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Abstract

The new opportunities generated by the data-driven economy in the manufacturing
industry have caused many companies opt for it. However, the size of time series data
that need to be captured creates the problem of having to assume high storage costs.
Moreover, these costs, which are constantly growing, begin to have an impact on the
profitability of companies. Thus, in this scenario, the need arises to develop techniques
that allow obtaining reduced representations of the time series.

In this paper, we present a lossless compression method for industrial time series that
allows an efficient access. That is, our aim goes beyond pure compression, where the
usual way to access the data requires a complete decompression of the dataset before
processing it. Instead, our method allows decompressing portions of the dataset, and
moreover, it allows direct querying the compressed data. Thus, the proposed method
combines the efficient access, typical of lossy methods, with the lossless compression.
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1. Introduction

The application of data processing and exploitation technologies in different sectors,
aided by the widespread promotion of Big Data tools and other synergistic technolo-
gies like Cloud Computing and the Internet of Things (IoT), has led to the concept of
a data-driven economy [8] being coined as one of the cornerstones of global economic
development. Furthermore, the manufacturing industry is one of the key targets where
this data-driven economy is being deployed globally, leading to the emergence of the idea
of Smart Manufacturing as a global-scale overarching term encompassing numerous ini-
tiatives and strategies (e.g., Industry 4.0 [12]) addressing the use of data exploitation for
optimizing and transforming manufacturing businesses. In this way, data has emerged as
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a significant facilitator for boosting manufacturing competitiveness around the world in
recent years, and companies have begun to appreciate the strategic relevance of data[23].

In Smart Manufacturing situations, the majority of the acquired data are time series
generated by large-scale sensor networks monitoring the continuous functioning of the
manufacturing processes or equipment to be analyzed. As a result, the volume of acquired
data (i.e. time series data from sensors collected 24 hours a day, 7 days a week) is rapidly
increasing [21, 29]. Such is the growth pace that in 2015 the manufacturing industry was
already generating more than 1000 EB of data annually and it is expected to increase by
20 times in the next 10 years [28]. As a consequence, problems are arising related to the
considerable costs associated with the resources needed to store them [26, 25].

In order to reduce data storage costs, the oldest data is routinely eliminated to make
room for new data, resulting in the loss of valuable historical data for further analytic
processes [2]. Long-term data, on the other hand, is acknowledged as critical in Smart
Manufacturing scenarios [15].

time series reduction techniques and time series compression techniques are the two
primary types of approaches that can be used to generate reduced representations of time
series data. The first type are often lossy techniques, which means that when rebuilding
a time series from its reduced representations, some data is lost. These techniques are
primarily aimed at lowering the dimensionality of time series data in order to facilitate
further data analysis. The second type are lossless compression techniques, which focus
on encoding data in a much more compact format that saves storage space without
loosing data. One problem of these final types of techniques is that they usually require
decompressing the entire dataset in order to access the data (which can be a slow process
that hinders the management of the data for the analysis).

In this work, we present Direct Access Compression of time series (DACTS), a
new lossless compression method designed for time series from industrial environments.
DACTS is based on a grammar-based compressor, RePair [16]. Grammar compressors use
a grammar to replace frequent sequences of original symbols with new shorter symbols.
Thus, although the application of the proposed method (DACTS) could be interesting
for different types of time series, it is in environments such as Smart Manufacturing
where this type of method acquires a greater relevance. Some reasons for this are: 1)
industrial time series, are usually large time series captured by sensor networks operating
almost uninterruptedly, that contain numeric measurements of a variety of equipment
parameters and physical magnitudes. In those type of series, repeating patterns can be
found that could benefit the reduction potential of DACTS method. 2) In many cases,
industrial machine controllers are programmed in an inefficient way, in terms of capturing
data for analytical purposes. For example, sometimes, they may be sending a constant
value for several hours, to indicate that the machine is operating in manual mode and
these data are stored anyway, occupying an unnecessarily space that increases data stor-
age costs. Therefore, the reduction potential of DACTS method can also be interesting
in this situation.

However, the normal RePair does not allow direct access, that is, given a position of
the original file, we do not know where it is represented in the compressed file, and thus, if
we want to find it, we have to decompress from the beginning until finding that position.
In order to overcome this limitation, we added additional data structures to achieve that
capability of direct access. Moreover, to be able to efficiently query the compressed data,
simple direct access is not enough, therefore we have also included other data structures
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and designed efficient query algorithms. In summary, the main characteristics of the
proposed technique, are: it performs an efficient lossless compression of time-series, it
allows decompressing portions of the time series without the need for decompressing from
the beginning and, it is capable of efficiently querying the compressed data. This opens
the way to run analysis queries directly on lossless compressed data, breaking in this
way, the traditional dichotomy in the field of industrial time series storage, where if a
lossless compression technique is used, analysis procedures could require too much time
to be feasible, whereas if a lossy type reduction technique is used, some data are lost.

In order to show the behaviour of the proposed technique we present two different
experiments; first, we compare our method to the state of the art in pure compression.
These methods have to decompress the complete dataset in advance to query them. In
this case, at the price of slightly worse compression where data are highly repetitive,
DACTS is up to 20 times faster when querying. In the second experiment, we compared
DACTS with a real time series database management system. In this case, our method
was up to 1300 times faster when answering the queries.

The outline of the paper is as follows. In section 2 some related work that consider
on the one hand, techniques to generate reduced representations of time series data;
and on the other hand, several previous data structures defined to deal with compressed
information, are presented. In section 3 the main technical details related to DACTS are
explained. In section 4 an experimental evaluation is presented. Finally, section 5 shows
our conclusions and directions for future work.

2. Related Work

In this section, we present first some works that have considered data reduction and
compression techniques for time series, and then some proposals of data structures defined
to deal with compressed information.

2.1. Techniques to generate reduced representations of time series

Data reduction and compression techniques represent a resource with the potential
to reduce the cost associated with the storage of time series, by obtaining a reduced or
compressed representation of the data which is much smaller in volume than the original
data, while maintaining the information as complete as possible. If some information
is lost, then, the compression will be lossy, whereas if the original information can be
recovered from the reduced representation, the compression will be lossless.

With regard to time series reduction techniques, besides allowing to obtain reduced
representations of the time series, they also make it possible to optimize some data analy-
sis techniques associated with time series processing [1, 17], such as time series similarity
search, time series clustering, and time series data mining, where most of the algorithms
scale poorly to high-dimensional data. Various studies have addressed the representation
of time series through the application of reduction or approximation techniques to time
series data. For example, in [9], a very thorough classification of different techniques
for the reduced representation of time series data is provided, grouping them in families
and identifying the most representative techniques in each family. Indeed, the selection
of reduction and approximation techniques that are analyzed and compared is similar
across various references discussing time series data mining [9, 27, 7, 20, 11].
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Moreover, it is worth mentioning that this type of techniques is mainly designed to
preserve enough information about the time series to support indexing or specific data
mining algorithms over pre-processed datasets, rather than compressing the raw time
series [3]. As a result, they are techniques that generate loss (which could hamper the
analysis of the data) and usually targeted for a particular analysis scenario (e.g., a partic-
ular level of down-sampling may not work well for all kind of analysis that are susceptible
to be applied over a time series). For that reason, other approaches are advocating for
compression techniques that preserve what it is given (i.e., lossless compression) and
leave pre-processing (e.g., dimensionality reduction or frequency filtering) for further
processes.

With regard to lossless compression techniques for time series data, different ap-
proaches have been appearing during the last years that allow representing the time
series data in a much more compact representation without losing data. In [3], these
approaches are reviewed together with the most representative techniques for each for
them. The reviewed approaches include, among others, XOR differentiation, directly
applying general-purpose compressors, delta encoding and then applying integer com-
pressors, or predictive coding and byte-packaging. Moreover, Sprintz is also presented as
the state-of-the-art algorithm developed for the Internet of Things time series, tending
to achieve higher compression ratios and decompression speed [3].

However, most of those techniques do not support random access, and thus, all the
data must be decompressed even when accessing a small portion of it. Compression
techniques that allow accessing the data without requiring to decompress all the data
are thus desirable, as they allow data to be stored in a compressed format while also
allowing applications to perform random data access decompression [22, 6, 5, 4, 13, 14,
24]. Specifically for time series, in [24], it is shown a compression technique with random
access, that is, it is capable of recovering portions of the original data, that later should be
processed with a normal algorithm for uncompressed data. Instead, there is a new family
of methods providing direct access that are equipped with specific algorithms to solve
queries directly on the compressed data, that is, without a decompression procedure [22,
19]. In this work, we present a compression method for time series with that capability.

2.2. Compact data structures

In the last years, a significant research effort has been made to design data structures
that not only store compressed information with random access, but are capable to run
complex queries directly on the compressed data. In order to approach, and sometimes
overcome, the querying performance on uncompressed data, these methods do not always
decompress the affected zone and then execute the query on the decompressed data,
which could be clearly slower than querying the uncompressed data, but they are able to
understand the compressed data and therefore execute the query on them. Moreover, in
many cases, indexes or other types of data structures are added to the compressed data
to speed up the querying process. These methods are called compact data structures [19].

DACTS makes use of two previous techniques that are shown next.

2.2.1. Re-Pair

Re-Pair is a compression method based on creating a grammar and using it to replace
pairs of symbols of the original sequence with a new symbol defined by the grammar.
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Figure 1: Example of Re-Pair compression.

In our case, we consider a sequence of integers I (called terminals). The compression
proceeds as follows:

1. It computes the most frequent pair of integers ab in I;

2. a new rule s → ab is created and added to a dictionary R. s is a new symbol not
present in I;

3. every occurrence of ab in I is replaced by s, and

4. steps 1-3 are repeated until all pairs in I appear only once (see Figure 1).

The resulting compressed sequence is called C. Observe C in Figure 1, every symbol
represents a phrase (a sequence of one or more of the integers in I), for example, a W
represents the sequence 999999.

However, original symbols that were not compressed may remain in I, those symbols
are called terminal symbols; otherwise, the symbol is defined in R and is called non-
terminal symbol. Compressing a sequence with Re-Pair can be computed in linear time
and a phrase may be recursively decompressed in optimal time (i.e., proportional to its
length).

2.2.2. DACs

If we have a sequence of numbers, one way to compress them is to try to use the exact
number of bits to represent the number (�log2(number)� bits). However, by doing this,
we lost the ability to access the ith number in the sequence. Several methods have been
devised to be able to use variable-length representations of numbers that allow accessing
to the ith number [5, 13, 14] without the need to decompress the entire sequence.

This approach opens the way to keep the data always compressed and decompress
exclusively the portions of the data needed for a certain purpose.

In this work, we use Directly Addressable Codes (DACs) [4], which have been shown
to be able to compress a sequence of integers with very fast direct access to the ith

number.
Given a sequence of integers X = x1, x2, . . . , xn, DACs take the binary representation

of those numbers and rearrange them into a level-shaped structure as follows: the first
level, B1, contains a sequence of n numbers. Each number of that level has n1 bits, which
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Figure 2: Example Dac.

are the n1 least significant bits of the binary representation of each original symbol. A
bitmap C1 indicates for each position 1, 2, . . . , n whether the binary representation of
each integer requires more than n1 bits (1) or not (0). In the second level, B2 stores
the next n2 bits of the integers which have a 1 in B1. A bitmap C2 marks the positions
that need more than n1 + n2 bits, and so on until all numbers in X have all their bits
represented. The number of levels � and the number nl of bits at each level is computed
in order to obtain the best compression.

Observe in the example of Figure 2 that the 6th number of the original sequence is
a 5. Below X, we can see the DAC representation using chunks of 2 bits in all levels.
Therefore, the 6th chunk of 2 bits of B1 is 01, the least significant 2 bits of the binary
representation of 5. Obviously, we need an additional chunk to represent a 5, thus the 6th

bit of C1 is set to 1 to indicate this. In the second level, there are only two chunks of 2
bits, in order to know which of those two correspond to the original symbol at position 6,
we count the number of 1s bits until the 6th position of B1, which is 2, then our number
is the second chunk of B2.

In compact data structures, counting the number of 1 bits (or 0 bits) until a given
position is a very common operation called rank. More formally rankb(B, p) counts the
number of occurrences of bit b in bitmap B up to position p. This operation can be
solved in constant time (see [18], for example), using n + o(n) bits of total space (in
practice, approximately 5% extra space over the original bitmap).

3. A detailed description of DACTS

In this section, we present how we combine Re-Pair and DAC with additional data
structures to make DACTS more suitable for industrial time series compression, and the
algorithms to run queries on it.

Let us consider that we have a sequence of numbers N , if they are floating-point
numbers, we multiply them to transform them into a sequence of integers I. Compression
is achieved in DACTS by compressing I with Re-Pair.

Nevertheless, as shown in Figure 1, in C we do not have a direct way to obtain the
ith original symbol. Observe that, each symbol in C represents an undetermined number
of symbols from the original sequence. This means that Re-Pair is not a compression

6



method with direct access, and thus, for example, to access the integer at position 11,
we have to decompress from the beginning.

The typical solution to this is to add a directory indicating, every d integers, the
position of those integers in the compressed data. Notice that we are representing time
series, thus the positions on the sequence I correspond with time instants. Therefore,
for those time instants that are multiple of d, we can directly obtain their positions in
the compressed data, and from that position on, we decompress normally until reaching
the information of the desired time instant.

However, in Figure 3, observe that position 12 of I is represented within the symbol
at position 3 of C and, that position represents the integers of the original sequence
from position 10 to position 15. Therefore a pointer to the symbol in C including a time
instant i is not enough; instead, that pointer must have two parts: (1) the position in C
of the symbol including xi, and (2) an offset inside that symbol. Therefore the pointer
to position 12 must be 3 : 2, that is, the symbol at position 3 of C, and within it, an
offset of 2 from its beginning (see Figure 3).

Let us suppose that we want to obtain the value at position 10. In the directory, we
obtain the entry pointing to the closest time instant lesser or equal to 10, in our case,
time instant 5: 〈0 : 5〉. Typically, now we simply continue decompressing until reaching
position 10. However, observe that we are now located at symbol W (position 0), and
the next one is T , but we do not even know how many time instants T covers, so we
lost the synchronism achieved by accessing a sampled position, and therefore, the only
solution is to decompress all symbols from W onwards, until reaching time instant 10.

In our example, we have to decompress W , which requires 3 steps (rules W → V U ,
V → UU , and U → 99), we obtain the sequence 999999, and we know that the time
instant 5 is the sixth 9. Then, we process T , which requires 2 steps (rules T → S7 and
S → 88) and we obtain the sequence 887, so we know that the 7 is at time instant 8. We
continue reading the terminal 7, which corresponds to time instant 9. Hence, we proceed
with the next symbol (W ). Therefore, after decompressing W , we know that the first
value of 999999 is our target.

This process would be very slow. To solve this, for each rule of R, we add the number
of time instants that it covers, as shown in Figure 3 under the title span.

Now, the process is much simpler. The pointer takes us to position 6 of the first W ,
but from R, we know that W spans 6 time instants, so that position is the last one of
W , so we do not need to decompress it. Then, we read the T , and we check in R that T
spans 3 time instants, so it reaches time instant 8. Since it does not contain the desired
time instant (10), we do not decompress it. The next symbol 7 is a terminal, so we know
that it is at time instant 9. Finally, when we reach the second W , we know that we
have to obtain the first symbol of W . Hence, we have to decompress W to obtain its
original sequence 999999, and then we have obtained our target. Observe, that we have
only decompressed the last symbol.

With this, we have seen the method to obtain the integer from a given position,
but the typical query requires extracting a portion of several contiguous time instants.
The obvious solution is that, once we have reached the first time instant of the query,
we simply decompress symbols of C until reaching the last time instant of the queried
period.

In industrial environments, as seen, typical queries also include summarizing or even
analysis queries. In this work, we implemented two additional queries:
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Figure 3: Original sequence and its representation with repair.

1. Given a time series S[1 . . . n] and a time interval [b, e] within 1 . . . n, return the
minimum and maximum values within [b, e].

2. Given a set of time series S1, . . . ,Sm, of size n and a time interval [b, e], where
b ≤ e ≤ n, compute the euclidean distance between S1 and S2, . . . ,Sm in the time
interval [b, e] and sort S2, . . . ,Sm according to that distance.

The naive solution to both queries is to decompress the time interval [b, e] and proceed
accordingly with the processed query.

To improve the speed, we add to each rule in R the maximum and minimum values of
the symbols covered by the rule. Observe in Figure 3 that the non-terminal T corresponds
to the original sequence 887, so in R we set the minimum value to 7 and the maximum
to 8.

Now, let us suppose that we want to obtain the maximum and minimum values in
the range [6, 11] of the sequence I. By using the same process to access a position, we
reach the symbol T that covers from time instant 6 until time instant 8. Instead of
decompressing it, in the rule at R, we already have the maximum and minimum values
in that stretch. Therefore, we know that the maximum value is 8 and the minimum is 7
without decompressing that symbol. Next, we process the terminal 7 corresponding to
time instant 9, so the minimum and the maximum do not change. Then, we reach a W ,
which covers from time instant 10 to time instant 15. The maximum and minimum of
symbol W is 9, so that means all values between 10 and 15 are 9, thus we can conclude
that the maximum value is 9 and the minimum is 7 without decompressing any of the
symbols.

Moreover, the use of those minimum and maximum values in the rules are not only
useful for solving the min/max query. This can also help in the rest of the operations
when the minimum and the maximum values are equal, we know that all the symbols
covered by that rule are the same without decompressing it. For example, let us suppose
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that we want to recover the sequence between positions 2 and 5. We access the first
symbol W , and from the information in R, we know that W covers 6 time instants, so
it is enough to solve our query, and, in addition, since min = max = 9, all those 6 time
instants are 9s, so we can solve the query simply outputting 9999. Observe that again,
we can solve the query, without decompressing anything.

The span, min, and max fields of the entries of R are compressed with DACs.
Next, we show the algorithms of the three queries more formally.

3.1. Extract

Algorithm 1 shows the pseudocode for extracting the integers between time instant
tb and te. Line 1 obtains a reference to the symbol in C including the time instant tb.
For this, a call to the function First returns the tuple 〈currS, ptrC, ti, tj〉, where currS
is that symbol, ptrC is a pointer to its position in C, and ti and tj are the time instants
covered by that symbol.

The loop of Line 3 simply decompresses the symbols of C one by one from that
obtained after the call to First until reaching te.

Algorithm 1: Extract(tb, te)

1 〈currS, ptrC, ti, tj〉 ← F irst(tb);
2 Result← ∅;
3 while tj ≤ te do
4 Result.add(Decompress(currS, tb, te, ti, tj));
5 ptrC ← ptrC + 1;
6 currS ← C[ptrC];
7 ti ← tj + 1;
8 tj ← tj + R[currS].span;

9 if tj > te then
10 Result.add(Decompress(currS, tb, te, ti, tj));

Algorithm 2 shows First. It starts by accessing the directory corresponding to the
closest sampled position previous to tb. t

′
b is adjusted to the time instant indicated by the

offset of the directory entry, and t′e points to the last time instant covered by the currently
processed symbol of C (currS ). The loop of Line 6 simply follows C until reaching tb,
adjusting always t′b and t′e to the time instants covered by the current symbol (currS ).

Algorithm 2: First(tb)

1 entry ← tb + 1/d;// d is the sample rate of the directory, so entry is the entry in

the directory corresponding to the previous position to tb
2 〈ptrC, offset〉 ← Directory(entry);
3 currS ← C[ptrC];
4 t′b ← tb−offset ;
5 t′e ← t′b + R[currS].span− 1;
6 while t′e < tb do
7 ptrC ← ptrC + 1;
8 currS ← C[ptrC];
9 t′b ← t′e + 1;

10 t′e ← t′e + R[currS].span;

11 return 〈currS, ptrC, t′b, t
′
e〉
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Algorithm 3 shows the decompression of a symbol from C. Observe that, we do
not check if the minimum and maximum values of a symbol are equal, in order to avoid
decompressing the rule. The reason is that in practice, in this query, the costs of obtaining
those values from the DACs storing them and the check outweigh the benefits.

Algorithm 3: Decompress(currS, tb, te, ti,tj)

1 Result← ∅;
2 if currS is non-terminal then
3 leftS ← R[currS].leftS;
4 rightS ← R[currS].rightS;
5 tm ← ti + R[leftS].span;
6 if [ti, tm − 1] ∩ [tb, te] �= ∅ then
7 Decompress(leftS, tb, te, ti, tm − 1);
8 if [tm, tj ] ∩ [tb, te] �= ∅ then
9 Decompress(rightS, tb, te, tm, tj);

10 else
11 if ti ∈ [tb, te] then
12 Result.add(currS);

13 return Result

3.2. Minimum and maximum

The computation of the minimum and maximum is basically the same process as the
extract query. Algorithm 4 shows the pseudocode. With respect to Algorithm 1, the only
difference is that instead of using the function Decompress, it uses a different function
called MinMax.

Algorithm 4: Extremes(tb, te)

1 min←∞;
2 max← −∞;
3 〈currS, ptrC, ti, tj〉 ← F irst(tb);
4 while tj ≤ te do
5 〈minS,maxS〉 ←(MinMax(currS, tb, te, ti, tj));
6 if minS<min then min← minS ;
7 if maxS>max then max← maxS ;
8 ptrC ← ptrC + 1;
9 currS ← C[ptrC];

10 ti ← tj + 1;
11 tj ← tj + R[currS].span;

12 if tj > te then
13 〈minS,maxS〉 ←(MinMax(currS, tb, te, ti, tj));
14 if minS<min then min← minS ;
15 if maxS>max then max← maxS ;

In turn, MinMax (shown in Algorithm 5) is basically the same as Decompression, but
now, it takes advantage of having stretches with the same min/max value. This can be
seen in Lines 2-9, where if the minimum and maximum values stored in R for the current
symbol are equal, those values are used and then the decompression is not needed.
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Algorithm 5: MinMax(currS, tb, te, ti,tj)

1 if currS is non-terminal then
2 if R[currS].min = R[currS].max then // All symbols are the same

3 t′b ← max(tb, ti);
4 t′e ← min(te, tj);
5 min← R[currS].min;
6 max← R[currS].max;

7 else if ti ≥ tb and tj ≤ te then // The whole rule is within [tb, te]
8 min← R[currS].min;
9 max← R[currS].max;

10 else
11 leftS ← R[currS].leftS;
12 rightS ← R[currS].rightS;
13 tm ← ti + R[leftS].span;
14 if [ti, tm − 1] ∩ [tb, te] �= ∅ then
15 MinMax(leftS, tb, te, ti, tm − 1);
16 if [tm, tj ] ∩ [tb, te] �= ∅ then
17 MinMax(rightS, tb, te, tm, tj);

18 else
19 if ti ∈ [tb, te] then
20 min← currS;
21 max← currS;

22 return 〈min,max〉

3.3. Similarity

Algorithm 7 shows the function Similarity that given two time series (S1 and S2) and
a time interval [tb, te], it computes the Euclidean distance of the time series in that time
interval.

By using the function First, it obtains the symbol in C of each time series covering
tb. Then, it adds each of those symbols to its corresponding stack: Stack1 and Stack2
are initialized with the symbol from S1 and S2, respectively. The processed symbol at
any given step is obtained from those stacks.

In t1 and t2, the algorithm keeps account of the last time instant that has already
been processed in each time series.

In order to take advantage of Re-Pair and the minimum and maximum values stored
at the rules, the algorithm uses the concept of run to denote a time interval of a time
series that has the same value. In Lines 6-7, the algorithm uses the function NextRun to
obtain the next run from the currently processed symbol.

Lines 10-11 compute the parts of the current runs of both time series that overlap,
that is, the time interval where both time series have the same value, and then, in Lines
12-13, the euclidean distance is computed for that stretch. This process is repeated until
reaching the last time instant of the queried time interval.

Let us illustrate the algorithm with the two time series in Figure 4, and assuming
that we want to compute the euclidean distance between time instants 6 and 8.

Lines 1-2 of Algorithm 7 obtain a pointer to the first symbol of each time series
containing the time instant 6. Line 3 adds them to the stacks. The result can be seen
in Table 1 in Step 1. The symbol of C1 containing the time instant 6 is the symbol T
at position 1 and, in the case of C2, it is the symbol X at position 3. Observe that
the tuples pointing to those symbols also contain two additional values, ti and tj , that
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Algorithm 6: NextRun(Stack, tb, te)

1 do
2 〈currS, ptrC, ti, tj〉 ← Stack.pop();
3 if R[currS].min = R[currS].max then // All symbols are the same

4 sol← 〈R[currS].min, ti, tj〉;
5 break;

6 else
7 〈leftS, rightS〉 ← decompress[currS];
8 tm ← ti + R[leftS].span;
9 if [tm, tj ] ∩ [tb, te] �= ∅ then

10 Stack.add(〈rightS, ptrC, tm, tj〉)
11 if [ti, tm − 1] ∩ [tb, te] �= ∅ then
12 Stack.add(〈leftS, ptrC, ti, tm − 1〉)
13 while Stack is not empty ;
14 if Stack is empty then // currS was completely processed

15 ptrC = ptrC + 1;
16 currS ← C[ptrC];
17 ti = tj + 1; tj = tj + R[currS].span
18 if [ti, tj ] ∩ [tb, te] �= ∅ then
19 Stack.add(〈currS, ptrC, ti, tj〉)
20 return sol

Algorithm 7: Similarity(S1, S2, tb, te)

1 e1 ← S1.F irst(tb);// e1 and e2 are two tuples that contain 〈currS, ptrC, ti, tj〉
2 e2 ← S2.F irst(tb);
3 Stack1.add(e1); Stack2.add(e2);
4 t1 ← 0; t2 ← 0; sim← 0;
5 while Stack1 is not empty or Stack2 is not empty do

// Each run is a triplet 〈val, ti, tj〉
6 if t1 ≤ t2 then
7 run1 ← S1.NextRun(Stack1, tb, te)
8 if t2 ≤ t1 then
9 run2 ← S2.NextRun(Stack2, tb, te)

10 i← max(run1.ti, run2.ti);
11 j ← min(run1.tj , run2.tj);
12 Δ← |run1.val − run2.val|;
13 sim← sim+Δ× (j − i+ 1);
14 t1 ← run1.tj ; t2 ← run2.tj ;

15 return sim
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Stack1 Stack2
Step 1 <T,1,6,8> <X,3,6,7>

Step 2
<S,1,6,7>
<7,1,8,8>

Step 3 <7,1,8,8> <A,4,8,10>

Table 1: Trace of the stacks.

tb te t1 t2 sim run1 run2 Δ i j
Step 1 6 8 0 0 0 <8,6,7> <9,6,7> 1 6 7
Step 2 6 8 7 7 2 <7,8,8> <8,8,10> 1 8 8

Table 2: Trace of Similarity function.

indicate the time interval corresponding to those symbols, that is, T spans between time
instants 6 and 8, and X spans between time instants 6 and 7.

Line 7 triggers the call S1.nextRun(Stack1, 6, 8). In Table 3, we can see its trace under
the label (1)S1.nextRun(Stack1, 6, 8). Line 2 pops the top of Stack1. CurrS is T , so the
if of Line 3 is false and then the flow jumps to Line 7, where T is decompressed obtaining
the pair 〈S, 7〉 (see columns LeftS and RightS in Step 1 of (1)S1.nextRun(Stack1, 6, 8) in
Table 3). tm is the time instant where the right symbol starts, in our case, 7 starts at time
instant 8. Since the time interval [tm, tj ] = [8, 8] intersects our query time interval ([6, 8]),
the symbol 7 is added to Stack1, as seen under Step 2 of Table 1. Next, the RightS
symbol (S) is treated, it covers from time instant ti = 6 until time instant tm − 1 = 7,
which intersects [6, 8], so it is also added to Stack1 (see Step 2 of Table 1). Next, a new
iteration of the do-while loop extracts the top of Stack1, which is a S that covers from
time instant ti = 6 until time instant tj = 7. Since, R1[S].min = R1[S].max = 8, then
Line 4 sets sol to 〈8, 6, 7〉 (see Step 2 of (1)S1.nextRun(Stack1, 6, 8) in Table 3). This
ends (1)S1.nextRun(Stack1, 6, 8).

Next, in Line 9, the algorithm issues S2.nextRun(Stack2, 6, 8). We can see in Table
3 under the label (1)S2.nextRun(Stack2, 6, 8), that it processes the top of Stack2, which
includes the symbol X of C2. Observe in R2, that X has the same maximum and
minimum value (9), so the if of Line 3 of Algorithm 6 is true and thus, in the variable
sol, it is stored a 9 with the time instants ([6, 7]) covered by that symbol (see Step 1 of
(1)S2.nextRun(Stack2, 6, 8) in Table 3), and the do-while loop is broken.

Since after removing the top of Stack2 the stack was empty, the flow reaches Line 15
of Algorithm 6, where the next symbols of C2 is read, that is, ptrC = 4 and currS = A
adjusting ti = 8 and tj = 10. Since that interval intersects [6, 8], the tuple 〈A, 4, 8, 10〉 is
added to Stack2, as seen in Step 3 of Table 1.

Therefore, after the two calls to the nextRun function, run1 and run2 have the values
shown in Step 1 of Table 2. Both are runs of two elements, in fact, in this example,
they cover exactly the same time instants. Lines 10 and 11 of Algorithm 7adjust the
overlapping time instants of both runs, which in our example are obviously [i, j] = [6, 7],
and then the distance of that interval is stored in sim. Observe that we are adding the
values of a period of time (in this example of 2 time instants) in just one step. This
speeds up the computation.

Next, Line 14 of Algorithm 7 sets t1 = 7 and t2 = 7 the last time instant pro-
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Figure 4: Two time series.

Call CurrS ptrC ti tj LeftS RightS tm sol
(1)S1.nextRun(Stack1, 6, 8) Step 1 T 1 6 8 S 7 8

Step 2 S 1 6 7 <8,6,7>

(1)S2.nextRun(Stack2, 6, 8) Step 1 X 3 6 7 9 9 <9,6,7>
Step 2 A 4 8 10

(2)S1.nextRun(Stack1, 6, 8) Step 1 7 1 8 8 <7,8,8>
Step 2 7 2 9 9

(2)S2.nextRun(Stack2, 6, 8) Step 1 A 4 8 10 <8,8,10>
Step 2 Y 5 11 14

Table 3: Trace of NextRun function.
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cessed so far in the time series, and the loop returns to Line 6. Line 7 issues again
S1.nextRun(Stack1, 6, 8). That call is shown in Table 3 as (2)S1.nextRun(Stack1, 6, 8).
It extracts the top of the Stack1, which is 〈7, 1, 8, 8〉. Given 7 is a terminal, its minimum
and maximum values are the same, and thus the variable sol is set to 〈7, 8, 8〉 (see Step
1 of (2)S1.nextRun(Stack1, 6, 8) in Table 3). After removing 〈7, 1, 8, 8〉 from Stack1, it
is empty, so the if of Line 14 takes the flow to line 15, where the pointer to C1 is moved
to position 9, and then CurrS is set to 7. However, that symbol corresponds to a time
instant outside of our queried time interval [6, 8], and then nothing is added to the stack.

The flow returns to the similarity function, to Line 8, and thus a second call
(2)S2.nextRun(Stack2, 6, 8) is issued. This call pops the tuple < A, 4, 8, 10 > from
Stack2. Since R2[A].min = R2[A].max = 8, sol is set to < 8, 8, 10 > and the do-while
loop is broken. Since Stack2 is empty, Lines 15-16 of nextRun move the pointer to C2 to
position 5, but that position surpasses the time instant 8, and thus nothing is added.

Returning to the similarity function, we have the state shown in the Step 2 of Table
2. Δ = 1, i = 8 and j = 8, so a 1 is added to sim. Since both stacks are empty, then
the process ends, and the obtained result is sim = 3.

4. Experimental evaluation

For our experimental evaluation, we implemented DACTS in C++, using components
from the SDSL library1 [10]. Our implementation also uses a balanced version of Re-
Pair by G. Navarro2 to build the grammar, and represents the extra information on
non-terminals using DACs with an unlimited number of levels and without a predefined
chunk size.

As baselines, we also included in our experiments three well-known general purpose
compressors. Gnu gzip,3 a Ziv-Lempel-based compressor, the powerful p7zip4 compres-
sor, which is an LZMA compressor with a dictionary of up to 4 Gigabytes, and snappy,5

which is used, among others, by Influx, MongoDB, or Cassandra.
For running queries on these baselines, the compressed time series is completely

decompressed before running a C program over the uncompressed data.
Finally, we also included a compression method with random access, the plain dac,

using also the implementation of SDSL library.
In all experiments, the data are initially stored on disk. We measured elapsed (or

clock) time. The times of extract and minimum/maximum queries are resulting from
running 500 queries with random time intervals. In the case of similarity queries, we run
100 different random intervals.

4.1. Datasets

The datasets are from two different origins. First, real data from extrusion machines
of a factory that wants to keep its name confidential, these data were used since this
company is part of the R&D project that finances this work. The datasets gather the

1https://github.com/simongog/sdsl-lite
2http://www.dcc.uchile.cl/gnavarro/software/repair.tgz
3http://www.gzip.org/
4http://p7zip.sourceforge.net/
5http://google.github.io/snappy/
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Dataset Description
Machine
Type

Sensor
type

Avg
Interval
Extract
MinMax

Avg
Interval

Similarity
#Points

Samp
Freq

M1-7ZE6BE
Accumulated machine
stop time in the last
24h

Extruder
Machine

Counter 1949259 1883 7675823 1 Hz

M2-PS4EK1
Temperature of an
extruder machine’s
tilting servo

Extruder
Machine

Thermal 1949259 1653 7553234 1 Hz

M2-VMTKD6
Melting temperature
of an extruder
machine

Extruder
Machine

Thermal 1949259 9474 7553234 1 Hz

7ZE6BE
Accumulated machine
stop time in the last
24h

Extruder
Machine

Counter 11293184 1301750 52454444 1 Hz

PS4EK1
Temperature of an
extruder machine’s
tilting servo

Extruder
Machine

Thermal 11293184 1614791 44249009 1 Hz

VMTKD6
Melting temperature of
an extruder machine

Extruder
Machine

Thermal 11293184 1733745 52454444 1 Hz

all Mixture
Extruder
Machine

Mixture 38804747 n/a 149157897 1 Hz

PHM-10

Ion current impacting
the beam grid
determining the
amount of ions
accelerated through
the grid assembly
to the wafer

Ion mill
etch tools

Counter 19059987 472380 82189440 1 Hz

PHM-18
Wafer rotation speed
setting

Ion mill
etch tools

Accelerometer 19059987 472380 82189440 1 Hz

Table 4: Details of the datasets.

data of three different sensors during 100 days and in 7 different machines. Depending
on the sensor, the data distribution is different.

These are the datasets used in extract and minimum and maximum queries (see the
details of these datasets in Table 4):

• M1-7ZE6BE joins 100 days of sensor 7ZE6BE in machine I JKH JJAHTT.

• M2-PS4EK1 joins 100 days of sensor PS4EK1 in machine I DXR RSQESL.

• M2-VMTKD6 joins 100 days of sensor VMTKD6 in machine I DXR RSQESL.

• 7ZE6BE joins the 100 days of sensor 7ZE6BE in 7 different machines.

• PS4EK1 joins the 100 days of sensor PS4EK1 in 7 different machines.

• VMTKD6 joins the 100 days of sensor VMTKD6 in 7 different machines.

• all joins 7ZE6BE, PS4EK1, and VMTKD6.

To provide values on a public domain dataset, we used the dataset PHM DATA
Challenge 18: Etching tool fault detection (PdM).6 This dataset contains 24 time series
coming from different sensors. The time series are divided into 20 files, given their size.

6https://github.com/makinarocks/awesome-industrial-machine-datasets
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Column gzip p7zip DACTS Snappy

3 0.35% 0.30% 0.74% 4.97%
4 0.40% 0.35% 5.78% 5.15%
5 0.21% 0.13% 4.58% 4.86%
6 0.36% 0.26% 0.54% 4.90%
7 0.94% 0.83% 1.26% 5.94%
8 12.00% 7.20% 18.94% 21.48%
9 13.46% 9.22% 25.79% 28.75%
10 30.47% 19.91% 52.97% 51.10%
11 16.18% 10.86% 29.34% 32.96%
12 24.77% 16.47% 49.41% 40.21%
13 7.63% 5.29% 11.72% 23.04%
14 11.54% 7.74% 22.80% 23.26%
15 7.16% 5.13% 11.49% 21.96%
16 8.66% 6.14% 13.79% 23.14%
17 0.69% 0.59% 0.94% 5.24%
18 0.14% 0.06% 0.17% 4.73%
19 0.30% 0.22% 0.59% 4.85%
20 0.68% 0.64% 0.97% 5.57%
21 1.58% 1.00% 26.50% 8.74%
22 1.47% 0.89% 29.95% 8.59%
23 2.51% 1.42% 28.05% 10.46%
24 0.47% 0.38% 1.21% 5.06%

Table 5: Compression ratio of 22 columns of file 01 M01 DC train.

To select the time series used in our experiments, we run gzip, p7zip, snappy and
DACTS on 22 columns (the other 2 were the timestamp and the identifier of the tool)
of just one file (01 M01 DC train). Each column corresponds to the time series of one
sensor.

As seen in Table 5, the best compression is achieved by p7zip, followed by gzip, since
they are typical compressors that aim at obtaining good compression power. DACTS is
close to gzip in some columns, like 6, 7, 17, 18, 19, and 20. In others, DACTS is still
clearly better than snappy, whereas there are a set of columns where they are on a par
(4, 5, 9, 10, 11, 12, and 14). However, there are three columns were DACTS perform
worse than all the rest, columns 21, 22, and 23. DACTS requires datasets where there
are repetitions of the same sequences of numbers. Therefore, it is likely that in small
files this may be harder to find, as in this experiment, where the original data were only
12 Mbytes. In the rest of experiments, we join the 20 files, so the data of one sensor are
314 Mbytes. In those larger files, DACTS clearly improves the compression achieved by
snappy in columns 21, 22, and 23, where DACTS achieves a 8.22% 7.03%, and 8.68%,
whereas snappy obtains a 9.75%, 7.99%, and 9.25%, respectively.

For the rest of experiments, we chose columns 10 and 18. Column 10 represents those
sensors where DACTS has more problems, since in this column, DACTS obtained the
worst results. Column 18 is a representative of the sensors where DACTS nearly meets
or surpasses the compression performance of gzip.

For the similarity queries, we used three sets of datasets:

• Extrusion daily datasets: formed by the datasets of one day of one sensor of one
machine.

• Extrusion 100 days datasets : formed by the datasets joining 100 days of one sensor
of one machine.

• PHM datasets : the 20 original train files.
17



(a) M1-7ZE6BE (b) PHM-10

Figure 5: Two portions of the time series M1-7ZE6BE and PHM-10.

Size (Mb) gzip p7zip dac DACTS Snappy
M1-7ZE6BE 29.28 0.29% 0.17% 30.73% 0.67% 4.99%
M2-PS4EK1 28.81 2.20% 1.90% 44.53% 5.93% 9.16%
M2-VMTKD6 28.81 0.78% 0.63% 28.91% 1.55% 5.87%
7ZE6BE 200.10 0.27% 0.15% 30.07% 0.25% 4.96%
PS4EK1 168.80 2.19% 1.87% 44.53% 4.59% 9.17%
VMTKD6 200.10 0.71% 0.55% 25.39% 1.23% 5.87%
all 568.99 0.99% 0.80% 35.73% 1.89% 6.53%
PHM-10 313.50 35.29% 23.06% 60.16% 58.63% 55.85%
PHM-18 313.50 0.12% 0.03% 78.91% 0.10% 4.72%

Table 6: Compression Ratios.

We preprocessed all datasets to transform them into integers. If the original numbers
were floating-point numbers, in the extrusion machines, we took the first two decimal
digits and multiply them by 100 to obtain integer numbers; in the case of the PHM,
since the numbers were smaller, we took the four first decimal digits and multiply them
by 1000. Figure 5 shows the shape of two portions of the datasets.

Column Avg Interval Extract MinMax of Table 4 gives the average size of the query
intervals used in the queries Extract and Minimum/Maximum and column Avg Interval
Similarity gives the average size of the query intervals used in the Similarity queries.

4.2. Compression

Table 6 shows the original size (in Megabytes) of the datasets and the compression
ratio7 achieved by the compression methods of this study.

In the case of the extrusion machines, in the shorter files, DACTS behaves worse,
the differences with gzip are between 0.38 and 3.73 percentage points and with p7zip

between 0.5 and 4.03 percentage points. As the datasets increase in size, repetitions
increase, and then Re-Pair performs better. In midsize datasets, DACTS performs better
than gzip in 7ZE6BE, and the differences in the other two datasets are 0.68 and 2.4
percentage points, in the case of p7zip, differences are between 0.1 and 2.72 percentage
points. In the largest dataset, differences are small, 0.90 percentage points with gzip

and 1.09 percentage points with p7zip.
Mention apart is dac, with a typical compression of “symbol by symbol”, that is, for

each original symbol, in the compressed file there is also one (shorter) symbol, it is not

7The size of the compressed file as a percentage of the original file.
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Figure 6: Extract time (sec.).

able to compress to the same level as the rest. The main feature of dac is its capability
of decompressing from any given point.

In the case of the PHM datasets, as explained, in column 10, the results of DACTS
are poor. Re-Pair requires datasets with long sections that are equal to others. This
is also the basis of gzip and p7zip, but the direct access of DACTS has a price,
DACTS considers the original sequence of data as 32-bit integers, whereas gzip and
p7zip considers the original data as a sequence of bytes. Therefore, gzip and p7zip find
more repetitive sections.

However, as seen in the results of column 18, in the industrial environment, it is
likely that the repetitiveness of the data may yield almost the performance of gzip,
indeed, in this column, DACTS obtains better compression than gzip. In any case, in
our experiments, in the worst case, DACTS obtains compression ratios around those of
snappy, a widely used compressor.

This can also be seen in the improvements in small vs medium and big datasets.
In small files, the chances of finding repeating sections are lower. This can be seen by
comparing the small and medium files of the same sensor, for example, in the dataset
M2-PS4EK1 the compression ratio of DACTS is 5.93% with a gap of 4.03 percentage points
with p7zip. However, in the dataset PS4EK1, DACTS improves to 4.59% with a gap of
2.72 percentage points with p7zip.

4.3. Extract

Figure 6 shows the extract time. Here it is where we can see the benefits of having
the ability of starting the decompression from intermediate points of the compressed file.
DACTS is between 1.17 and 5.47 times faster than gzip, between 2.33 and 4.07 times
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faster than p7zip, and between 2,72 and 12.86 times faster than snappy. Obviously, the
reason is that in classic compressors, a complete decompression of the dataset is required
before performing the extract operation.

As in the rest of the experiments, PHM-10 is the worst scenario for DACTS, observe,
for example, that DACTS is only 1.17 times faster than gzip. The reasons are that the
input file is larger (only 58.63% of compression) and the non-terminal symbols (repetitive
sections) are smaller. The additional information of the rules representing the non-
terminal symbols is one of the key factors to speed up the queries on compressed data,
and thus, the smaller the sections covered with non-terminals, the lower the acceleration.

Comparing with a native direct access method (dac), we still have better results:
between 1.46 and 9.02 times faster, if we exclude the PHM-10 dataset, where dac is 1.30
times faster. Although dac only has to decompress the exact portion of the dataset
needed to solve the query, the problem is that its compression ratio is really poor, and
thus it has to process (including reading) much more data. This is especially noticeable in
PHM-18 and all, where its performance is close to the naive general purpose compressors.

4.4. Minimum and maximum

Figure 7 shows the time to obtain the minimum and maximum. The improvements in
this query are even better since, as explained, DACTS can obtain from R the minimum
and maximum values of the non-terminals used in the compressed sequence C, thus
without needing to decompress them.

DACTS is between 1.21 and 8.83 times faster than gzip, between 2.09 and 6.56 faster
than p7zip, and between 2.14 and 20.75 times faster than snappy. Except in PHM-10,
where dac is 1.11 times faster, dac shows mediocre results, it is between 2.14 and 20.75
times slower than DACTS.

4.5. Similarity

In the case of the daily datasets, the experiments take the time series of the first day
and compute the euclidean distance in a random time interval between that time series
and the remaining 99 days of the same sensor and machine, and then, it sorts the 99
days according to that distance. In the case of the 100 days datasets, the experiment
takes the 100 days of one sensor and machine, and computes the euclidean distance with
respect to the 100 days of the same sensor in the other 6 machines. Again, once this
was computed, the machines are sorted according to the computed distance. Finally, in
the case of the PHM, the experiment takes one of the 20 original files and computes the
euclidean distance with the 19 remaining files.

Figure 8 shows the results. In the daily datasets, gzip is between 1.95 and 2.58
times slower and snappy between 1.98 and 2.79 times slower. p7zip is penalized by its
slower decompression speed, especially in this experiment, where it has to decompress
100 relatively small files, and thus it is between 8.2 and 9.44 times slower. Finally, dac
is almost on a par in the 7ZE6BE and, 1.35 and 1.63 times slower in the other two.

In the 100 days datasets, p7zip improves with longer files, whereas the rest worsens,
especially dac. gzip is between 2.53 and 7.14 times slower, snappy between 2.31 and
5.87 times slower, dac between 2.38 and 6.79 times slower, and p7zip is between 2.24
and 5.69 times slower.

Finally, in the PHM datasets, again PHM-10 shows the difficulties of DACTS with this
dataset, it is only 1.21 times faster than gzip, 2 times than snappy, 2.36 than p7zip,
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Figure 7: Time to obtain min/max (sec.).

while dac is 1.27 times faster. However, the case of PHM-18 shows the other side of the
coin; DACTS is 9.5 times faster than gzip, 7.35 times than snappy, 7.62 than p7zip,
and 11.67 times faster than dac.

The reasons for the improvements in this query are, in part, also related to the
additional information in the rules, which also helps in this query.

4.6. A brief comparison between DACTS and InfluxDb

In this experiment, we compare DACTS with a real time series Data Base (TSDB)
management system, InfluxBD, to show the differences in the behaviour of both systems
considering the same scenario. For the experiment, the datasets considered in Section 4.1
have been formatted to the line protocol8 required by InfluxDb to represent each point
of data (i.e., each measurement), and then, they have been inserted into an InfluxDb
instance.

We are aware that both systems are different in nature and that therefore, their
comparison may not be fair. However, we believe that it is interesting to compare our
novel proposal against such a widespread system in the area of time series management.
InfluxDB is a real TSDB management system that, to answer a query, needs to access
data on the disk, and also search the data by timestamp, while in DACTS data is accessed
directly by position in memory. This comparison has been included just to give a general
idea of the differences between InfluxDB and DACTS.

Moreover, it is worth also mentioning that in DACTS we have omitted the timestamps
of the time series (since we are working with periodic time series sampled at 1Hz (i.e., a

8InfluxDb Line Protocol Syntax: https://docs.influxdata.com/influxdb/v1.8/write_protocols/

line_protocol_tutorial/#syntax
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Figure 8: Time to sort by euclidean distance (sec.).

measurement per second) and we already store the initial timestamp) and the standard
data representation in InfluxDb (i.e., the line protocol) requires the timestamp of each
data point for inserting the data into the database.

Figure 9 shows the time required by the extract operation. The improvement of
DACTS in time is between 49 and 132 times faster.

Figure 10 shows the results for the computation of the minimum and maximum values.
Here the improvements of DACTS range from 35 times to 715 times faster.

Finally, in the similarity experiment shown in Figure 11, DACTS is between 3.7 and
1306 times faster.

The experiments were conducted on an Intel R© CoreTM i7-3820 CPU @ 3.60GHz
(4 cores) with 10MB of cache and 64 GB of RAM, running Debian GNU/Linux 9 with
kernel 4.9.0-8 (64 bits), gcc version 6.3.0 with -O9 optimization and on a Google Compute
Engine instance for the InfluxDb evaluation. The used machine for this instance has been
a n1-highmem-49 (4 vCPUs, 26 GB RAM) with a standard persistent disk.

5. Conclusions

In this work, we have presented DACTS a lossless compressor for time series captured
in industrial scenarios. We took Re-Pair, a compression method especially suited for
datasets with a high level of repetitiveness, and we modified it in two aspects. First, Re-
Pair does not provide random access to a given position without decompressing from the
beginning. The typical solution to this problem is to sample regular positions, however,

9Machine types in Google Compute Engine: https://cloud.google.com/compute/docs/machine-types
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Figure 9: Extract time (seconds in logarithmic scale) in the InfluxDB experiment.

a sampled position might point to a position of the compressed sequence that contains
a non-terminal, and thus, it represents several original terminals. Therefore, to solve
that problem, we added an offset to the pointers. The second improvement is to use
additional information in the rules of the grammar in order to speed up the queries over
the compressed data

DACTS shown in the experiments that it is well suited for repetitive datasets, where
it can obtain a compression power close to gzip and even better in some cases. In the
cases where the dataset does not contain repetitiveness, the compression, and also the
access times, worsens. Still, it maintains, even in the worst cases, a compression power
around that of snappy, a widely used compressor.

The main feature of DACTS is the improvement in speed. DACTS is up to 12.86
times faster than its competitors in extraction time. Thanks to the additional information
in the rules, the improvement during the computation of the minimum and maximum
values of a time interval are even better, up to 20.75 times faster. In the case of the
similarity queries, the improvement is up to 11.67 times faster. The only exception is the
hardest dataset for DACTS, PHM-10, where dac is 1.30 times faster when extracting, 1.11
when obtaining the minimum and the maximum, and 1.27 times faster when running the
similarity queries. In this dataset, there are less repetitive sequences, this worsens the
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Figure 10: Time to obtain min/max (seconds in logarithmic scale).

compression, and as explained, this decrease of repetitiveness affects DACTS to a greater
extent than gzip and p7zip. But not only compression is affected, with less repetitiveness
the sequences of symbols covered by rules are shorter. DACTS is faster when it deals
with longer sequences of symbols therefore when the sequences of symbols covered by
rules are shorter the answering time of queries increases.

As future work, we will work on improving compression, and developing new analysis
queries.
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