells (so not using an index does not penalize too much).
In fact, it is close to the k2-raster performance, behaving worse mainly because
it never filters leaf MBRs, and thus it must check raster cells for each one of them.

– Second, compression penalizes the baselines NetCDF-mbrs and NetCDF-cells,
which always perform worse than their alternative plain versions, that is,
Plain-mbrs and Plain-cells. However, k2-raster offers close compression
rates that do not penalize search times.
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Fig 11. Average memory consumption for retrieving the top-K over
collections of Scenario I. Average memory consumption (in Megabytes) for
retrieving the top 1, 10 and 100 MBRs over collections of Scenario I. (a) top-1 and
vects dataset, (b) top-1 and vecca dataset, (c) top-10 and vects dataset, (d) top-10
and vecca dataset, (e) top-100 and vects dataset and (f) top-100 and vecca dataset.

– Finally, as expected, although Plain-cells, k2-raster-cells, and k2-treap

follow the same strategy, the compressed data structures behave better, since they
use an additional index that allows accessing the raster cells in an orderly and
cost-free manner. However, those indexes are not enough to reach the
performance of k2-raster and its synchronized filtering process.

Fig 14 shows the times for the datasets of Scenario II, for top-10. The value of
NetCDF-cells for the vecca raster with largest number of different values is not

December 26, 2019 28/36



Fig 12. Average memory consumption for retrieving the top-K over
collections of Scenario II. Average memory consumption (in Megabytes) for
retrieving the top 10 MBRs over collections of Scenario II. (a) vects dataset and (b)
vecca dataset.

displayed because it lasted too long.
Fig 15 shows the box plots for executing the top-10 queries over each raster matrix

of the DTM-1×1 of Scenario I. Baselines using cells strategy obtain hugely irregular
query times, as their performance highly depends on the existence of leaf MBRs
overlapping the cells first returned by the algorithm (those having the largest values).
k2-treap and k2-raster-cells have approximately the same results, since both, as
explained, use a cells strategy with the help of an index which allows them to access
the cells in an orderly manner. They show a much worse behaviour on average than
k2-raster, although they perform better in certain occasions, specially when dealing
with the vects dataset. When most top-K cells match leaf MBRs, k2-treap and
k2-raster-cells are always faster than k2-raster solving queries. However, our
synchronous algorithm promotes this best-case scenario, discarding “bad” cells
beforehand, and making k2-raster better on average. This suggests that it could be
promising to adapt our algorithm to k2-treap too. Unfortunately, k2-treap is not a
feasible option for the framework, since it would only be useful in this query, being
inefficient for the top-K version with the minimum values, or the join query, among
others.

Main memory consumption versus processing time trade-off

Finally, Fig 16 includes two plots showing the trade-off between main memory
consumption and processing time achieved with the largest dataset of Scenario I and
top-10, using logarithmic scale in the x axis. As seen, our method method is by far the
best choice.

Cold start

Fig 17 shows the results of the experiment in “cold” start for top-10. In this experiment,
the differences between our method and k2-treap are shortened.

Results discussion

In our experiments with the join operation, our new framework consumes between
31–89% of memory used by our Plain baselines, for which, in addition, the time
performance is improved up to 8 times.
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Fig 13. Average time results for retrieving the top-K over collections of
Scenario I. Average time results (in seconds) for retrieving the top 1, 10 and 100
MBRs over collections of Scenario I. We compare the results for all the algorithms using
logarithmic scales for all the figures. (a) top-1 and vects dataset, (b) top-1 and vecca

dataset, (c) top-10 and vects dataset, (d) top-10 and vecca dataset, (e) top-100 and
vects dataset and (f) top-100 and vecca dataset.

In the case of NetCDF, our framework is around three orders of magnitude faster,
while it only implies a slight sacrifice in space.

In the case of top-K, our framework is up to five orders of magnitude faster than the
Plain-cells and NetCDF-cells, and up to 33 times faster than the k2-treap and
k2-raster-cells.

The memory consumption shows important improvements; our framework requires
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Fig 14. Time performance for retrieving the top-K MBRs over collections
of Scenario II. Time performance (in seconds) for retrieving the top 10 MBRs over
collections of Scenario II. Both axes uses a logarithmic scale. (a) vects dataset and (b)
vecca dataset.

Fig 15. Box plots showing time results for retrieving the top-10 MBRs. Box
plots showing time results (in seconds) for retrieving the top-10 MBRs for the 25
matrices of collection DTM-1×1. The y axis is in logarithmic scale. (a) vects dataset
and (b) vecca dataset.

Fig 16. Memory consumption vs Processing time with the largest raster of
Scenario I and top-10. Memory consumption (in Megabytes) vs Processing time (in
seconds) with the largest raster of Scenario I and top-10. (a) vects dataset and (b)
vecca dataset.
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Fig 17. Time performance for retrieving the top-10 MBRs over collections
of Scenario I in cold start. The y axis uses a logarithmic scale. (a) vects dataset
and (b) vecca dataset.

between 3 and 9 times less memory than the Plain baselines, in the case of the top-K
operation, and up to 3 times in the join. In the case of the k2-treap, used in the top-K
operation, our method uses between 5 and 15 times less space, which shows that using a
compact data structure does not directly imply a gain in memory consumption, and
thus a careful design of query algorithms is required.

The reason of these improvements is due to the fact that our algorithms take
advantage of a smaller input, and thus the memory hierarchy between main memory
and the processor is more efficient; and that they make intelligent use of the indexes of
the k2-raster, which includes, in the same compressed space, a spatial index and an
index over the values of the raster.

Conclusions

The possibility of managing raster and vector datasets in geographical information
systems is a convenient feature, since it is well-known that each model is more adequate
depending on the nature of the spatial data [1]. However, commercial and open-source
systems, and even the OGC standard [23,24], separate both views and do not provide
languages, data structures, and algorithms to perform queries that use information from
both models.

The exception to this rule could be the zonal statistics operation of Map Algebra [49]
that is included in several systems. However, those systems internally translate the
vector dataset into a raster dataset before running the operation. In this work, we have
presented a framework that includes two known data structures and two new algorithms
for running a join between vector and raster datasets, and for retrieving K objects of a
vector dataset that overlap cells of a raster dataset, such that the K objects are those
overlapping the highest (or lowest) cell values among all objects, without a previous
transformation of any of them. The good properties shown by this new approach are due
to the use of compact data structures, which allows efficient processing in little space.

The idea of compact data structures, like the k2-raster, is to keep the information
always compressed, even when processing it. The k2-raster have been proven to be a
good approach when performing operations involving the raster alone [13, 14]. However,
in this work, we show that the use of k2-rasters for storing raster data brings new
opportunities, in this case, efficient operations between a raster and a vector dataset
without translating none of them.

The use of the k2-raster represented a challenge. It was designed to be used in main
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memory without a previous decompression of the whole dataset, but this requires a
complex arrangement of the data (something analogous to most compact data
structures). This means that the decompression processes applied on small parts upon
demand, and the management of the indexes it contains, can degrade the main memory
consumption, and affect the processing times. If we did not design the algorithms
carefully, both problems could arise. As shown in our experiments, we have successfully
solved it.

The election of the R-tree for indexing the vector dataset is a pragmatic choice, since
it is the de facto standard for this type of data. However, as future work we will
consider the use of modern compact data structures as a substitution for the R-tree. We
also plan to add new operations between raster and vector datasets to our framework.
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