
An Efficient Representation of Enriched Temporal Trajectories

Nieves R. Brisaboa1, Antonio Fariña1, Antonio Fariña1,
Diego Otero-González1, and Tirso V. Rodeiro1

Universidade da Coruña, Fac. Informática, CITIC, Spain

Abstract. We present a novel representation of enriched trajectories of a mobile workforce manage-
ment system. In this system, employees are tracked during their working day and both their routes and
the tasks performed at each time instant are recorded. Our proposal tackles the representation of this in-
formation paying special attention to the space footprint without neglecting query time. We performed
experiments using real and synthetic datasets where we show the compression effectiveness as well as
the efficiency at query time. Our results showed that our proposal yields promising results in terms of
the space needed to represent both users’ locations and activities while performing access queries to the
original data within microseconds.

1 INTRODUCTION

In this modern society, we all rely on devices in order to take part in this entangled dough the globalized
world has become. It has been reported that more than 65% of the adults in advanced economies are owners
of a smartphone but it also stands out that most devoted social network users are found in regions with lower
internet rates [15].

Thus, we are constantly producing a large amount of data that can be exploited in order to optimize a
wide range of tasks and ease our daily life. Accordingly, an interest for programs able to handle trajectories
and geographical information systems has grown in recent years giving birth to all kind of algorithms and
systems that are able to locate mobile objects in real time or recover any past trajectory attending some
user-defined criteria.

The need for studying trajectories not only as a sequence of time-stamped GPS points but also with a
higher abstraction had led to the appearance of the so-called semantic trajectories in several works [10, 21,
14]. Fundamentally, this modern concept defines a split trajectory where each segment can be classified into
different groups according to a defined parameter (location, activity, altitude, etc.). After the segmentation,
a semantic label (“visiting a museum”, “having lunch at a service area”, “driving through a traffic jam”, etc.)
is assigned to each trajectory segment [17]. Therefore, semantic trajectories are complex objects composed
by the spatio-temporal polylines of each trajectory and textual tags identifying the aspect of interest of each
segment.

Even though this approach enables abstract analysis and eases the organization of space-time informa-
tion, there are no standard representations yet. Therefore, it is an essential need to find a way to store this
vast amount of data (and metadata) following a compact approach to reduce the space footprint without
disregarding the efficient query performance.

Commercial Geographical Information Systems (GIS) solve this problem by storing all the enriched
segments of a trajectory in a traditional database containing the actual geometry besides all the defining
attributes (semantic tag, initial timestamp, etc.). Despite using some geographical optimizations, GIS solu-
tions can become rather inefficient due to the large size of the involved tables and its associated cumbersome
handling [1].

In this paper, we propose a novel technique to store and exploit enriched trajectories to support daily
monitoring in a mobile workforce management scenario. Despite the fact that our proposal is a general-
purpose system that would fit in several domains (e.g. tourism activities, urban mobility data of vehicles,
etc.), we have defined it as part of a bigger system that aims at optimizing the daily operation of the workers
of an organic-waste management company. One of our main requirements was to supervise employee tasks
in order to gather all possible information to detect any possible malfunction (e.g. if some employees regu-
larly leave the planned route due to slow traffic it could be helpful to update the planner system). Therefore,
our work aims to introduce a new structure able to track the trajectories of employees and the actual task
they were performing at each time instant. As other works suggest, particularly when movements are not
done in free space, there is no need to store explicit spatial geometries but only position identifiers which
can be easily geolocated: e.g. segments from a road network [4], rooms inside a building [20], etc.

Using this approach, the baseline for our structure are two correlated sequences that represent the loca-
tion, and the activity done at each time instant by each user; i.e. one is an ordered list of the road segments
traversed, and the other one is the sequence of activities performed at each segment (working at a client
place, slow transit on planned route, taking a break, etc.). Thus, our proposal introduces a unique structure
that represents temporal, spatial, and semantic knowledge and supports solving queries such as “indicate
which tasks were performed by driver X, and which route did this driver follow to accomplish them yes-
terday from 14:30 to 16:00” Also, our system may solve simpler queries involving a combination of the
associated dimensions; e.g. “where was driver K last Tuesday at 09:20?” or “what trajectory did driver T
follow this morning?”

2 BACKGROUND

The problem of storing semantic trajectories efficiently has been of interest for more than one decade. This
idea was already tackled in [18] where a simplified trajectory representation was presented. In that proposal,
they only stored the relevant points of the path through the network along with inferred timestamps instead
of the original trajectory points.

More recently, a framework that divided trajectories into two separate representations considering their
spatial and temporal components was introduced [19]. They also proposed a two-stage error-free spatial
compression algorithm and an error-bounded temporal compression algorithm.

A compressed representation for semantic trajectories was presented in [7], where they used clustering
to create regions of interest attending to those neighboring points that share the same semantic values, and
then proposed a hierarchical multi-resolution network that enables compressing the semantic trajectories as
a sequence of semantic regions of interest.

Meanwhile, the raise of repetitive datasets has led to the increasing development of compression tech-
niques targeting the exploitation of such repetitiveness as a way to reduce their size. Despite the importance
of reducing space, usually this it not the only concern as compressing data (to reduce their space needs)
is rather useless if a decompression step is required before querying, as this would slow down any further
exploitation of such data. This spatio-temporal trade-off is one of the main targets of a recent research field
focused on the development of compact data structures.

Compact data structures [12] are a family of general-purpose data structures that merge a compressed
data representation with efficient query support. The main advantage of these structures relies on achieving
competitive query times while using almost as little space as in its purely compressed representation.

Compact data structures have enhanced all kind of solutions, from document data mining [6] to bioin-
formatics [5]. In the scope of this work, there are some previous works tackling trajectory representations
through compact data structures. Among them, an efficient representation for trajectories in free space was
proposed in [3]. Using a system based on snapshots that store the positions of the objects at some (regular)
given time instants and additionally keeps their relative movements between two consecutive snapshots,
they are able to solve a range of spatio-temporal queries based on the movement of objects in a grid. A mul-
tidimensional representation for handling event sequences has also been proposed in the area of semantic
trajectories [2]. That work presents a data reorganization strategy that aims at grouping/ordering the infor-
mation of interest attending one (or several) of its semantic tags, and leads to an efficient representation to
solve aggregation queries.

Fig. 1. A bitvector B and its two operations: rank and select.

2

One common basic component of these structures are bitvectors (or bit sequences). A bitvector B[1,n] is
a sequence of zeros and ones of length n, where the following two basic operations (also depicted in Figure
1) are expected to be supported:

– rank1(B, i) returns the number of bits set to 1 in B[1..i]. Alternatively, rank0(B, i) = i−rank1(B, i). Note
that B[i] = rank1(B, i)− rank1(B, i−1).

– select1(B, i) returns the position in 1..n where the i-th 1 occurs. Therefore, it holds rank1(B,select1(B, i))=
i.

Similarly, operations rank0(B, i) and select0(B, i) can be defined to respectively count the number of
zeros up to a given position, or locating the position in B of the i-th zero.

Compressed bitvector representations exist [16, 13, 12]. However, in this work we have used plain
bitvectors with select and rank support, achieving both operations a time complexity of O(1) by using
just o(n) additional bits of space [11]. Besides, we have used a special operation known as selectNext1 to
speed up consecutive select1 queries [12]. Basically, if B[i] contains a one, j = selectNext(B, i) returns the
position j (j > i) of the next one in B.

Despite the good computation properties bitvectors offer, compact data structures rely on some com-
pression methods to effectively store the non-binary information. One of the most popular compression
algorithms used in the context of repetitive datasets is Re-Pair [9]. This algorithm exploits pair repetition
on a sequence relying on a dictionary of rules. Basically, each pair of symbols occurring at least twice is
substituted by a new symbol, hence shortening that sequence. In addition, a rule relating both the pair and
the new symbol is created to allow further decompression. Re-Pair algorithm proceeds as follows:

– The most frequent pair xy in a given sequence T is located.
– A new rule X → xy is created and stored in a dictionary of rules D.
– Each occurrence of the original pair is replaced in T by X .
– The previous three steps are repeated recursively until there are no repeated pairs in T .

As an example to illustrate the behaviour of Re-Pair, let us consider the sequence T = 〈onabonana〉
and D = /0, we can see that the most common pair of symbols in T is na. Thus, the algorithm generates
a new rule R1 : A→ na, which is added to the dictionary D, and replaces all the occurrences of na in
T by A. The resulting sequence now becomes T ′ = 〈oAboAA〉, and D = {R1 : A→ na}. This process is
repeated recursively until the text contains no more repeated pairs. In our example, the next generated rule
is R2 : B→ oA, transforming the text into T ′′= 〈BbBA〉, and D= {R1 : A→ na; R2 : B→ oA}. The algorithm
ends due to the lack of repeated pairs.

3 OUR PROPOSAL

As stated before, the main idea of this work arises as part of a real mobile workforce management system
in the scope of a organic-waste handling company where not only the trajectories of their employees are of
interest but also the activity performed by them at each spatio-temporal point. Since the range of possible
daily tasks performed by waste management truck drivers is very restricted, we were able to reduce the list
to only 8 activities: being at headquarters, visiting a customer place, taking a break, normal/slow driving
on un/planned route, and inactive. Thus, our problem can also be seen as the search for an efficient repre-
sentation able to associate each segment traversed by a worker during his daily trajectory with one of those
tasks.

A A A A A A A C C C C C C C C C D

X X X X Y Y Y Z Z Y Y Y Y Y Z Z ZA:

R:

10 2 3 4 5 6 7 8 9 1110 12 13 14 15 16

Fig. 2. Original representation of both correlated sequences: road segments traversed (R) and activities performed (A).

3

A straightforward (naive) approach of our proposal would be to handle two aligned vectors containing
the value of each dimension during a discretized time period, as depicted in Figure 2. Therefore, we would
have a vector R saving the identifiers of the road segments traversed by an employee and a second vector A
containing the activities performed by the worker. As the company tracks both values at every minute thanks
to the driver’s mobile phone, each element in both sequences represents a time interval of 60 seconds.

This naive solution contains a high degree of redundancy that can be exploited for the sake of com-
pression. Given that each symbol in the previous sequences is represented with an integer identifier, it is a
priority to reduce the number of repeated symbols of a sequence. This can be achieved with what we call
a header vector, that is, a vector which avoids consecutive repeated symbols as RH in Figure 3. Using only
this header vector it would be possible to retrieve the route followed by a worker on the actual chronolog-
ically ordered sequence of activities an employee has completed in a day. However, recall that the naive
representation keeps the ordered sequence of events and, through consecutive repetitions, how much time
was spent in each location/activity. This information would not be kept by storing just RH (or AH for activ-
ities) as indicated in Figure 3. In order to retain this feature the header vector needs to be complemented
with a bitvector B representing each time interval as in the naive solution. Thus, as depicted in Figure 3, RH
contains the actual information of each event change while B just ticks every time interval j and whether it
corresponds to a new event of the header vector (B[j] set to 1) or it is just a repetition of the last one (B[j] set
to 0). Note that to recover R[8] =C from Figure 2, we have to count how many ones are there up to position
8 in B, i.e. we compute rank1(B,8) = 2, and then access the second position of RH ; i.e RH [2−1] =C.

A A A A A A A C C C C C C C C C D

X X X X Y Y Y Z Z Y Y Y Y Y Z Z ZA:

R:

10 2 3 4 5 6 7 8 9 1110 12 13 14 15 16

1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

A C DRH:
10 2

B:

10 2 3 4 5 6 7 8 9 1110 12 13 14 15 16

Fig. 3. Example illustrating how we can decrease the space needs of R, by using RH and a bitvector B.

It is important to note that we work with two correlated sequences R and A in our particular context,
so we need to store information about both sequences. Keeping in mind the idea of reducing space, instead
of using two header vectors and two bitvectors, we can store two header vectors RH and AH and only one
smaller structure to determine symbol repetitions. The main problem we have to deal with by following this
approach, is that we have to be able to quickly identify changes in each sequence and, particularly, changes
that occur simultaneously (in both sequences at the same time). To tackle that, we use a bitvector identifying
a transition (in activities, trajectories or both) and, at least, another bitvector to discriminate which sequence
has changed. In order to achieve this purpose, we introduce three different bitvector-based solutions:

– 3 bitvectors (3B): This approach uses three bitvectors to detect changes in both sequences. The first
bitvector (C) identifies change events in any vector. The second bitvector (D) discriminates between
single changes in vector R (with greater change probability). Last bitvector (D2) differentiates between
single changes in sequence A and double changes (in both R and A) at the same time instant.

– Occurrence pointers (OP): This solution shares the same bitvector C to identify changing time instants
in both vectors R and A, and uses D to discern which sequence has changed. The events of double
changes at the same instant are handled with a new array P that keeps pointers to the original positions
(within C) where they occurred.

– Avoid duplicity (AD): A simpler lossy method to tackle the concurrent changes problem would be to
force them into different time instants. Thus, each double change event would be represented in C as
two consecutive changes, assigning in D vector a one to each. It is important to notice that this approach
may imply some inaccuracies that would translate into loss of detailed information due to the lack of
a third level. In a context where this could become a usual issue, the fix could consists in using a finer
granularity, i.e. to survey activities and locations every second instead of every minute so that double
changes would become very unlikely.

4

Fig. 4. Our proposal uses two common arrays (RH and AH) to store three dimensional information (including time), one
bitvector C to encode changes on them and one of the three types of auxiliary structures to manage two-dimensional
changes in C.

3.1 Handling drivers’ work shifts

The above proposals permits us to handle the activities and locations of any given employee. However,
our aim is to represent a complete dataset with the information corresponding to all the existing drivers
along a large period of time of K working days. Therefore, our bitvectors C, D, D2, and vector P could
contain information corresponding to different drivers during up to K distinct days, and we have to be able
to distinguish which part of those structures belongs to each driver and day.

We use a little auxiliary structure in order to check the working days when each employee worked, as
not all drivers work every day. In particular, we use a chronologically ordered bitvector dxc containing K
bits for the first driver, other K bits for the second driver, and so on, where a 1 indicates that an employee
worked a given day, and 0 means the opposite.

In practice, our auxiliary bitvector acts as an array of pointers to the initial position of a workday of
a given driver in vectors R, A and, C. In dxc, each driver has the same amount of workable days K, and
each of those days is divided into a constant amount of discretized time intervals it. Therefore, it can be
easily checked if a given driver worked on a given day by computing w = dxc[(driver ∗K)+ day− 1]. If
the employee worked that day (w = 1), the offset in R (and also in A and C) for this driver on that day can
be obtained by accessing from position l = it ∗ rank1(dxc,(driver ∗K)+day−1) to position r = l+ it−1.
We define an operation [l,r]← getRange(dxc,driver,day) accordingly.

As an example, let us consider Figure 5, where we store information for K = 5 days and, for each day,
we handle it = 4 time intervals. We can check if driver 1 worked on day 2 as w = dxc[(1 ∗ 5)+ 2− 1] =
dxc[6] = 1. Once we have confirmed that the driver worked on that day, we can jump directly to the range
defined by position l = 4 ∗ rank1(dxc,6) = 12 in R (also for A or C), and r = 12+ 4− 1 = 15. This range
can be obtained directly as [12,15]← getRange(dxc,1,2), as defined above.

3.2 Reducing space usage

In the particular context of a mobile workforce management system, there will always be intrinsic global
repetitiveness not considered in the previous section. Previously, we have defined some techniques to exploit
symbol repetitions during a given workday of a single employee, i.e. we take advantage of long periods
where a worker performed the same activity or traversed the same road/highway. However, if we analyze
the behaviour of several employees globally, we may find again a high degree of repetitiveness between
them. For example, examining the trajectories of every worker, it seems quite likely that they always start

5

1 1 0 0 1

R:

0

K = 5

dxc: 0 1 0 1 0

1

K

1 1 0 1 1

2

K

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

A:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

C:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

it=4

10 2 3 4 5 6 7 8 9 1110 12 13 14

Fig. 5. Bitvector dxc identifies the days on which drivers have worked and enables easy acces to the corresponding
offsets in road segments vector (R), activity vector (A) and changes vector (C).

the route at headquarters and then traverse the same streets/roads (or at least a reduced set of them). The
same applies to activities, it is expected that workers perform the same activity sequence, e.g. a driver leaves
the planned route due to a traffic jam.

As detailed in Section 2, Re-Pair is a compression technique that exploits global repetitions. Expected
that, by applying Re-Pair over our header vectors RH and AH , we could be able to reduce their memory
footprint even further, yet probably in exchange for a slower access time. Note that if we have RH and
AH compressed with Re-Pair, each time we wanted to access any of their elements, we would have to
decompress them from the Re-Pair compressed sequence.

4 QUERIES

We have selected four representative queries to show how our structure (considering its three variants 3B,
OP, and AD) works. On the one hand, we offer access capabilities for routes and activities (RouteAtTime
and ActivityAtTime); i.e. recovering the corresponding location/activity of a particular driver at a given time
instant. On the other hand, we provide temporal window queries for both dimensions (RoutesAtTimeRange
and ActivitiesAtTimeRange).

– RouteAtTime (RT): This query recovers the road segment identifier where a driver was in a specific
instant; i.e. it permits us to obtain the location of any worker at a given time instant.
It takes three input parameters: driver, day, and time instant. Thanks to the already explained calcu-
lations on the bitvector dxc (see getRange operation in Section 3.1) we can obtain the positions [l,r]
within bitvector C that correspond to the information regarding the given day of a particular driver.
Recall that range of positions is obtained as [l,r]← getRange(dxc,driver,day).
Then, using the parameter time instant we can get the position I = l + time instant of the queried
time instant within the day. The number (S) of ones in bitvector C until the position I (computed as
S = rank1(C, I)) represents the total number of time instants when there were changes (routes and
activities) until the time instant of interest. That is, changes within R[0, I] or A[0, I].

6

As explained before, bitvector D allows to discriminate routes information. Thus, we can easily obtain
the total amount of road segment changes until the queried instant as J = rank1(D,S). Therefore, J−1
represents the position on RH where the road segment identifier is stored.

– RoutesAtTimeRange (RTR): This query reconstructs the trajectory of a driver for a specific interval
of time. With this query we are able to obtain the driver‘s route in a given working day. It takes three
input parameters: driver, day, and an interval time [X ..Y].
We can use the previous query to find the first road segment identifier of the queried interval [X ..Y] by
just computing RouteAtTime(driver,day,X). During that process, recall we obtain the corresponding
position I within C, and S = rank1(C, I) within D corresponding to the last road change that occurred
either before or at time instant X . However, in order to retrieve the full trajectory of a driver during the
given interval, we need to traverse the ones within D from S on using selectNext1(D,S); i.e. jumping to
the following road segment changes marked on D. Note that this process must end once we have gone
further than the corresponding position E = I +(Y −X) associated to Y in C.
Therefore, we start with the same I and S= rank1(C, I) values obtained by a call to RouteAtTime(driver,day,X),
and also output the (initial) road segment identifier within RH [rank1(D,S)− 1] n times, where n =
selectNext1(D,S)− S− 1. Then, while it holds that I ≤ E, we set n = selectNext1(D,S)− S− 1;
S = selectNext1(D,S) (hence looking for the next road segment change in D); we output the road
segment identifier in RH [rank1(D,S)− 1] n times; and finally compute I = select1(C,S) to map the
position S from D into C, which allows us to know if the process must either end (I > E) or handle the
next road-segment change otherwise.

– ActivityAtTime (AT): This query allows us to return the activity being performed by a driver at a
specific instant. It takes three input parameters: driver, day, and time instant.
This query is rather similar to RouteAtTime but instead of just using bitvectors C and D, this time it
will be necessary to reach the deepest bitvectors. Recall that Section 3 already introduced our three
strategies to deal with double changes (road segment and activity changing at the same instant).
We can get the position in D as we did in the previous queries (recall how S and I were initialized
for RouteAtTime operation). However, D does not discriminate between activity identifiers and double
changes, and here is where our alternatives differ:
• 3 Bitvectors (3B): Uses a third bitvector D2 to be able to compute if the i-th one in D corresponds

only to a road segment change (D2[i] = 0) or to a double change (D2[i] = 1). It is important to
note that, for this query, this alternative needs to consider single activity changes (zeros in D)
and double changes (ones in D2) up to position S (where S was the position in C associated to
the time instant of interest). Therefore, the amount of double changes can be computed as DC =
rank1(D2,rank1(D,S)), while single activity changes can be counted as AC = S− rank1(D,S).
Finally, DC+AC gives us the total amount of activity changes until the queried time instant. Thus,
we obtain the activity being performed by the given driver at the indicated time instant by accessing
the value AH [DC+AC−1].
• Occurrence pointers (OP):

In this solution we use a list of pointers P pointing at the position of ones in C which correspond to
a double change.
To obtain the total number of simultaneous changes DC up to the position I from C, we count all the
values of P that are below I (using a binary search over P that takes O(log |P|) time, to locate the
last index p such that P[p]≤ I). The single activity changes can be obtained as AC = rank0(D,S).
Concluding again that the driver was performing activity AH [DC+AC−1].
• Avoid duplicity (AD): This solutions unfolds simultaneous changes in two consecutive single changes,

significantly simplifying the operations. Hence, the total amount of activity changes until the
queried time instant can be obtained by simply computing AC = rank0(D,S) and the searched
activity is AH [AC−1].

7

– ActivitiesAtTimeRange (ATR): This query allows us to return the sequence of activities of a given
driver during a particular time interval. It also takes three input parameters: driver, day, and an inter-
val time [X ..Y].
This query is rather similar to RoutesAtTimeRange, yet returning a list of activities instead of road
segments. Therefore, as is the case with ActivityAtTime, it will be necessary to traverse the deepest
bitvectors.
Again, we can calculate the initial position S in D discriminating the activities from the double changes
as it has been explained before for operation ActivityAtTime. Then, each alternative representation will
retrieve the list of activities in a different way:

• 3 Bitvectors (3B): As usual, the first activity identifier to return can be computed with ActivityInTime(driver,day,X),
along with I and S positions that are obtained as in the previous explanations. Again, this alternative
needs to check single activity changes (zeros in D) and double changes (ones in D2). Therefore, the
position of the next single activity change after S, may be calculated as AC = selectNext0(D,S),
while the next double change would be at position DC = select1(D,selectNext1(D2,rank1(D,S))).
Thus, the first activity of interest was performed during the interval C[I,select1(C,min(DC,AC))−
1]; i.e. it must be output n = select1(C,min(DC,AC))− I− 1 times. Then, the next activity in AH
starts, so we update I = select1(C,min(DC,AC)), compute the new AC and DC positions to obtain
again the smallest value, and the process would be repeated until we have gone further than the
corresponding position E = I +(Y −X) associated to Y in C (as in RoutesAtTimeRange).
• Occurrence pointers (OP): To get the value of the first activity change in the time interval [X..Y]

we use the query ActivityInTime(driver,day,X). Then, AC can be computed as in the previous
alternatives (using selectNext0 in D) while DC would be the amount of all the pointers P[i] that fall
within the queried interval [rank1(C, I),rank1(C,E)].
• Avoid duplicity (AD): Due to the simplicity of this alternative, the calculations are practically the

same as RoutesAtTimeRange but this time operating over activity changes (zeros); hence, traversing
D at positions S, S′ = selectNext0(D,S), and so on.

5 EXPERIMENTAL EVALUATION

This section describes the two datasets (one for route identifiers and another one for activity identifiers) that
have been used to test our structure in terms of compression effectiveness and performance at query time.
We analyze the results obtained, comparing the three variants of our proposal. Finally, Section 5.2 includes
our experiments to show the results obtained when Re-Pair is applied on the header vectors RH and AH .

5.1 Datasets

We can distinguish two types of datasets used along this work: one real dataset that consists of the positions
of the employees of our collaborating company during their workday, and two synthetic activity datasets to
test different scenarios.

The first one was obtained from the GPS data stored by the mobile phones of the truck drivers during
their routine gathering waste and, essentially, it is a chronologically ordered list of road segment identifiers
that are recorded at discretized time intervals of 60 seconds. The resulting number of entries in R was
14,439,424 and the number of different road segments handled was 101,623.

The second type of datasets are synthetic datasets that we generated due to the lack of real activity
data. Using the 8 activities described in Section 3, we designed these synthetic datasets resembling normal
employees behavior as much as possible. To ensure the realism of this data, we developed a complex system
where each road segment is assigned a subset of possible activities based on its geolocation (e.g. the activity
“being at headquartes” cannot be possible outside the company facilities). Since we were generating the
activities associated to each driver along each road segment present in R, the number of entries in A was
also 14,439,424.

With the aim of testing a wide range of scenarios we created two activity datasets attending to different
degrees of variability. Note that the behaviour of our proposal may differ depending on the amount of
activity changes (both, compression ratios and access times). We created two activity datasets: one with a
low rate of variability (there is a change in the value of the activity every 100 instants of time) and another
dataset with a higher variability (there is a change in the value of the activity every 10 instants of time).

8

5.2 Experimental results

We have run experiments using the three variants of our proposal (3B, OP, and AD) to compare their
compression effectiveness and performance to access the original information. Our experiments were run
on an isolated computer using an Intel Xeon ES2470@2.30GHz processor (20 MB of cache) and 64 GB of
RAM. It runs Debian 10.8 (buster) with kernel 5.4.0 (64 bits). The compiler used was g++ version 7.4.0,
with C++17 option (-std=c++17).

As a baseline for our comparison we have implemented the naive solution depicted in Figure 2. This
simple approach uses just two symbol sequences (road segment identifiers and activity identifiers). To make
this proposal more competitive in terms of space needs, we have chosen an efficient bit-compaction rep-
resentation for these sequences, in which all identifiers are stored using the minimum number of bits b
needed to represent the maximum value of the vector u (i.e. b = dlog2 ue bits). Our bit-wise compacted
vectors for A and R were implemented using the SDSL library [8]. Recall that since the number of different
road segments is 101,623 we used only b = 17 bits per road segment identifier. Similarly, since we had only
8 different activities, 3 bits per activity identifier were used. Consequently, the overall size of the baseline
representation of the sequence R was 30.7 MiB, while for sequence A we used 1.8 MiB, totalizing 32.5
MiB.

The same bit-wise compaction strategy was also applied to our proposal, where both header vectors, RH
and AH , were stored using bit-wise SDSL vectors.

Compression results As stated before, synthetic activity datasets were used to test our proposal under
different scenarios with two different degrees of repetitiveness (higher or lower amount of consecutive
repeated values).

3B OP AD
26.69 32.24 26.40

Table 1. Compression ratios as % of the baseline representation using the activity dataset with a low repetitiveness (one
change every 10 activities).

Table 1 shows how the space needs1 of our three alternative representations using an activity dataset
with low repetitiveness (activities change once every 10 activities). As we can see, the best compression
results are obtained by the AD solution (26.40%), followed closely by 3B (26.69%). On the other hand, the
pointer vector of OP negatively affects its space footprint (32.24%).

Table 2 depicts the compression ratios for our proposals but this time using an activity dataset with high
repetitiveness ratio (activities change once every 100 activities). AD is still the most compact approach, but
now results are much more similar because, with that low rate of activity changes, it is less likely a double
shift to occur, i.e. third level vectors (D2 in 3B and P in OP) contain little data.

3B OP AD
11.71 11.71 11.48

Table 2. Compression ratios as % of the baseline representation using the activity dataset with a high repetitiveness
(one change every 100 activities).

Comparing the results in Tables 1 and 2, we can see that the behaviour of our proposal is far better when
applied to a repetitive scenario. This is mainly due to the fact that increasing the number of consecutive
repeated values allows our proposal to reduce significantly the header vectors sizes. This also affects the
bitvectors of our proposed variants since with a higher amount of consecutive repetitions the bitvectors C
and D (see Figure 4) may become sparse bitvectors.

1 We show compression ratio as the percentage of the size of the compressed representation (c) with respect to the
baseline representation (s) of the source data; i.e. 100× c/s.

9

Access time results With the aim of analyzing access time to our proposed structures we have tested the
queries described in Section 4. We compared the querying time obtained by the baseline representation with
that of our three proposed alternatives. Again, all experiments were carried out using a real route dataset
and two synthetic activity datasets.

Regarding route queries (RT and RTR), the first consideration we should note is that our three alterna-
tives use roughly the same amount of time for both queries as all three solutions share the same underlying
computation, that is, there is no need in any proposed alternative to reach the deepest vectors.

Baseline 3B OP AD
RTR 90.0 100 100 100
RT 0.50 10 10 10

Table 3. Access times (ns) for route information.

Table 3 depicts how our solutions are not far from the baseline when accessing the road segments
traversed by a driver during a (random) complete day that involves 600 minutes (RT R). However, we are
not so competitive when we perform an access (RT) to retrieve the road segment identifier corresponding
to a unique (random) time instant. In the latter, the baseline is capable of accessing any position of any
vector in constant time, while our proposal needs to map the queried position in the header vector through
the different bitvectors.

Concerning activities, query times corresponding to operations AT and AT R become worse because our
proposal needs to roam deeper in our bitvector hierarchy. However, it is important to keep in mind that our
structure may use up to 88% less space than the original representation. Tables 4 and 5 include the results
obtained for our two synthetic activity datasets.

Baseline 3B OP AD
ATR 90.00 200 210 180
AT 0.70 98 165 90

Table 4. Access times (ns) to the activity dataset with a low repetitiveness (one change every 10 activities).

A lower degree of repetitiveness (i.e. having a large amount of activity changes) affects directly the
amount of information stored in our proposal as header vectors increase proportionally and, consequently,
the amount of ones stored in our bitvectors grows accordingly. This largely worsens AT R access times as
the efficiency in our proposed bitvectors depend on the ability to jump between consecutive ones, skipping
a huge amount of 0’s.

Baseline 3B OP AD
ATR 90.00 120 140 110
AT 0.70 30 50 13

Table 5. Access times (ns) to the activity dataset with a high repetitiveness (one change every 100 activities).

Nonetheless, Table 5 shows that query times for AT R become more competitive when a highly repetitive
dataset is used, although we are still clearly slower than the baseline representation at AT access queries.

Regarding the three different alternatives of our proposal, AD is still the fastest variant as it has one less
level to traverse during the query.

Applying Re-Pair We applied Re-Pair over RH and AH sequences in our proposals as a way to exploit the
expected underlying repetitiveness within them. We can see below that we obtained an improved compres-
sion ratio. However, access times largely worsened due to the need of performing a Re-Pair decompression
process from the beginning of the sequence to recover the original data.

10

3B OP AD
98.55 116.67 97.78

Table 6. Compression ratios (in %) using Re-Pair on the activity dataset with a low repetitiveness ratio (one change
every 10 activities).

In practice, to provide pseudo-random access to the compressed data we enriched our Re-Pair imple-
mentation with a list of pointers referencing the beginning of each day. This provided synchronization points
at the beginning of each day and consequently sped up the partial decompression of our sequences RH and
AH as a full decompression was no longer necessary.

3B OP AD
88.68 86.79 86.79

Table 7. Compression ratios (in %) using Re-Pair on the activity dataset with a high repetitiveness (one change every
100 activities).

Tables 6 and 7 present the compression ratios after applying Re-Pair in our solutions. For the sake of a
fair comparison, all the results presented in this section have been measured against a compressed baseline
using the same enriched Re-Pair algorithm. Note that, while the previous baseline required 30.7 MiB, our
new baseline compressed with Re-Pair required 13.8 MiB in the lesser repetitive scenario and 5.3 MiB
in the higher repetitive one. Therefore, Re-Pair was surprisingly successful in the non-repetitive scenario,
where we could decrease the space requirements of the regular uncompressed baseline to around 44.9% of
its size. In the most repetitive scenario, using Re-Pair led to even better results, reducing the space needs to
around 17.2% of the original size.

Firstly, Table 6 details the Re-Pair compression results obtained for the lesser repetitive activity dataset.
We can see that the results obtained by our proposals hardly improve the values of the baseline represen-
tation, and indeed, in the variant OP, space requirements are worsen than those of the baseline. Secondly,
Table 7 describes a slightly better scenario regarding the high repetitiveness dataset as all our alternative
representations overcome the results of the baseline.

Baseline 3B OP AD
RTR 3090 3100 3100 3100
RT 3001 3010 3010 3010

Table 8. Access times (ns) to the route dataset with Re-Pair.

The cost of reducing the space requirements is paid at query time because, as indicated above, partial
decompression is required. Access time typically worsens by a constant factor F of roughly around 3000
nanoseconds (see Tables 8, 9, and 10) corresponding to the decompression of either 600 road segments
identifiers (RTR) or 600 activity values (ATR). Note that, for RT and AT, we are also paying that extra
decompression cost because, in our current implementation, we are decompressing all the 600 values corre-
sponding to a day, even though we are just retrieving one of those values. This is clearly and un-optimized
operation that we will improve shortly by partially decompressing up to the queried time instant of the day.

Again, apart from the extra decompression cost, the results obtained by our variants are similar to those
in the previous sections where Re-Pair was not used.

To sum up, we can see that, as expected, using Re-Pair brings a space/time trade-off. We save space, yet
our solution becomes clearly slower at query time.

6 CONCLUSIONS AND FUTURE WORK

We have presented a novel representation of enriched trajectories as part of a real mobile workforce manage-
ment system. Our proposal includes three variants, where each of them employs a different bitvector-based
solution in order to achieve a good trade-off between spatial footprint and query times.

11

Baseline 3B OP AD
ATR 3090 3200 3210 3180
AT 3001 3110 3165 3090

Table 9. Access times (ns) to the activity dataset with a low repetitiveness ratio (one change every 10 activities) with
Re-Pair.

Baseline 3B OP AD
ATR 3090 3120 3140 3110
AT 3001 3040 3060 3025

Table 10. Access times (ns) to the activity dataset with a high repetitiveness (one change every 100 activities) with
Re-Pair.

Our proposal has been tested against real and synthetic datasets, using different distributions in the latter
in order to study the behaviour of our proposal in diverse scenarios. Experiments have shown how our new
representation is able to store large amounts of information using around a 88% less space than our baseline
technique while obtaining competitive access times.

In addition, we have analyzed the use of a well-known compression technique, known as Re-Pair, to
boost the already good compression ratios achieved. Our experiments showed Re-Pair was able to reduce
the size of our proposal even further, at the cost of slower access times.

As future work, our main aim would be to create another compression representation that could allow
reduce even further the space requirements while retaining good performance at query time. Apart from
that, we are also working on endowing our proposal with dynamic capabilities, i.e. enabling the information
stored in it to grow over time.

ACKNOWLEDGEMENTS

Partially funded by the CITIC research center funded by Xunta/FEDER-UE 2014-2020 Program, grant
ED431G 2019/01. MICIU (PGE/ERDF) [Datos 4.0: TIN2016-78011-C4-1-R; STEPS: RTC-2017-5908-
7; BIZDEVOPS: RTI2018-098309-B-C32]. IGAPE/Xunta (FEDER-UE) 2014-2020 [IG240.2020.1.185].
Xunta/GAIN (ERDF) [GEMA: IN852A 2018/14] and by FPI Program [BES-2017-081390].

References

1. Alvares, L.O., Bogorny, V., Kuijpers, B., de Macêdo, J.A.F., Moelans, B., Vaisman, A.A.: A model for enrich-
ing trajectories with semantic geographical information. In: Proceedings of the ACM International Symposium
on Geographic Information Systems, ACM-GIS 2007. p. 22 (2007). https://doi.org/10.1145/1341012.1341041,
https://doi.org/10.1145/1341012.1341041

2. Brisaboa, N.R., de Bernardo, G., Navarro, G., Rodeiro, T.V., Seco, D.: Compact representations of
event sequences. In: Proceedings of the Data Compressioni Conference, DCC18. pp. 237–246 (2018).
https://doi.org/10.1109/DCC.2018.00032, https://doi.org/10.1109/DCC.2018.00032

3. Brisaboa, N.R., Gómez-Brandón, A., Navarro, G., Paramá, J.R.: Gract: A grammar-based compressed index for
trajectory data. Information Sciences 483, 106–135 (2019), https://doi.org/10.1016/j.ins.2019.01.035

4. Brisaboa, N.R., Fariña, A., Navarro, G., Rodeiro, T.V.: Semantrix: A compressed semantic ma-
trix. In: Proceedings of the Data Compression Conference, DCC 2020. pp. 113–122 (2020).
https://doi.org/10.1109/DCC47342.2020.00019, https://doi.org/10.1109/DCC47342.2020.00019

5. Crawford, V.G., Kuhnle, A., Boucher, C., Chikhi, R., Gagie, T.: Practical dynamic de bruijn graphs. Bioinformatics
34(24), 4189–4195 (2018), https://doi.org/10.1093/bioinformatics/bty500

6. Fujishige, Y., Nakashima, Y., Inenaga, S., Bannai, H., Takeda, M.: An improved data structure for left-right maxi-
mal generic words problem. In: Proceedings of International Symposium on Algorithms and Computation, ISAAC
2019. vol. 149, pp. 40:1–40:12 (2019), https://doi.org/10.4230/LIPIcs.ISAAC.2019.40

7. Gao, C., Zhao, Y., Wu, R., Yang, Q., Shao, J.: Semantic trajectory compression via multi-
resolution synchronization-based clustering. Knowledge-Based Systems 174, 177–193 (2019).
https://doi.org/10.1016/j.knosys.2019.03.006, https://doi.org/10.1016/j.knosys.2019.03.006

8. Gog, S., Beller, T., Moffat, A., Petri, M.: From theory to practice: Plug and play with succinct data structures. In:
Proceedings of International Symposium on Experimental Algorithms, SEA 2014. pp. 326–337. Springer Interna-
tional Publishing (2014)

12

9. Larsson, N.J., Moffat, A.: Offline dictionary-based compression. In: Proceedings of the Data Compression Confer-
ence, DCC 1999. pp. 296–305 (1999). https://doi.org/10.1109/DCC.1999.755679, https://doi.org/10.1109/
DCC.1999.755679

10. Mountain, D., Raper, J.: Modelling human spatio-temporal behaviour: a challenge for location based services. In:
Proceedings of the International Conference on GeoComputation. pp. 65–74 (2001)

11. Munro, J.I.: Tables. In: Proceedings of the Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 1996. vol. 1180, pp. 37–42 (1996), https://doi.org/10.1007/3-540-62034-6\
_35

12. Navarro, G.: Compact Data Structures: A Practical Approach. Cambridge University Press, USA, 1st edn. (2016)
13. Okanohara, D., Sadakane, K.: Practical entropy-compressed rank/select dictionary. In: Proceedings

of the Meeting on Algorithm Engineering & Expermiments (ALENEX 2007). pp. 60–70 (2007).
https://doi.org/10.5555/2791188.2791194

14. Parent, C., Spaccapietra, S., Renso, C., Andrienko, G.L., Andrienko, N.V., Bogorny, V., Damiani, M.L., Gkoulalas-
Divanis, A., de Macêdo, J.A.F., Pelekis, N., Theodoridis, Y., Yan, Z.: Semantic trajectories modeling and analysis.
ACM Computing Surveys 45(4), 42:1–42:32 (2013), https://doi.org/10.1145/2501654.2501656

15. Poushter, J.: Pew research center: Smartphone ownership and internet usage continues to climb in emerging
economies (2019), http://www.pewresearch.org

16. Raman, R., Raman, V., Rao, S.: Succinct indexable dictionaries with applications to encoding k-ary trees and
multisets. In: Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA 2002). pp. 233–242 (2002).
https://doi.org/10.5555/545381.545411

17. dos Santos Mello, R., Bogorny, V., Alvares, L.O., Santana, L.H.Z., Ferrero, C.A., Frozza, A.A., Schreiner, G.A.,
Renso, C.: Master: A multiple aspect view on trajectories. Transactions in GIS 23, 805–822 (2019)

18. Schmid, F., Richter, K., Laube, P.: Semantic trajectory compression. In: Proceedings of the Advances in
Spatial and Temporal Databases International Symposium, SSTD 2009. Lecture Notes in Computer Science,
vol. 5644, pp. 411–416. Springer (2009). https://doi.org/10.1007/978-3-642-02982-0 30, https://doi.org/10.
1007/978-3-642-02982-0_30

19. Song, R., Sun, W., Zheng, B., Zheng, Y.: PRESS: A novel framework of trajectory compression in road networks.
Proceedings of the VLDB Endowment 7(9), 661–672 (2014). https://doi.org/10.14778/2732939.2732940, http:
//www.vldb.org/pvldb/vol7/p661-song.pdf

20. Wyffels, J., De Brabanter, J., Crombez, P., Verhoeve, P., Nauwelaers, B., De Strycker, L.: Distributed, signal
strength-based indoor localization algorithm for use in healthcare environments. IEEE Journal of Biomedical and
Health Informatics 18(6), 1887–1893 (2014), https://doi.org/10.1109/JBHI.2014.2302840

21. Yan, Z., Chakraborty, D., Parent, C., Spaccapietra, S., Aberer, K.: Semantic trajectories: Mobility data computation
and annotation. ACM Transactions on Intelligent Systems and Technology 4(3), 49:1–49:38 (2013), https://doi.
org/10.1145/2483669.2483682

13

