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Abstract. Compact data structures can represent data with usually a
much smaller memory footprint than its plain representation. In addition
to maintaining the data in a form that uses less space, they allow us
to efficiently access and query the data in its compact form. The k2-
tree is a self-indexed, compact data structure used to represent binary
matrices, that can also be used to represent points in a spatial dataset.
Efficient processing of the Distance-based Join Queries (DJQs) is of great
importance in spatial databases due to its wide area of application. Two
of the most representative and known DJQs are the K Closest Pairs
Query (KCPQ) and the ε Distance Join Query (εDJQ). These types of
join queries are executed over two spatial datasets and can be solved by
plane-sweep algorithms, which are efficient but with great requirements
of RAM, to be able to fit the whole datasets into main memory. In this
work, we present new and efficient algorithms to implement DJQs over
the k2-tree representation of the spatial datasets, experimentally showing
that these algorithms are competitive in query times, with much lower
memory requirements.

Keywords: k2-tree · K Closest Pairs · ε Distance Join · Spatial Query
Evaluation

1 Introduction

The efficient storage and management of large datasets has been a research topic
for decades. Spatial databases are an example of such datasets. Some of the meth-
ods used to efficiently manage and query them include distributed algorithms,
streaming algorithms, or efficient secondary storage management [9], frequently
accompanied by the use of indexes such as R∗-trees to speed up queries.

Compression techniques, on the other hand, are focused on minimizing the
storage needs of such datasets, but classical techniques (for example, any Huffman-
based compressor) had a strong drawback: the datasets must usually be decom-
pressed from the beginning in order to access any specific item of data. There-
fore, compression has been mainly used for archival purposes, or when the whole
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dataset must be processed sequentially from beginning to end (for example,
combining decompression with streaming algorithms to process the data).

Compact data structures [9] try to combine low space usage and processing
efficiency. They store the information in a compact (compressed) form, thus
requiring less space, and manage (query) it also in its compact form, without
having to first decompress it. In this way, it is possible to store and process
(query, navigate, and optionally modify) much larger datasets in main memory.
This has the additional benefit of the higher speeds of higher levels of the memory
hierarchy (more data in processor caches, for example). An example of such a
compact data structure is the k2-tree [1], which will be further discussed in
Section 2.2. Initially designed to represent and query web graphs, the k2-tree
has proved to be a powerful tool to represent other kinds of graphs [4], being
especially efficient when the graph is clustered. Spatial point datasets, as well as
other raster spatial data, can also be managed by a k2-tree [2].

Distance join queries (DJQs) have received considerable attention from the
database community, due to their importance in numerous applications, such
as spatial databases and GIS, location-based systems, continuous monitoring,
etc. [8]. DJQs are costly queries because they combine two datasets taking into
account a distance metric. Two of the most used DJQs are the K Closest Pair
Query (KCPQ) and the ε Distance Join Query (εDJQ) [3]. Given two point
datasets P and Q, the KCPQ finds the K closest pairs of points from P × Q
according to a certain distance function (e.g., Manhattan, Euclidean, Chebyshev,
etc.). The εDJQ finds all the possible pairs of points from P×Q that are within
a distance threshold ε of each other. DJQs are very useful in many applications
that use spatial data for decision making and other demanding data handling
operations. For example, we can use two spatial datasets that represent the hotels
and the monuments in a touristic city. A KCPQ (K = 10) can discover the 10
closest pairs of hotels and monuments, sorted in increasing order by distance.
On the other hand, an εDJQ (ε = 200) could return all possible pairs (hotel,
monument) that are within 200 meters of each other.

DJQs have been extensively studied, and algorithms exist to answer KCPQ,
εDJQ, and other similar queries over plain data [10], as well as taking advantage
of indexes such as R-trees or Quadtrees [7]. In this paper, we explore the advan-
tages of representing spatial data using a compact data structure, the k2-tree,
to implement DJQs, and test it with two of the most used DJQs: KCPQ and
εDJQ. Thus, the most important contributions of this paper are the following:

– A detailed description of the algorithms to answer KCPQ and εDJQ over
large datasets of points, using k2-trees as the underlying representation for
both datasets.

– The execution of a set of experiments using large real-world datasets for
examining the efficiency and the scalability of the proposed strategy, consid-
ering performance parameters and measures.

This paper is organized as follows. In Section 2 we present preliminary con-
cepts related to DJQs and k2-trees, as well as previous contributions in these
areas. In Section 3, the new algorithms for KCPQ and εDJQ using k2-trees are
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proposed. In Section 4, we present the main results of our experiments, using
large real-world datasets. Finally, in Section 5, we provide the conclusions arising
from our work and discuss related future work directions.

2 Background and related work

In this section, we review some basic concepts about DJQs and the k2-tree
compact data structure, as well as a brief survey of the most representative
contributions in both fields in the context of spatial query processing.

2.1 Distance-based Join Queries - KCPQ and εDJQ

Distance-based Join Queries are special joins where two datasets are combined,
taking into account a distance metric (dist). DJQs can be very costly when the
size of the joined datasets is large, and for this reason, they have lately been
thoroughly investigated. Two of the most representative and known DJQs are
the K Closest Pairs Query (KCPQ) and the ε Distance Join Query (εDJQ)

The KCPQ discovers the K pairs of data formed from the elements of two
datasets having the K smallest distances between them (i.e., it reports only the
top K pairs from the combination of two datasets). Formally:

Definition 1. (K Closest Pairs Query, KCPQ)
Let P = {p1, p2, · · · , pn} and Q = {q1, q2, · · · , qm} be two set of points, and a
number K ∈ N+. Then, the result of the K Closest Pairs Query is an ordered
collection, KCPQ(P,Q,K), containing K different pairs of points from P ×Q,
ordered by distance, with the K smallest distances between all possible pairs:
KCPQ(P,Q,K) = ((p1, q1), (p2, q2), · · · , (pK , qK)), (pi, qi) ∈ P × Q, 1 ≤ i ≤
K, such that for any (p, q) ∈ P × Q \KCPQ(P,Q,K) we have dist(p1, q1) ≤
dist(p2, q2) ≤ · · · ≤ dist(pK , qK) ≤ dist(p, q).

Three properties of KCPQ are: (i) it is symmetric (i.e., KCPQ(P,Q,K) =
KCPQ(Q,P,K)); (ii) the cardinality of the query result is known beforehand
|KCPQ(P,Q,K)| = K; and (iii) the distance of the K closest pairs of points is
unknown a priori.

On the other hand, the εDJQ reports all the possible pairs of spatial objects
from two different spatial objects datasets, P and Q, having a distance not
greater than a threshold ε of each other. Formally:

Definition 2. (ε Distance Join Query, εDJQ)
Let P = {p1, p2, · · · , pn} and Q = {q1, q2, · · · , qm} be two set of points, and a dis-
tance threshold ε ∈ R≥0. Then, the result of the εDJQ is the set, εDJQ(P,Q, ε) ⊆
P ×Q, containing all the possible different pairs of points from P ×Q that have
a distance of each other smaller than, or equal to ε:
εDJQ(P,Q, ε) = {(pi, qj) ∈ P ×Q : dist(pi, qj) ≤ ε}
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The εDJQ can be considered as an extension of the KCPQ, where the dis-
tance threshold of the pairs (ε) is known beforehand and the processing strategy
(e.g., plane-sweep technique) can be the same as in the KCPQ for generating
the candidate pairs of the final result.

If both P and Q are non-indexed, the KCPQ between two point sets that
reside in main-memory can be solved using plane-sweep-based algorithms [10].
The Classic plane-sweep algorithm for KCPQ consists of two steps: (1) sorting
the entries of the two points sets, based on the coordinates of one of the axes
(e.g. X) and (2) combining the reference point of one set with all the comparison
points of the other set satisfying that their distance on the X-axis is less than δ
(distance of the Kth closest pair found so far), and choosing those pairs whose
point distance is smaller than δ. A faster variant called Reverse-Run plane-sweep
algorithm is based on the concept of run (a continuous sequence of points of the
same set that does not contain any point from the other set) and the reverse
order of processing of the comparison points with respect to the reference point.
To reduce the search space and considering the reference point, three methods are
applied in these two plane-sweep algorithms: Sliding Strip (δ on X-axis), Sliding
Window and Sliding Semi-Circle. These DJQs have been recently designed and
implemented in SpatialHadoop and LocationSpark, that are Hadoop-based and
Spark-based distributed spatial data management systems (Big Spatial Data
context) [5], respectively.

The problem of DJQs has also received research attention by the spatial
database community in scenarios where at least one of the datasets is indexed.
If both P and Q are indexed using R-Trees, the concept of synchronous tree
traversal and Depth-First (DF) or Best-First (BF) traversal order can be com-
bined for the query processing [3]. In [7], an extensive experimental study com-
paring the R*-tree and Quadtree-like index structures for DJQs together with
index construction methods was presented. In the case that only one dataset
is indexed, in [6] an algorithm is proposed for KCPQ, whose main idea is to
partition the space occupied by the dataset without an index into several cells
or subspaces (according to a grid-based data structure) and to make use of the
properties of a set of distance functions defined between two MBRs [3].

2.2 k2-tree

A k2-tree [1] is a compact data structure used to store and query a binary matrix
that can represent a graph or a set of points in discretized space. Figure 1 shows
in (a) a set of points in a 2D discrete space, and its direct translation into a
binary matrix in (b). For the k2-tree representation, choosing k = 2, (c) is the
conceptual tree and (d) the actual bitmaps that are stored. T represents the
“tree” part (non leaf nodes), and L the leaves of the conceptual tree.

Conceptually, the k2-tree can be seen as an unbalanced tree, where each
node has a bitmap of k2 bits and up to k2 children. This conceptual tree is
built as follows: its root node corresponds to the full matrix, which is divided
into k × k equal-sized submatrices (for k = 2, the matrix is decomposed in
k2 = 4 quadrants). For each submatrix, if there is at least one 1 in its cells, the
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Fig. 1. A 2D-space model with its binary matrix and k2-tree representations

corresponding bit in the conceptual tree node is set to 1, and the submatrix is
included as a child of the node. If the submatrix is empty (there are no 1’s) then
the corresponding bit is set to 0 and the submatrix is discarded. See, for example,
that the root node in Figure 1 is 1101 because quadrants 1, 2 and 4 have 1’s,
but the third quadrant is full of 0’s. The process continues recursively for all non
empty submatrices until the individual cells (that correspond to leaves in the
k2-tree) are reached. The actual k2-tree is just the bitmap that corresponds to
the breadth-first traversal of the conceptual tree (usually split in two fragments
T and L, as shown in Figure 1(d)).

Points and regions of the original matrix can be easily found traversing the
branches of the conceptual k2-tree from the root node. This is achieved in prac-
tice using just the bitmaps by computing getChild(T, i) = rank(T, i)× k2, that
returns, for the node at position i in T , the position in T where its children are
located. The rank(T, i) operation (which counts the number of 1’s up to position
i in T ) can be computed in constant time by enhancing T with a small structure
of counters.

Many variants and improvements have been proposed over the basic k2-tree
representation introduced here [1, 2]. In this paper we focus on the basic k2-tree
representation described in this section, in order to provide a clear description
of the algorithms.

Regarding the use of k2-trees in the field of DJQs, in the recent work [11],
K Nearest Neighbors Query and KCPQ are proposed for k2-trees representing
points of interest. It is the first algorithm in the literature for KCPQ using
k2-trees (ALBA-KCPQ). One of the main drawbacks of their paper is that the
authors used very small synthetic and real datasets in the experimentation, be-
cause the maximum number of points is only 1 million for each synthetic dataset
and for real data the combination was 76451×20480 and 4499454×196902. More-
over, the total response time of the KCPQ experiments is questionable because
their implementation of (Classic) plane-sweep-based KCPQ algorithm needed
hours to solve the query, when it should be answered in an order of ms. These
surprising performance results also make KCPQ implementations on k2-trees
and their results questionable. Note also that their implementation, basically of
the same algorithm, is in Java and it is not publicly available, and the high-level
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pseudo-codes provided in the journal paper omit low-level details that are key to
performance. This makes it difficult to accurately reproduce their results from
the available information. Finally, to the best of our knowledge, εDJQ has never
been tackled using k2-trees. Here we present efficient implementations of KCPQ
and εDJQ to show the interest of the strategy of using k2-trees to represent
spatial data. Our algorithms were coded in C++ and are available to the com-
munity, and they were tested with large real-world datasets, comparing them
with Classic and Reverse-Run plane-sweep DJQs on main memory.

3 Our approach to DJQs using k2-trees

We describe in this section the new algorithms for KCPQ (Algorithm 1) and
εDJQ (Algorithm 2) using k2-trees. For all the distance calculations, we have
used the Euclidean distance.

The input for Algorithm 1 consists on two matrices A and B, stored as
k2-trees (they would correspond to the P and Q datasets in the definitions in
Section 2.1), and the number of pairs of closest points (although we use the
name NumPairs instead of K in the pseudocode to avoid confusion with the k
parameter of k2-trees), We denote A[i] the ith bit value of the bitmap for A.
A.lastLevel is the last level of the tree, corresponding to its leaves. Levels range
from 0 to dlg(n)e − 1, being n the width of the original matrix.

The following data structures are used by Algorithm 1:

– A priority Queue PQueue that stores pairs of nodes to be processed. Each
entry in PQueue contains:
• A (sub)matrix of A, including its top-left coordinate and the offset of

the associated node in the T |L bitmap of the k2-tree.
• A (sub)matrix of B with the same information.
• The level both matrices belong to in the k2-tree conceptual trees.
• The minimum possible distance between the points of A and B. It is

computed as shown in Algorithm 3.
PQueue is a min priority queue over the distance (that is, pairs with lower
minimum distance come first). It uses the standard methods: isEmpty(),
enqueue() and dequeue().

– An ordered list OutList with capacity for NumPairs elements (we actually
use a max binary heap to manage these elements), each one storing a pair
of points (one coming from each input matrix), and the distance between
them. The elements (pairs of points) are sorted according to their distance.
It uses the methods: length(), maxDist() and insert().

– MinDist(pA,pB,size), shown in Algorithm 3, obtains the minimum possible
(Euclidean) distance between points of the matrices A and B that have their
origins in pA and pB and are squares of size× size.
Note that the pairs of (A,B) matrices that are generated in Algorithm 1 have
a special property: their origin coordinates are always multiples of size. This
allows us to compute the minimum distance more efficiently, but it would
not work to get the minimum distance between two matrices in general.
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The idea behind Algorithm 1 is to recursively partition the matrices A and B
into k2 submatrices each and compare each possible pair of submatrices (down
to when they are not actually submatrices but really individual cells or points).
One of the strong points of this algorithm is that, at some point, we can stop
without processing all the remaining pairs of submatrices. This happens when
the required number of closest pairs has already been obtained, and the largest
distance between them is not larger than the minimum possible distance between
the pairs of submatrices not yet processed.

The algorithm follows a Best-First (BF) traversal. It starts by enqueuing the
whole matrices (which correspond to the level 0 of the k2-tree and have 0 as
the minimum possible distance between them). The output list OutList is also
initialized, with room for at most NumPairs elements.

Then, the priority queue is processed until it is empty, or the stop criteria are
reached. Lines 6 − 8 check if the output list already has the target NumPairs
elements. If so, and the minimum distance of the current pair of matrices is
at least the maximum distance in OutList, we can be sure that the current
and remaining matrices can be safely discarded, and the algorithm returns the
current output list.

In other case, the current matrices are partitioned (lines 11 − 20), but only
if they have children (which is tested by directly using the k2-tree bitmaps in
lines 12 for matrix A and 15 for matrix B). For each pair of child submatrices,
if they are in the last level of the k2-tree then they are actually points. So, if
there is room in OutList or its maximum distance is greater than the distance
between the current pair of points, then the pair and its distance are inserted in
order in OutList (lines 21 − 25). Recall that the insert operation may need to
remove the element with the largest distance if the output list already contains
NumPairs elements.

If the submatrices are not in the last level of the k2-tree, and if they meet
the conditions to contain candidate pairs of points (OutList is not full or the
minimum distance between the matrices is less than the maximum distance in
OutList) they are enqueued in the priority queue (lines 28− 30).

Algorithm 2 (εDJQ) uses the same scheme as the previous one, but with some
key differences. The input consists now of the two k2-trees A and B, plus the
distance threshold ε. Since the algorithm does not limit the number of output
pairs, OutList is now an unlimited-size, unordered list. For the same reason,
the algorithm does not have an “early exit”, and it exits only after the priority
queue is empty. Additionally, each element in the priority queue stores not only
the minimum possible distance between the matrices, but also the maximum
possible distance, computed by the function MaxDist (shown in comments in
the pseudocode of Algorithm 3). The initial MaxDist for the whole matrices is√

2n, where n is the width of each matrix.
The partitioning is done the same way, but for every pair of child submatrices

the process is different:

– At leaf level of the k2-trees (lines 18 − 21) the pair of nodes is inserted in
OutList if the distance between them is at most ε.
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Algorithm 1 GetKCPQ: Get the NumPairs closest points.
1: function GetKCPQ(A, B, NumPairs)
2: PQueue.enqueue({ {(0,0), 0}, {(0,0), 0}, 0, 0})
3: OutList = new OrderedList(NumPairs)
4: while not PQueue.isEmpty() do
5: Node = PQueue.dequeue()
6: if OutList.length() == NumPairs
7: and Node.minDist ≥ OutList.maxDist() then
8: return OutList
9: chLevel = Node.Level + 1

10: chSize = n/kchLevel

11: for i = 0 to k2 − 1 do . Directly access the k2-tree bitmap
12: if A[Node.A.ptr + i] == 1 then
13: chPtrA = getChild(A,Node.A.ptr + i)
14: for j = 0 to k2 − 1 do
15: if B[Node.B.ptr + j] == 1 then
16: chPtrB = getChild(B,Node.B.ptr + j)
17: childA = {(Node.A.x + chSize · (i mod k),
18: Node.A.y + chSize · bi/kc), chPtrA}
19: childB = {(Node.B.x + chSize · (j mod k),
20: Node.B.y + chSize · bj/kc), chPtrB}
21: if chLevel == A.lastLevel then . Leaf nodes
22: distance = Dist((childA.x, childA.y), (childB.x, childB.y))
23: if OutList.length() < NumPairs
24: or OutList.maxDist() > distance then
25: OutList.insert((childA.x, childA.y), (childB.x, childB.y), distance)

26: else
27: minDist = MinDist((childA.x, childA.y), (childB.x, childB.y), chSize)
28: if OutList.length() < NumPairs
29: or OutList.maxDist() > minDist then
30: PQueue.enqueue({childA, childB, chLevel, minDist})
31: return OutList

– If the maximum distance (MaxDist) between the two matrices is at most
ε, then all the combinations of points between the two matrices meet the
criteria. We use the rangeQuery operation of the k2-trees to get the points
and insert all possible pairs into OutList (lines 23− 31).

– Otherwise, if the minimum distance is at most ε, we enqueue the submatrices
with the minimum and maximum distances between them (lines 32− 33).

4 Experimental Results

We have tested our DJQ algorithms using the following real-world 2D point
datasets, obtained from OpenStreetMap3: LAKES (L), that contains bound-
aries of water areas (polygons); PARKS (P), that contains boundaries of parks
or green areas (polygons); ROADS (R), which contains roads and streets around
the world (line-strings); and BUILDINGS (B), which contains boundaries of all
buildings (polygons). For each source dataset, we take all the points extracted
from the geometries of each line-string to build a large point dataset. Addition-
ally, we round coordinates to 6 decimal positions, in order to be able to transform
these values to k2-tree coordinates in a consistent manner. Table 1 summarizes
the characteristics of the original datasets and the generated point sets obtained

3 Available at http://spatialhadoop.cs.umn.edu/datasets.html
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Algorithm 2 εDJQ: Get all pairs with a distance threshold of ε
1: function εDJQ(A, B, ε)

2: PQueue.enqueue({ {(0,0), 0}, {(0,0), 0}, 0, 0,
√
2n})

3: OutList = new List()
4: while not PQueue.isEmpty() do
5: Node = PQueue.dequeue()
6: chLevel = Node.Level + 1
7: chSize = n/kchLevel

8: for i = 0 to k2 − 1 do . Directly access the k2-tree bitmap
9: if A[Node.A.ptr + i] == 1 then

10: chPtrA = getChild(A,Node.A.ptr + i)
11: for j = 0 to k2 − 1 do
12: if B[Node.B.ptr + j] == 1 then
13: chPtrB = getChild(B,Node.B.ptr + j)
14: childA = {(Node.A.x + chSize · (i mod k),
15: Node.A.y + chSize · bi/kc), chPtrA}
16: childB = {(Node.B.x + chSize · (j mod k),
17: Node.B.y + chSize · bj/kc), chPtrB}
18: if chLevel == A.lastLevel then . Leaf nodes
19: distance = Dist((childA.x, childA.y), (childB.x, childB.y))
20: if distance ≤ ε then
21: OutList.insert((childA.x, childA.y), (childB.x, childB.y), distance)

22: else
23: minDist = MinDist((childA.x, childA.y), (childB.x, childB.y), chSize)
24: maxDist = MaxDist((childA.x, childA.y), (childB.x, childB.y), chSize)
25: if maxDist ≤ ε then
26: . All pairs in the range satisfy the distance condition
27: rangeA = A.rangeQuery(A.x, A.x+chSize-1, A.y, A.y+chsize-1)
28: rangeB = B.rangeQuery(B.x, B.x+chSize-1, B.y, B.y+chsize-1)
29: for pA ∈ rangeA do
30: for pB ∈ rangeB do
31: OutList.insert(pA, pB, Dist(pA, pB))

32: else if minDist ≤ ε then
33: PQueue.enqueue({childA, childB, chLevel, minDist, maxDist})
34: return OutList

Algorithm 3 MinDist/MaxDist: min/max possible distance between 2 matrices
function MinDist(pA,pB,size)

. Also MaxDist(pA,pB,size)
if pA.x = pB.x then

hdist = 0
else

hdist = |pA.x− pB.x| − (size− 1)
. For MaxDist: hdist = |pA.x− pB.x|+ (size− 1)

if pA.y = pB.y then
vdist = 0

else
vdist = |pA.y − pB.y| − (size− 1)
. For MaxDist: vdist = |pA.y − pB.y|+ (size− 1)

return
√
hdist2 + vdist2
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from them. Note that all the datasets represent worldwide data, and points are
stored as (longitude, latitude) pairs.

Table 1. Source datasets and generated point sets

Source dataset Generated dataset

Name #Records (M) Size (GiB) #Points (M) Size (GiB)

LAKES (L) 8.4 8.6 345 8.6
PARKS (P) 10 9.3 305 7.5
ROADS (R) 72 24 682 17

BUILDINGS (B) 115 26 615 14

The main performance measures that we have used in our experiments are
the space required by the data structure vs. the plain representation, and the
total execution time to run a given DJQ. We measure elapsed time, and only
consider the time necessary to run the query algorithm. This means that we
ignore time necessary to load the files, as well as time required to sort the points
for the plane-sweep algorithms.

All experiments were executed on an HP ProLiant DL380p Gen8 server with
two 6-core Intel® Xeon® CPU E5-2643 v2 @ 3.50GHz processors with 256GiB
RAM (Registered @1600 MHz), running Oracle Linux Server 7.9 with kernel
Linux 4.14.35 (64bits). Our algorithms were coded in C++ and are publicly
available4. For the k2-tree algorithms, the SDSL-Lite5 library was used.

First, we build the k2-tree for each dataset. We use the simplest variant of
k2-tree with no optimizations.In order to insert the points in the k2-tree, they
are converted to non-negative integer values. Since we are considering worldwide
coordinates in degrees, with 6 decimal places, each coordinate (x, y) is converted
to matrix coordinates (r, c) using (r, c) = ((x+ 180) · 106, (y + 90) · 106). In this
way, the points fit into a binary matrix with 360 million rows and 160 million
columns, that is finally stored as a k2-tree.

Table 2. Space required by k2-tree representations

Dataset Plain (GiB) Binary (GiB) k2-tree (GiB) Compression ratio

LAKES (L) 8.6 2.7 1.8 0.67
PARKS (P) 7.5 2.4 1.6 0.67
ROADS (R) 17 5.3 2.3 0.43

BUILDINGS (B) 14 4.8 2.3 0.48

Table 2 shows the space required by the k2-tree representation of each dataset.
We display as a reference the plain size of the dataset, as well as a “binary size”

4 Available at https://gitlab.lbd.org.es/public-sources/djq/k2tree-djq
5 Available at https://github.com/simongog/sdsl-lite
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estimated considering that each coordinate can be represented using two 32-bit
words. Note that each coordinate component can be stored using 28–29 bits for
our datasets, but this would make data access slower, so we consider 32 bits to
be the minimum cost for a reasonable plane-sweep algorithm that works with
uncompressed data. We also display the compression ratio of the k2-tree relative
to the binary input size. Results show that the k2-tree representation is able
to efficiently represent the collection, and the compression obtained improves
with the size of the dataset. Notice also that the k2-tree version we use in our
experiments does not include any of the existing optimizations for the k2-tree to
improve compression.

We compared the performance of our KCPQ algorithm with 4 different
implementations based on plane-sweep: two implementations of Classic plane-
sweep, with Sliding Strip (PS-CS) and with Sliding Semi-Circle (PS-CC) re-
spectively, and the equivalent implementations of Reverse-Run, with Sliding
Strip (PS-RRS) and Sliding Semi-Circle (PS-RRC). We performed our exper-
iments checking all the pairwise combinations of our datasets. Due to space
constraints, we display only the results for some combinations, denoted LxP,
LxB, PxR, RxB, and PxB. The remaining combinations yielded similar compari-
son results. For each combination of datasets, we run the KCPQ algorithm for
varying K ∈ {1, 10, 102, 103, 104, 105}.
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Fig. 2. Query times for KCPQ in k2-trees and plane-sweep variants, changing K.

Figure 2 displays the query times obtained by our algorithm and the four
variants of plane-sweep studied.The first five plots display the results for all vari-
ants for 5 different dataset combinations. Results clearly show that the Classic
variants (PS-CS and PS-CC) are much slower than the other alternatives in
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all cases (as in [10]). Therefore, we will focus on the comparison between our
proposal and the Reverse-Run variants that are competitive with it.

The point datasets used have a significantly different amount of points, and
correspond to different features, which leads to very different query times among
the plots in Figure 2. However, results show that our algorithm always achieves
the best query times for large values of K. Particularly, for K = 105, our algo-
rithm is between 1.15 and 33 times faster than the best alternative, PS-RRC,
depending on the joined datasets. Additionally, we are always the fastest option
for K ≥ 104, and in some datasets from K = 103. For smaller K, our proposal
is competitive but slightly slower than the Reverse-Run plane-sweep algorithms.
The lower right chart of Figure 2 shows a subset of the results for the PxB join,
to better display the differences in performance for these smaller values of K.
Results are similar in the remaining experiments: for smaller K, the k2-tree algo-
rithm is 3–15% slower than PS-RRC, depending on the dataset. This evolution
with K is due to the characteristics of our algorithm: independently of K, we
need to traverse a relatively large number of regions in both k2-trees, even if
many of these regions are eventually discarded, so the base complexity of our
algorithm is comparable to that of Classic plane-sweep. On the other hand, this
means that many candidate pairs have already been expanded and enqueued,
so they can be immediately processed if more results are needed, making our
algorithm more efficient for larger values of K.

Next, we compare our algorithm for εDJQ with two plane-sweep variants,
Classic plane-sweep with Sliding Strip (εDJQ-CS) and Reverse-Run with Sliding
Semi-Circle (εDJQ-RRC). We select a representative subset of joined datasets,
namely LxP, PxR, RxB and PxB. In order to measure the scalability of the al-
gorithms, we perform tests for varying ε ∈ (7.5, 10, 25, 50, 75, 100)× 10−5 (these
values of ε are associated with the original coordinates in degrees, but recall
that in the k2-tree coordinates are scaled to integer values, so values of ε are
also scaled accordingly).

Figure 3 displays the results obtained for each join query. Our algorithm
based on k2-trees is slower for LxP, but much faster in most cases for PxR,
RxB and PxB (notice the logarithmic scale for query times). We attribute this
difference mainly to the size of the datasets: LxP joins the two smallest datasets,
whereas the remaining configurations involve one or two of the larger datasets.
For these 3 larger joins, our algorithm is always much faster for the smaller values
of ε. In this case, our algorithm does not improve for larger ε, as for KCPQ,
because no early stop condition exists: we must traverse all candidate pairs as
long as their minimum distance is below ε, and for very large ε the added cost
to traverse the k2-trees to expand many individual pairs makes our proposal
slower, even if we are able to efficiently filter out many candidate regions. These
queries with smaller values of ε, in which we are much faster than plane-sweep
algorithms, are precisely the ones that would most benefit from our approach
based on compact data structures, since the number of query results increases
with ε: for ε = 100 × 10−5 we obtain over 109 results, and these results would
become the main component of memory usage. Notice that, in practice, in our
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Fig. 3. Query times for εDJQ in k2-trees and plane-sweep variants, changing ε.

experiments we measure the time to retrieve and count the query results, but do
not store them in RAM to avoid memory issues in some query configurations.

5 Conclusions and Future Work

We have introduced two algorithms to solve DJQs on top of the k2-tree repre-
sentation of point datasets. Our proposal takes advantage of the compression
and indexing capabilities of the k2-tree to efficiently answer KCPQ and εDJQ
queries in competitive time and with significantly lower memory requirements.
Our results show that our algorithms for KCPQ queries are competitive with the
alternatives for small K, but become much faster than plane-sweep algorithms
for larger values of K. Our algorithm for εDJQ also achieves competitive query
times and is especially faster when the join query involves the largest datasets.

As future work, we plan to test the performance of our algorithms with other
variants of the k2-tree, that are able to obtain similar query times but require
much less space [1]. Particularly, our algorithms can be adjusted to work with
hybrid implementations of the k2-tree, that use different values of k, as well as
variants that use statistical compression in the lower levels of the conceptual
tree. Another interesting research line would be the application of these DJQ
algorithms based on k2-tree in Spark-based distributed spatial data management
systems, since they are more sensitive to memory constraints. Finally, we plan
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to explore other DJQ and similar algorithms that may also take advantage of
the compression and query capabilities of k2-trees.
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6. Gutiérrez, G., Sáez, P.: The k closest pairs in spatial databases - when only one
set is indexed. GeoInformatica 17(4), 543–565 (2013)

7. Kim, Y.J., Patel, J.M.: Performance comparison of the R*-tree and the quadtree
for kNN and distance join queries. IEEE Transactions on Knowledge and Data
Engineering 22(7), 1014–1027 (2010)

8. Mamoulis, N.: Spatial Data Management. Synthesis Lectures on Data Manage-
ment, Morgan & Claypool Publishers (2012)

9. Navarro, G.: Compact Data Structures: A Practical Approach. Cambridge Univer-
sity Press, USA (2016)

10. Roumelis, G., Vassilakopoulos, M., Corral, A., Manolopoulos, Y.: A new plane-
sweep algorithm for the k-closest-pairs query. In: SOFSEM. pp. 478–490 (2014)

11. Santolaya, F., Caniupán, M., Gajardo, L., Romero, M., Torres-Avilés, R.: Effi-

cient computation of spatial queries over points stored in k2-tree compact data
structures. Theoretical Computer Science 892, 108–131 (2021)


