
A Compact Representation of Indoor Trajectories∗

Antonio Fariña
Pablo Gutiérrez-Asorey

Susana Ladra
Miguel R. Penabad
Tirso V. Rodeiro

Universidade da Coruña, CITIC, Database Lab. Elviña, 15071. A Coruña, Spain.

March 9, 2024

Abstract

We present a system that combines indoor positioning with a compression algorithm for
trajectories in the context of a nursing home. Our aim is to gather and effectively represent
the location of the residents and caregivers along time, while allowing for efficient access to
those data.

We briefly show the system architecture that enables the automatic tracking of user’s
movements and consequently the gathering of their locations. Then, we present indRep,
our compact representation to handle positioning data using grammar-based compression,
and provide two basic operations that enable pseudo-random access to the data. Finally, we
include experiments that show that indRep is competitive with well-know general-purpose
compressors in terms of compression effectiveness and also provides fast access to the com-
pressed data. We expect both features would enable exploitation functionalities even in
computers with rather low computational resources.

1 The introduction:

The current global pandemic scenario has resulted in a greater need for automatic systems in
various contexts, and particularly in health-care related ones. We have considered the case of
a local nursing home for the elderly as a prime example of this. We address the control of
movements and activities within the facilities, proposing a system to automate the processes of
information gathering, focusing on storing and exploiting said information efficiently.

While it is common for a facility like a nursing home to employ some sort of manually
operated system to track staff activities, such as Helpnex [4], caregivers must use their personal
card on a special reader to manually register the beginning and ending of an activity (e.g.
changing the diapers of a resident). This rudimentary process presents high chances for errors.

To solve this issue, we present an automatic indoor trajectory collector infrastructure. While
this is not new [7], our novel approach uses a grammar-based lossless compact structure, called
indRep, demonstrating promising results, both in storage space and query times. This work
establishes the basis for an automatic system capable of gathering, storing, and exploiting the
positioning information on an indoor context. We will show that our representation effectively
exploits the redundancy in the indoor trajectories, obtaining a large reduction in storage space
with fast access to the data: our proposal is able to retrieve the full trajectory of a person during
a day in just tens of microseconds while using just a small fraction of the space used by the raw
data.

∗Draft submitted for IEEE Pervasive Computing (2022).

1

Note that by providing a compressed representation of the original data, not only we reduce
the space footprint but also enable using higher levels of the memory hierarchy when those data
are accessed. This could lead to performance improvements which would be more noticeable
when a large collection of trajectories can fit into main memory thanks to compression and
therefore the need for disk accesses can be avoided.

In terms of practical applications, all the information collected by our proposal is useful for
assessing the quality of care. For example, determining if a resident is being neglected. Also,
exploiting trajectory data would enable knowing the contacts among people in the residence,
which is of special interest in the current pandemic scenario.

2 RELATED WORK

We explore some relevant representations for trajectories and present RePair, the basis of our
compressed representation.

2.1 Representation of trajectories

State-of-the-art works may be classified into those which aim at indexing objects in space [6] and
those which focus on representing the actual trajectories of each moving object [7]. The former
are fast at obtaining who was in a given area at a given time, the latter are able to retrieve full
trajectories quickly.

Another classification may be the usage of indoor or outdoor trajectories; each have different
necessities, and they differ in both movement modeling and technologies used [6]. One of the
main divergences is that indoor trajectories do not usually use coordinates to represent positions
but a set of labeled cells instead. Each cell is defined as the smallest organizational unit of
indoor space (rooms, corridors, etc.) [5]. This cellular space enables inherent valuable semantic
properties to the tracked routes [7] (e.g. if a resident spends 40 minutes in the dining room we
can assume he/she was having lunch/dinner).

One characteristic all kinds of trajectory-related proposals have in common is the concern
about their high rates of space consumption [11]. Sometimes, mobile objects follow rather regular
movement patterns (e.g. a bus following a given route). Using grammar compression seems a
promising way to deal with the inherent repetitiveness of the trajectories. A recent work [1]
used RePair [9], a well-known grammar-based compressor, to store trajectories from ships while
still supporting spatio-temporal queries efficiently.

2.2 The RePair algorithm

Given a sequence of symbols S, RePair repeatedly replaces repeating pairs of symbols from S
by just one symbol, hence shortening S without losing any information. It operates as follows:

(i) It takes the most frequent pair of symbols αβ within S.
(ii) It replaces αβ by a new symbol A along S and adds a new rule A → α, β to RePair’s

grammar R.
(iii) The previous two steps are repeated recursively until there are no repeated pairs in

S. The final sequence (C), can contain both original symbols (terminals) and new symbols
(non-terminals).

A simple solution to speed up access to the original data is to provide synchronization
between C and S, so that, for some (regular) positions x of S we keep the actual position in C
of the phrase that will permit to retrieve the source symbols from S[x] on.

In addition, other common solution to efficiently process the compressed data is to add extra
information to the grammar rules R. In [1], they compressed the relative movements of objects in
a grid along time with RePair, and used extra information to efficiently compute the aggregated

2

relative movement associated to each rule. In our proposal, we present an enhanced Repair-
based technique that provides pseudo-random access capabilities and also includes additional
information attached to the grammar rules to boost decompression speed.

3 A SYSTEM ARCHITECTURE FOR THE DETECTION OF
TRAJECTORIES

The concern of our project was to develop a system capable of automatically detecting activities
within the nursing home. Since activities in an enclosed space are often related to a time and
place, we track the movements of all caregivers and residents and store them as trajectories.
From these trajectories, we can infer activity information. For example, if a resident is in the
dinning room at the lunch time, we can deduce that he/she is “having lunch.”

We propose a system architecture using Bluetooth Low-Energy (BLE) technology, which
succeeded at indoor positioning detection in different contexts [3, 12]. An Indoor Positioning
System (IPS) governs the system. This is a network composed of different wireless devices for
retrieving the positioning information of individuals. In our case, those devices are the beacons
or transmitters carried by people, and the receivers located in every room. The positioning
information is represented using unique location identifiers associated to the receivers. If a
beacon is detected by more than one receiver, the stored location corresponds to the receiver
that gets the most powerful signal.

Thus, our system obtains the trajectory information for any given person by concatenating
the identifiers of the locations they traversed along time. This trajectory information will be the
sole input for our compact representation, meaning that, as long as we can obtain a sequence of
location identifiers, the specific technologies used to gather them are replaceable.

4 OUR COMPRESSED REPRESENTATION FOR TRAJEC-
TORIES

Assuming that the location for each person is known along regular intervals of time, this section
details how our compressed representation (indRep) to store those trajectories is built. Then,
we also show the main queries we have implemented.

4.1 indRep construction

indRep relies primarily on RePair compression, however, we also improve upon the RePair
capabilities by creating additional structures to both support partial daily-based decompression
and some basic information retrieval capabilities. These structures would additionally speed
up the full decompression process by skipping the need for expanding the non-terminals that
generate a sub-sequence containing only repetitions of a unique symbol (i.e. representing the
same location along several time instants).

We will explore in detail the different steps taken to create these structures. Figure 1 shows
an example and the different components of the proposed representation.

First, people’s locations along d days are gathered and concatenated to generate a unique
sequence S, which is compressed with RePair. Daily boundaries should be considered to avoid
choosing pairs that involve data from two different days. This enables knowing the position in
C associated with the initial location of each person and day.

In practice, the data corresponding to caregivers and residents is handled separately in two
indRep structures. For simplicity, this section focus only on the representation of the residents’
locations, as the construction of the data structure for the caregivers is analogous. In the
example of Figure 1, S is composed of the trajectories of the four residents.

3

 Corridor (2)

Rooms (1)
Dinning room (3)

Kitchen (4)

Garden (5)

n
.a

. (
0)

So
u

rc
e

D
at

a
1 2 3 2 1 1 2 3 2 1 1 2 3 5 1 1 5 3 2 1

Day-1 Day-2 Day-3 Day-4

1 2 5 2 1 1 5 3 4 1

1 5 5 5 1 1 5 1 5 1 1 2 3 5 1

0 5 5 5 0 0 5 5 4 0

1

2

3

1 1 1 1 0 0 1 1

4

S 1 2 3 2 1 1 2 3 2 1 1 2 3 5 1 1 5 3 2 1 1 2 3 2 1 1 5 3 4 1 1 5 5 5 1 1 5 1 5 1 1 2 3 5 1 0 5 5 5 0 0 5 5 4 0

1 2 3 4

1 0 0 1 0 1 1 1DpP

C 11 11 14 12 10 11 12 4 1 19 6 14

R 6→5, 5 7→2, 3 8→1, 7 9→1, 5 10→2, 1 11→8, 10 12→9, 3 13→5, 1 14→8, 13

19 9 0 5 6 0 0 6 4 0

C 11 11 14 12 10 11 12 4 1 9 6 1 9 9 1 14 0 5 6 0 0 6 4 0

1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

DpP

1 2 3 4 6 7 10 13 16 17 21 25D2C

24

1 2 3 4

1 1 1 1 1 0 0 1 0 1 1 1 0 0 1 1

6→5,5 7→2,3 8→1,7 9→1,5 10→2,1 11→8,10 12→9,3 13→5,1 14→8,13R

2 2 3 2 2 5 3 2 5nterm

5 3 3 5 1 1 3 1 1lastLoc

1 0 0 0 0 0 0 0 0allEq

R
e-

p
ai

r
st

ep
Fi

n
al

 S
tr

u
ct

u
re

s

R1 R2 R3 R4 R5 R6 R8R7 R9

C’

-1 -2 -3 -4 -5 -6 -7 -8 -9 -10

 -10 0 6 4 011 011 61419 9 0 51 19 614 12 10 11 12 4 -9-8-7-6-5-4-3-2-1

St
ep

s
1-

2
St

ep
 3

St
ep

s
4-

5

St
ep

 6

St
ep

 74

Figure 1: Structures involved in the creation of the indRep representation for a nursing home
with r = 4 residents and nl = 5 locations. Our example considers the data obtained during four
days (d = 4), using T = 5 time intervals within each day.

The construction of the indRep representation involves the following steps:

Step 1 Time is discretized into fixed-size intervals, such that each day contains T time inter-
vals. Therefore, there are at most d · T time intervals, where d is the number of days tracked.
In the top part of Figure 1 it can be seen how all days are divided into 5 intervals.

Step 2 One location, consisting in a room identifier, is kept for each person at each time
interval. If the location is unknown for some period due to a tracking error or a non-scheduled
temporal absence from the premises, such location is tagged as “n/a.” This is the case of some
of the locations of the resident with the identifier 4 in Figure 1.

This is handled separately from the case where a person is not within the facilities during
a whole day, hence avoiding to represent the corresponding locations. This case is discussed in
Step 3.

Considering we have nl possible locations, an integer identifier li ∈ {1, 2, ..., nl} is assigned
to them. In addition, l0 = 0 is reserved for unknown “n/a” locations. Note than in the example
depicted in Figure 1 we have nl = 5 locations.

Step 3 Assuming r residents, the trajectory belonging to a given resident i (1 ≤ i ≤ r) along
time constitutes a sequence Si that contains T · di values, being di(1 ≤ di ≤ d) the number of
days when resident i stayed within the nursing home. Given that not every resident is present
every day at the nursing home, to keep track of the actual days that a resident was present, a
bitvector DpPi[1..d] (up to d Days-per-Person) is used, where a 1 is set at position DpPi[j] to
indicate resident i was tracked during the j-th day (0 otherwise). There must be di ones set in
DpPi. Note that DpP2[1..4] = ⟨1001⟩ indicates that location data exists for the resident 2 only
during day-1 and day-4.

Step 4 The previous step is repeated for each resident to create a unique sequence S[1..n] by
concatenating the sequences Si (1 ≤ i ≤ r) corresponding to the locations of each resident i.

4

Also, the bitvectors DpPi are concatenated too to create a unique bitvector DpP [1..d · r]. They
are illustrated in the middle-top part of Figure 1.

Let us define N1 =
∑r

i=1 di (i.e. number of ones in DpP). Note that indRep is tracking
T locations per each of the N1 total days with presence of the residents, so the length of S is
n = N1 · T .

Step 5 S is compressed using RePair. In order to facilitate future accesses to the data, we
need to avoid the re-repairing process to create pairs involving data from two consecutive days.
To achieve this, a simple trick consists in adding unique values ui = −1 · i after appending the
T locations corresponding to the i-th day of information (1 ≤ i ≤ N1) that is included into S.

Then, RePair is applied and, afterwards, we remove those unique separators from the com-
pressed sequence C ′. After this step, a final compressed sequence C and a set of rules R are
created. Recall C can contain both original symbols (terminals) from S and non-terminal values
corresponding to the left-hand side of the rules from R.

The RePair process is illustrated in the middle part of Figure 1. Note that since the values
from S range within [0..5], they correspond to terminal symbols in C, and thus non-terminals
become values ≥ 6. In the Figure, the latter appear bold-faced and underlined in both C and
R.

Step 6 Aligned with the N1 ones in DpP , a new structure D2C[1..N1] that stores N1 pointers
to the starting positions within C of each of those daily trajectories is added. This allows for
partial decompression of the information of a single day for any given resident.

Let us assume we want to retrieve the locations of the resident 3 (i = 3) during day-2 (j = 2).
First, we count the number of ones until the position p = (i− 1) · d+ j in DpP . This operation
is called rank1(DpP, p). So rank1(DpP, (3 − 1) · 4 + 2) = 7. We have that D2C[7] = 10, and
therefore day-2 of resident 3 starts at C[10]. Since D2C[8] = 13 points to the starting position of
the next trajectory in C, we know that the searched trajectory is represented between positions
10 and 12 of sequence C. Hence, being C[10..12] = ⟨961⟩, we finally recover locations ⟨15551⟩
by expanding rules R4 : 9 → 1, 5 and R1 : 6 → 5, 5; and finally gathering the terminal value
1 = C[12].

Step 7 Finally, additional data was kept for each rule from R to speed up the expansion of
non-terminal symbols (see bottom-right part of Figure 1), and to skip the processing of some
of these non-terminal symbols when looking for the location at a time instant within a day.
In practice, for each rule Ri : A → X,Y there are three values nterm, lastLoc, and allEq
that respectively indicate the number of terminals A expands into (this can be used to avoid
expanding some non-terminals at decompression time), the last one of those terminals, and
whether all the terminals recovered are either identical.

Looking at Figure 1, note that rule R1 : 6→ 5, 5 expands into only 2 identical terminals ⟨55⟩.
Therefore, we set values nterm[1] = 2, lastLoc[1] = 5, and allEq[1] = 1 (true). However, rule
R6 : 11→ 8,10 recursively expands into 5 terminals ⟨12321⟩, thus nterm[6] = 5, lastLoc[6] = 1,
and allEq[6] = 0 (false).

4.2 Supporting random access and partial decompression

Two low-level operations were implemented for indRep, one (syncC) to access the beginning of
any given day on C that allows for partial decompression, and the other (expand+) to expand
symbols from C. The later operation is boosted with respect to the regular expansion of non-
terminals in the regular RePair by exploiting the information added to the rules.

5

- [l, r] → syncC(user, day): Given a resident and a day when he/she was present, it returns
the starting and ending positions of the slice of C that store the compressed locations for
that user and day. As discussed in Step 6, to solve [l, r] → syncC(user, day) we compute
l→ D2C[rank1(DpP, (user−1)·d+day)] and r → D2C[rank1(DpP, user−1)·d+day+1)]−1.

- str ← expand+(s): Given a symbol s from C it recovers str, that is, the subsequence of
terminals s expands into. If s is a terminal, str ← ⟨s⟩ is returned. If s is a non-terminal, it is
associated with the rule Rj :s→ x, y, being j = s− nl (recall terminals are numbered 0..nl).
Then, eq = allEq[j] has to be checked. If eq = 1, we return ⟨aa . . . a⟩, where a = lastLoc[j]
and the length of str is nterm[j]. Otherwise, we recursively call expand+ on x and y (i.e.
str ← expand+(x) · expand+(y)).

For an example of expand+, assume s is the non-terminal 6. Therefore we have that j is
s − nl, with nl = 5, so j = 1. R1 : 6 → 5, 5. This expands into two identical terminals with
allEq[1] = 1. The execution then returns ⟨55⟩ because nterm = 2 and lastLoc = 5.

Next, we describe a more in-depth example step-by-step. Refer to the dashed arrows at the
bottom of Figure 1 to follow the rules of the grammar involved in the execution.

Suppose s = 14. Since s is a non-terminal, j = s− nl is calculated. In this case j = 9. The
associated rule is R9 : 14→ 8,13 with allEq[9] = 0. Next, expand+ is executed to expand both
the non-terminals 8 and 13.

(i) Now, 8 is a non-terminal associated to the rule R3 : 8 → 1,7 (j = 8 − 5 = 3) with
allEq[3] = 0. It is then necessary to call expand+ again on 1 and 7. Since 1 is a terminal,
the call to expand+(1) returns ⟨1⟩. On the other hand, 7 is again a non-terminal associated
with the rule R2 : 7 → 2, 3 (j = 7 − 5 = 2) with allEq[2] = 0. Subsequent calls to expand+

return ⟨2⟩ ← expand+(2) and ⟨3⟩ ← expand+(3), as both 2 and 3 are terminals. Therefore, we
obtained ⟨123⟩ ← expand+(8).

(ii) Now, we need to expand the symbol 13. Note that 13 is a non-terminal associated with
the rule R8 : 13→ 5, 1 (j = 13− 5 = 8) with allEq[2] = 0. Therefore, expand+ on 5 returns ⟨5⟩
and on 3 ⟨1⟩. Note that once again, the two values are terminals. To sum up, we obtain that
expand+(14) = expand+(8) · expand+(13) = ⟨123451⟩.

Using these low-level operations, it is possible to support other types of higher-level opera-
tions:

- loc→ getLocation(user, day, t): it returns the location of a given user at a particular time
instant t of a day.

- locs → getLocations(user, day, ts, te): It returns all the locations within the time-interval
[ts, te]. This operation is similar to getLocation, yet, instead of simply recovering a single
terminal corresponding to the location at time instant ts, the execution continues from there
on until te − ts + 1 terminals are recovered.

The full procedure to solve getLocation is as follows:
(i) First, we obtain [l, r]→ syncC(user, day). Now C[l..r] is the slice of C corresponding to

day. We set p→ l and offt → 0.
(ii) We need to move p forward until reaching the position containing the target location at

time t. For each step we either either set nt = 1 if C[p] is a terminal, or nt = nterm[C[p]− nl]
otherwise.

(iii) Then, if (nt+ offt < t) we set p→ p+ 1, and offt → offt + nt, otherwise the traversal
stops.

(iv) Now it is necessary to expand (with expand+) the symbol C[p], to gather its k-th
terminal, having k → t− offt .

6

Note that to solve getLocations we would assume t = ts and recover the next te − ts
locations form there on. These two operations greatly benefit from the capability of skipping
steps of the decompression process. For example, let us assume the subsequence ⟨15555552⟩
within the original sequence S, where all the 5s have been compressed into a single non-terminal
X where the extra information corresponding to the rule is: nterm = 6, lastloc = 5, and
allEq = 1. The compressed representation of this subsequence would be ⟨1X2⟩. In this example,
the decompression process would read X and, after checking that it is composed of the same
value repeated six times, it skips all the recursive calls to expand, recovering ⟨555555⟩. The
decompression continue by jumping straight to the next symbol.

5 EXPERIMENTAL DATA AND RESULTS

We present the experiments performed to compare our proposal with other popular compression
techniques.

5.1 Experimental data

As the real installation of Bluetooth devices was delayed because of the pandemic, we used
synthetic data for our experiments. Instead of using existing data generators for indoor trajec-
tories, such as Vita [10], we developed our own generator to create ad-hoc datasets according
to the typical patterns of a nursing home. We focused on creating synthetic trajectory data for
our specific context, using information about the actual schedules, allocated rooms, and space
information of the nursing home we collaborated with for this work.

A total of 198 different locations associated to the receivers in the nursing home were mapped
to a graph where the nodes represent the locations, and the edges link the connected locations.
This graph defines every possible movement and we can use it as base for simulating the posi-
tioning data in the nursing home across any given amount of time.

We considered 34 caregivers and 69 residents, according to the current reality of the nursing
home. For every minute the movements of every person were calculated based on their definition
in a JSON database. Such information considered:

• For the caregivers: their real schedules (considering three work shifts: morning, afternoon,
and night) were used as a template to define their daily duties and work hours.

• For the residents: three profiles were defined: quiet, wanderer, and dependant. These profiles
informed of the tendency for the residents’ movements. Quiet residents tend to favor one
location. Wanderer residents would stay still if they are in a favored location, but have a
tendency to wander aimlessly when in any other. A random-walk algorithm was used to
simulate the wandering. Lastly, dependant residents cannot move on their own and need the
help of a caregiver.

In practice, the raw data being compressed consist of a data file and a headers file. The data
file is a sequence of 32-bit integers, where we only store the locations for those time instants
when each person is inside the facilities. The headers file is a text file where each line represents a
trajectory and has the format {person-id, day, start-time, end-time}. This allows us to establish
the boundaries of the data for each person and day within the first file.

For our experiments, we generated two synthetic datasets using a simulation with 103 people
(with residents being almost permanently in the building and caregivers working 8-hours shifts)
that involved 2,000 days, assuming the locations of our collaborating nursing home where there
are 198 locations. Therefore, the location identifiers included in the generated trajectories are
represented with just one byte; i.e. ⌈log2 198⌉ = 8 bits. Our datasets differ in the repetitiveness
of the data being generated. In the first dataset, low-rep dataset, a day is composed of 1,440 time

7

Table 1: Experimental result of the comparisons

Method

Compression Compression Decompression Retrieval time of Retrieval time of
ratio (%) speed (in MB/s) speed (in MB/s) a day (in µs) 30 locations (in µs)

low-rep high-rep low-rep high-rep low-rep high-rep low-rep high-rep low-rep high-rep
dataset dataset dataset dataset dataset dataset dataset dataset dataset dataset

7zip 6.57 1.85 23.60 46.00 340.98 104.93 – – – –
gzip 8.28 2.21 88.38 145.83 322.44 124.63 – – – –
dictzip 8.67 – 29.80 – 644.85 – 282 – 640 –
LZ-End 24.94 – 2.51 – 5.98 – 257 – 13 –
RePair 12.16 1.91 41.77 36.15 106.92 106.49 – – – –
RePair (SDSL) 7.58 1.26 40.04 35.50 54.60 54.08 – – – –
indRep 14.98 2.40 41.16 34.78 111.93 123.86 49 231 26 27
indRep (SDSL) 8.54 1.44 37.66 33.17 86.81 78.01 65 292 24 26

instants (intervals of 1 minute). Its overall size is 236.4 MB, from which the raw trajectories
occupy 233.3 MB, and the headers file 3.1 MB. The second dataset, high-rep dataset, involves
days of 17,280 time instants (intervals of 5 seconds), hence making the data more repetitive.
The size of the dataset is 2803.1 MB (data file of 2800 MB and headers file of 3.1 MB).

5.2 Experimental results

We ran experiments to measure the compression ratio, compression performance, and decom-
pression speed of indRep both when a whole dataset is decompressed or when we simply retrieve
a 1-day trajectory or just 30 consecutive locations for a given person from a whole dataset.
We compared them with the generic implementation of RePair in order to show the boost in
performance we obtain. Note that both RePair and indRep use internally 32-bit integer arrays
among their components. Using the C++ SDSL library [2], we implemented variants were those
arrays are replaced by bit-wise integer vectors where each integer is encoded with just ⌈log2M⌉
bits, being M the largest value. This saves space, yet leads to a loss of performance, as bit-wise
operations are required to recover the original 32-bit integers.

Given that, to the best of our knowledge, there is no specific trajectory compressor that
permits to handle cellular-based trajectories, we compared our results with those achieved by
some well-known general-purpose compressors that can work over the trajectories of objects
represented as sequences of location identifiers, namely gzip, a linux utility for compression
based on the use of LZ77 [13], as well as P7zip, another linux utility based on LZMA, an
improved version of the LZ77.

One limitation of RePair, gzip, and P7zip is that they do not allow for random decompression,
i.e. recovering a random snippet from the source data (e.g. a 1-day trajectory) requires starting
decompression from the beginning. This is unfair when we compare them with indRep, which
can be seen as an improved version of RePair where we can gather the actual starting location
for each person at any given day within the compressed data. This led us to include in our
comparisons two additional techniques: LZ-end [8], a LZ77-like algorithm that allows for random
decompression, and dictzip, a linux utility that uses the LZ77 algorithm to compress data in 64
KiB blocks and allows for block-wise pseudo-random access to the source data.

Our experiments were run on an Intel(R) Core(TM) i5-9600K with 16 GB of RAM, running
Ubuntu 18.04.4 LTS, and g++ version 7.4.0, using C++17 (-std=c++17). The source code
for all the implementations is available at our git repository (https://gitlab.lbd.org.es/
lbd-open/indrep).

Table 1 details, in columns 2-3, the compression ratios achieved for all the techniques while
considering the two implementations for RePair and indRep. The compression ratio is computed
as the percentage that the compressed representation occupies with respect to the raw data. As
expected, the bit-wise implementations of both RePair and indRep show improved compression
ratios with respect to the the plain implementations. For the low-rep dataset, 7zip achieves

8

https://gitlab.lbd.org.es/lbd-open/indrep
https://gitlab.lbd.org.es/lbd-open/indrep

the best compression ratio, and the generic bit-wise RePair implementation comes right behind
it (around 7.58%), with our bit-wise indRep implementation yielding 8.54%, lagging behind
gzip. Also, our bit-wise solution overcomes dictzip. LZ-End obtains the worst compression ratio
(24.94%).

When using the high-rep dataset, LZ-End and dictzip failed at compression.The other solu-
tions showed a clear improvement in compression ratio, with both the SDSL-enhanced indRep
and RePair overcoming the LZ-based alternatives. This rather expected improvement is due to
both the grammar-based and the LZ-based compressors can exploit the long repetitive subse-
quences that occur in high-rep dataset to gain compression.

Columns 4–7 show the compression and decompression speeds (in Mb/s) measured on both
datasets. LZ-End obtains the worst compression speed (2.51 Mb/s) on the low-rep dataset,
followed by 7zip (11.94 Mb/s) and then by dictzip (16.67 Mb/s). The rest of solutions yield
faster speeds, with the RePair-based techniques (including our indRep) obtaining values around
37–41 Mb/s on the low-rep dataset. Gzip is the fastest compressor on both datasets.

Regarding decompression, on the low-rep dataset dictzip is the fastest technique (282 Mb/s)
and LZ-End is by far the slowest one (5.98 Mb/s). indRep achieves 249.79 Mb/s with its plain
C++ implementation. However, that result drops to 156.05 Mb/s when using the bit-wise
implementation. Both RePair and indRep draw a clear drop in performance when using their
bit-wise SDSL variant. This is because both the C array and the grammar rules are processed
bit-wise each time a expansion of a symbol is performed. In addition, we can see that RePair
performs worse than our proposal because indRep can skip some recursive expansions of non-
terminals during the decompression process.

For both datsets, the compression and decompression speeds are similar for the RePair-based
solution, however, the LZ-based solutions showcase an improvement in compression speed for
the high-rep dataset, but also achieve worse decompression speeds.

Finally, we show the average time required to retrieve the locations of a person within both
a 1-day slice (columns 8-9), and a 30-locations slice (columns 10-11). Only the solutions with
random access to the compressed sequence were compared to indRep when possible. The results
show that indRep is faster than the others when retrieving a slice of the source sequence of
locations. Only LZ-End can beat our implementations when recovering 30-locations slices.

6 CONCLUSIONS AND FUTURE WORK

We have presented the basis for an automatic indoor positioning system for a nursing home
focusing on a novel compact representation of trajectories: indRep.

We based our proposal in RePair, which is known to yield great compression on highly
repetitive data, but also included some enhancements over the regular RePair by annotating the
grammar rules with additional information, as well as using additional data structures. Thanks
to these enhancements, we were able to reduce the number of rule expansions, which boosts
decompression performance, and allows for fast decompression of any given slice of data. This
partial decompression proved faster than the other techniques tested. In summary, we conclude
that our proposal is a good alternative for managing trajectory data. Note that this is not only
about reducing storage space, but also about improving performance when the uncompressed
data does not fit into main memory but the compressed one does.

As future work, we will tackle online compression so that we can append new data without
recompressing the whole data from scratch. A simple solution would be to reuse the grammar
rules and recompress only regularly to avoid loss of compression effectiveness. Yet reorganizing
the internals of indRep to handle data daily-wise rather than person-wise would also help.
Another important future-work task is to feed our solution with data from the actual indoor
positioning system of our collaborating nursing home. This would permit us to validate that
indRep maintains its results when working under real-world conditions.

9

Finally, we are also interested in extending the functionality of our representation to support
detecting contacts among people, which not only is of special interest in the current pandemic
scenario, but also carries the potential to enhance the internal processes of the nursing home
such as polishing caregiver’s schedules, as well as improving the treatment of residents such as
verifying that no resident was untenanted along the day.

7 ACKNOWLEDGMENTS

Partially funded by the CITIC research center funded by Xunta/FEDER-UE 2014-2020 Pro-
gram, grant ED431G 2019/01.

MICIU(PGE/ERDF) [MaGIST: PID2019-105221RB-C41; Datos 4.0: TIN2016-78011-C4-1-
R; STEPS: RTC-2017-5908-7; BIZDEVOPS: RTI2018-098309-B-C32]. MICINN(PGE/ERDF)
[EXTRA-Compact: PID2020-114635RB-I00]. Xunta/GAIN(ERDF) [CEDCOVID: COV20/00604;
GRC: ED431C 2021/53] and by FPI Program [BES-2017-081390].

References

[1] Nieves R. Brisaboa, Adrián Gómez-Brandón, Gonzalo Navarro, and José R. Paramá.
GraCT: A grammar-based compressed index for trajectory data. Inf. Sci., 483:106–135,
2019.

[2] Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. From theory to practice:
Plug and play with succinct data structures. In Proc. of SEA, pages 326–337, 2014.

[3] Jun-Ho Huh and Kyungryong Seo. An indoor location-based control system using bluetooth
beacons for iot systems. Sensors, 17(12):2917, 2017.

[4] Ibernex: Helpnex, 2014 (accessed June, 2020). https://ibernex.es/en/helpnex/.

[5] IndoorGML OGC, 2014 (accessed June, 2021). http://www.indoorgml.net/.

[6] Christian S. Jensen, Hua Lu, and Bin Yang. Indexing the trajectories of moving objects in
symbolic indoor space. In Proc. of SSTD, pages 208–227, 2009.

[7] Alexandros Kontarinis, Karine Zeitouni, Claudia Marinica, Dan Vodislav, and Dimitris
Kotzinos. Towards a semantic indoor trajectory model: application to museum visits.
GeoInformatica, 25(2):311–352, 2021.

[8] S. Kreft and G. Navarro. Lz77-like compression with fast random access. In Proc. of DCC,
pages 239–248, 2010.

[9] N. Jesper Larsson and Alistair Moffat. Offline dictionary-based compression. In Proc. of
DCC, pages 296–305, 1999.

[10] Huan Li, Hua Lu, Xin Chen, Gang Chen, Ke Chen, and Lidan Shou. Vita: a versatile
toolkit for generating indoor mobility data for real-world buildings. Proceedings of the
VLDB Endowment, 9:1453–1456, 09 2016.

[11] Kai-Florian Richter, Falko Schmid, and Patrick Laube. Semantic trajectory compression:
Representing urban movement in a nutshell. J. Spatial Inf. Sci., 4(1):3–30, 2012.

[12] Sebastian Sadowski and Petros Spachos. Rssi-based indoor localization with the internet
of things. IEEE Access, 6:30149–30161, 2018.

[13] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data compression.
IEEE Trans. Inf. Theory, 23(3):337–343, 1977.

10

https://ibernex.es/en/helpnex/
http://www.indoorgml.net/

	The introduction:
	RELATED WORK
	Representation of trajectories
	The RePair algorithm

	A SYSTEM ARCHITECTURE FOR THE DETECTION OF TRAJECTORIES
	OUR COMPRESSED REPRESENTATION FOR TRAJECTORIES
	indRep construction
	Supporting random access and partial decompression

	EXPERIMENTAL DATA AND RESULTS
	Experimental data
	Experimental results

	CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGMENTS

