
Approximate All-Pairs Suffix/Prefix Overlaps

Niko Välimäki1?, Susana Ladra2??, and Veli Mäkinen1? ? ?

1 Department of Computer Science, University of Helsinki, Finland.
{nvalimak,vmakinen}@cs.helsinki.fi

2 Department of Computer Science, University of A Coruña, Spain. sladra@udc.es

Abstract. Finding approximate overlaps is the first phase of many se-
quence assembly methods. Given a set of r strings of total length n and an
error-rate ε, the goal is to find, for all-pairs of strings, their suffix/prefix
matches (overlaps) that are within edit distance k = dε`e, where ` is the
length of the overlap. We propose new solutions for this problem based
on backward backtracking (Lam et al. 2008) and suffix filters (Kärkkäinen
and Na, 2008). Techniques use nHk + o(n log σ) + r log r bits of space,
where Hk is the k-th order entropy and σ the alphabet size. In practice,
methods are easy to parallelize and scale up to millions of DNA reads.

1 Introduction

High-throughput short read sequencing is revolutionizing the way molecular bi-
ology is researched. For example, the routine task of measuring gene expression
by microarrays is now being replaced by a technology called RNA-seq [4, 27];
the transcriptome is shotgun sequenced so that one is left with a set of short
reads (typically e.g. of length 36 basepairs) whose sequence is known but it is
not known from which parts of the genome they were transcribed. The process
is hence reversed by mapping the short reads back to the genome, assuming that
the reference genome sequence is known. Otherwise, one must resort to sequence
assembly methods [24].

The short read mapping problem is essentially identical to an indexed
multiple approximate string matching problem [21] when using a proper dis-
tance/similarity measure capturing the different error types (SNPs, measure-
ment errors, etc.). Recently, many new techniques for short read mapping have
come out building on the Burrows-Wheeler transform (BWT) [1] and on the
FM-index [7] concept. The FM-index provides a way to index a sequence within
space of compressed sequence exploiting BWT. This index provides so-called
backward search principle that enables very fast exact string matching on the
indexed sequence. Lam et al. [13] extended backward search to simulate back-
tracking on suffix tree [28], i.e., to simulate dynamic programming on all relevant
paths of suffix tree; their tool BWT-SW provides an efficient way to do local align-
ment without the heuristics used in many common bioinformatics tools. The
? Funded by the Helsinki Graduate School in Computer Science and Engineering.

?? Funded by MICINN grant TIN2009-14560-C03-02.
? ? ? Funded by the Academy of Finland under grant 119815.



same idea of backward backtracking coupled with search space pruning heuristics
is exploited in the tools tailored for short read mapping: bowtie [14], bwa [16],
SOAP2 [5]. In a recent study [17], an experimental comparison confirmed that the
search space pruning heuristics used in short read mapping software are com-
petitive with the fastest index-based filters — suffix filters [11] by Kärkkäinen
and Na — proposed in the string processing literature.

In this paper, we go one step further in the use of backward backtracking
in short read sequencing. Namely, we show that the technique can also be used
when the reference genome is not known, i.e., as part of overlap-layout-consensus
sequence assembly pipeline [12]. The overlap-phase of the pipeline is to detect
all pairs of sequences (short reads) that have significant approximate overlap.
We show how to combine suffix filters and backward backtracking to obtain a
practical overlap computation method that scales up to millions of DNA reads.

2 Background

A string S = S1,n = s1s2 · · · sn is a sequence of symbols (a.k.a. characters or
letters). Each symbol is an element of an alphabet Σ = {1, 2, . . . , σ}. A substring
of S is written Si,j = sisi+1 . . . sj . A prefix of S is a substring of the form S1,j ,
and a suffix is a substring of the form Si,n. If i > j then Si,j = ε, the empty string
of length |ε| = 0. A text string T = T1,n is a string terminated by the special
symbol tn = $ 6∈ Σ, smaller than any other symbol in Σ. The lexicographical
order “<” among strings is defined in the obvious way. Edit distance ed(T, T ′)
is defined as the minimum number of insertions, deletions and replacements of
symbols to transform string T into T ′ [15]. Hamming distance h(T, T ′) is the
number of mismatching symbols between strings T and T ′.

The methods to be studied are derivatives of the Burrows-Wheeler transform
(BWT) [1]. The transform produces a permutation of T , denoted by T bwt, as
follows: (i) Build the suffix array [19] SA[1, n] of T , that is an array of pointers
to all the suffixes of T in the lexicographic order; (ii) The transformed text is
T bwt = L, where L[i] = T [SA[i]− 1], taking T [0] = T [n]. The BWT is reversible,
that is, given T bwt = L we can obtain T as follows [1]: (a) Compute the array
C[1, σ] storing in C[c] the number of occurrences of characters {$, 1, . . . , c−1} in
the text T ; (b) Define the LF mapping as follows: LF (i) = C[L[i]]+rankL[i](L, i),
where rankc(L, i) is the number of occurrences of character c in the prefix L[1, i];
(c) Reconstruct T backwards as follows: set s = 1, for each n − 1, . . . , 1 do
ti ← L[s] and s← LF [s]. Finally put the end marker tn ← $.

The FM-index [7] is a self-index based on the BWT. It is able to locate the
interval SA[sp, ep] that contains the occurrences of any given pattern P without
having SA stored. The FM-index uses an array C and function rankc(L, i) in
the so-called backward search algorithm, calling the rankc(L, i) function O(|P |)
times. Its pseudocode is given below.

Algorithm Count(P [1 . . . m],L[1 . . . n])
(1) i← m;
(2) sp← 1; ep← n;



(3) while (sp ≤ ep) and (i ≥ 1) do
(4) s← P [i];
(5) sp← C[s] + ranks(L, sp− 1)+1;
(6) ep← C[s] + ranks(L, ep);
(7) i← i− 1;
(8) if (ep < sp) return “not found”

else return “found (ep− sp + 1) occurrences”.

The correctness of the algorithm is easy to see by induction: At each phase i,
the range [sp, ep] gives the maximal interval of SA pointing to suffixes prefixed
by P [i . . . m].

To report the occurrence positions SA[i] for sp ≤ i ≤ ep a common approach
is to sample SA values and then use the LF -mapping to derive the unsampled
values from the sampled ones.

Many variants of the FM-index have been derived that differ mainly in the
way the rankc(L, i)-queries are solved [22]. For example, on small alphabets, it is
possible to achieve nHk + o(n log σ) bits of space, for moderate k, with constant
time support for rankc(L, i) [8]. Here Hk is the standard k-th order entropy, i.e.,
the minimum number of bits to code a symbol once its k-symbol context is seen.
There holds Hk ≤ log σ.

Let us denote by tLF and tSA the time complexities of LF -mapping (i.e.
rankc(L, i) computation) and SA[i] computation, respectively.

3 All-Pairs Suffix/Prefix Matching

Given a set T of r strings T 1, T 2, . . . , T r, of total length n, the exact all-pairs
suffix/prefix matching problem is to find, for each ordered pair T i, T j ∈ T , all
nonzero length suffix/prefix matches (dubbed overlaps). The problem can be
solved in optimal time by building a generalized suffix tree for the input strings:

Theorem 1 ([9, Sect. 7.10]). Given a set T of r strings of total length n, let
r∗ be the number of exact suffix/prefix overlaps longer than a given threshold.
All such overlaps can be found in O(n+ r∗) time and in Θ(n log n) bits of space.

In the sequel, we concentrate on approximate overlaps and more space-
efficient data structures. Instead of generalized suffix trees, the following tech-
niques use a FM-index built on the concatenated sequence of strings in T .
Since all strings T i contain the $-terminator as their last symbol, the resulting
BWT T bwt contains all r terminators in some permuted order. This permuta-
tion is represented with an array D that maps from positions of $s in T bwt to
strings in T . Thus, the string T i corresponding to a terminator T bwt[j] = $ is
i = D[rank$(T bwt, j)]. The array requires d log d bits.

Next subsection introduces a basic backtracking algorithm that can find ap-
proximate overlaps within a fixed distance k. The second subsection describes a
filtering method that is able to find approximate overlaps when the maximum
number of errors depends on length of the overlap.



3.1 Backward Backtracking

The backward search can be extended to backtracking to allow the search for
approximate occurrences of the pattern [13]. To get an idea of this general ap-
proach, let us first concentrate on the k-mismatches problem: The pattern P1,m

approximately matches a substring X1,m of some string T i ∈ T , if there are at
most k indices i such that P [i] 6= X[i] (i.e. Hamming distance h(P,X) ≤ k).
The following pseudocode finds the k-mismatch occurrences, and is analogous
to the schemes used in [14, 16]. The first call to the recursive procedure is
kmismatches(P, T bwt, k,m, 1, n).

Algorithm kmismatches(P, L, k, j, sp, ep)
(1) if (sp > ep) return ;
(2) if (j = 0)
(3) Report SA[sp], . . . , SA[ep]; return ;
(4) for each s ∈ Σ do
(5) sp′ ← C[s] + ranks(L, sp− 1)+1;
(6) ep′ ← C[s] + ranks(L, ep);
(7) if (P [j] 6= s) k′ ← k − 1; else k′ ← k;
(8) if (k′ ≥ 0) kmismatches(P, L, k′, j − 1, sp′, ep′);

The difference between the kmismatches algorithm and exact searching is
that the recursion considers incrementally, from right to left, all different ways
the pattern can be altered with at most k substitutions. Simultaneously, the
recursion maintains the suffix array interval SA[sp . . . ep] where suffixes match
the current modified suffix of the pattern.

To find approximate overlaps of T i having at most k mismatches, we call
kmismatches(T i, T bwt, k, |T i|, 1, n) and modify the algorithm’s output as fol-
lows. Notice that, at each step, the range T bwt[sp . . . ep] contains $-terminators
of all strings prefixed (with at most k mismatches) by the suffix T i

j,m where
m = |T i|. Thus, each of the terminators correspond to one valid overlap of
length j. Terminators and their respective strings T i′ can be enumerated from
the array D in constant time per identifier; the identifiers i′ to output are in the
range D[rank$(T bwt, sp) . . . rank$(T bwt, ep)].

The worst case complexity of backward backtracking is O(|Σ|kmk+1tLF).
There are several recent proposals to prune the search space [14, 16] but none of
them can be directly adapted to this suffix/prefix matching problem.

To find all-pairs approximate overlaps, the k-mismatch algorithm is called
for each string T i ∈ T separately. Thus, we obtain the following result:

Theorem 2. Given a set T of r strings of total length n, and a distance k,
let r∗ be the number of approximate suffix/prefix overlaps longer than a given
threshold and within Hamming distance k. All such approximate overlaps can be
found in O(σk

∑
T∈T |T |k+1tLF + r∗) time and in nHk + o(n log σ) + r log r bits

of space.

From the above theorem, it is straightforward to achieve a space-efficient
and easily parallelizable solution for the exact all-pairs suffix/prefix matching
problem (cf. Theorem 1):



Corollary 1. Given a set T of r strings of total length n, let r∗ be the number
of exact suffix/prefix overlaps longer than a given threshold. All such overlaps
can be found in O(ntLF +r∗) time and in nHk +o(n log σ)+r log r bits of space.3

When k-errors searching (edit distance in place of Hamming distance) is
used instead of k-mismatches, one can apply dynamic programming by building
one column of the standard dynamic programming table [26] on each recursive
step. Search space can be pruned by detecting the situation when the minimum
value in the current column exceeds k. To optimize running time, one can use
Myers’ bit-parallel algorithm [20] with the bit-parallel witnesses technique [10]
that enables the same pruning condition as the standard computation. We omit
the details for brevity.

3.2 Suffix filters

We build on suffix filters [11] and show two different ways to modify the original
idea to be able to search for approximate overlaps. Let us first describe a sim-
plified version of the original idea using an example of approximate matching of
string P with edit distance k.

Suffix filter splits the string to be searched, here P of length m, into k + 1
pieces. More concretely, let string P be partitioned into pieces P = α1α2 · · ·αk+1.
Because the FM-index is searched backwards, it is more convenient to talk about
prefix filters in this context. Now the set of filters to be considered is S =
{α1α2 · · ·αk+1, α1α2 · · ·αk, . . . , α1} as visualized in Fig. 1. To find candidate
occurrences of P within edit distance k, each filter S ∈ S is matched against T
as follows. We use backward backtracking (Sect. 3.1) and match pieces of the
filter S starting from the last one with distance k′ = 0. When the backtracking
advances from one piece to next one (i.e. the preceding piece), the number of
allowed errors k′ is increased by one. Figure 1 gives a concrete example on how
k′ increases. If there is an occurrence of P within distance k, at least one of the
filters will output it as an candidate [11]. In the end, all candidate occurrences
must be validated since the filters may find matches having edit distance larger
than k. However, suffix filters have been shown to be one of the strongest filters
producing quite low number of wrong candidates [11].

Approximate suffix/prefix matches of T i ∈ T can be found as follows. Instead
of a fixed distance k, we are given two parameters: an error-rate ε ≤ 1 and a
minimum overlap threshold t ≥ 1. Now an overlap of length ` is called valid if
it is within edit distance dε`e and ` ≥ t. Again, the string T i is partitioned into

3 Notice that a stronger version of the algorithm in [9, Sect. 7.10] (the one using
doubly-linked stacks) can be modified to find r′ < r2 pairs of strings with maximum
suffix/prefix overlap longer than a given threshold. We can simulate that algorithm
space-efficiently replacing doubly-linked stacks with dynamic compressed bit-vectors
[18] so that time complexity becomes O(n(tSA + log n) + r′) and space complexity
becomes nHk + o(n log σ)+ r log r +n(1+ o(1)). We omit the details, as we focus on
the approximate overlaps. A stronger variant for approximate overlaps is an open
problem.



P

 5 4 3 2 1 0 

 4 3 2 1 0 

 3 2 1 0 

 2 1 0 

 1 0 

 0 

Fig. 1. Prefix filters for a string P that
has been partitioned into even length
pieces. Numbers correspond to maximum
number of errors allowed during backward
search.

 5 4 3 2 1 0 

 4 3 2 1 0 

 3 2 1 0 

 2 1 0 

 1 0 

 0 

T j

p

ℓ

Fig. 2. String T i has an overlap of length
` = 3p with T j . One of the first three
filters is bound to find the overlap during
backward search.

pieces, denoted αi, but now the number of pieces is determined by the threshold
t and error-rate ε. Let k = dεte be the maximum number of errors allowed for
the shortest overlap possible, and for simplicity, let us assume that all pieces are
of even length p (to be defined later). Now the number of pieces is h = d|T i|/pe.

Candidate overlaps are found by searching each prefix filter Si = α1α2 · · ·αi

for 1 ≤ i ≤ h separately: start the backward search from the end of the last
piece αi and match it exactly. Each time a boundary of two pieces is crossed,
the number of allowed errors is increased by one. Now assume that pieces from i
to jth piece have been processed, that is, the current range [sp . . . ep] corresponds
to pieces αjαj+1 · · ·αi. Before the backward search crosses the boundary from
the piece αj to αj−1, we check the range T bwt[sp . . . ep] and output those $-
terminators as candidate overlaps. These candidates are prefixes of strings in T
that may be valid approximate overlaps of length p · (h− j + 1). Only overlaps
whose lengths are multiples of the piece length p can be obtained.

We give two different strategies to find all approximate overlaps, not just
those with length p, 2p, 3p, . . . But first, let us prove that the final set of candi-
dates produced by the above method contains all valid overlaps of length pj for
any j ≥ dt/pe (recall that valid overlaps must be longer than t).

Assume that there is a valid overlap of length ` = pj between T i and some
T j , as displayed in Fig. 2. Prefix filters of T i will locate this occurrence if we
can guarantee that the suffix T i

m−`,m has been partitioned into dε`e + 1 pieces,
where dε`e gives the maximum edit distance for an overlap of length `. Recall
that in our partition the suffix T i

m−`,m was split into pieces of length p. We can

define p as min|T
i|

`=t d
`

dε`e+1e. This guarantees that we have chosen short enough
pieces for our partition, as at least one of the filters Sh, Sh−1, . . . , Sh−j+1 will
output the string T j as a candidate overlap. Figure 2 illustrates this idea. In the



p

p

Fig. 3. Strategy I produces p different
partitions of T i.

p/2

p

Fig. 4. Strategy II produces two different
partitions of T i.

end, all candidate overlaps must be validated since some of the candidates may
not represent a valid approximate overlap.

Strategy I produces p different partitions for T i so that the boundaries (start
position of pieces) cover all indices of T i. For simplicity, assume that m = |T i|
is a multiple of p. The jth partition, 1 ≤ j ≤ p, has boundaries {j, p + j, 2p +
j, . . . , m}. As a result, the very last piece “shrinks” as seen in Fig. 3. Each
partition forms its own set of filters, which are then searched as described above.
It is straightforward to see that filters of the jth partition find all overlaps of
lengths ` ∈ {p − j + 1, 2p − j + 1, 3p − j + 1, . . . ,m − j + 1}. Thus, all overlap
lengths ` ≥ t are covered by searching through all p partitions. Advantage of
this strategy is that during the backward search, we can always match p symbols
(with 0-errors) before we check for candidate matches. The “shrinking” last piece
αh can be shorter than p but it never produces candidates since p ≤ t. Downside
is that the number of different filter sets Si to search for grows to p.

Strategy II produces only two partitions for T i. Again, assume that m = |T i|
is a multiple of p. Now the two partitions have the boundaries {1, p + 1, 2p +
1, . . . ,m} and {dp/2e, p + dp/2e, 2p + dp/2e, . . . ,m}, as visualized in Fig. 4. To
acquire candidates for all overlap lengths ` ≥ t, we modify the backtracking
search as follows: instead of outputting candidates only at the boundaries, we
start to output candidates after dp/2e symbols of each piece has been matched.
More precisely, assume we are matching symbol at position i′ in some αi. If
i′ ≤ p−dp/2e,we output all $-terminators from range T bwt[sp . . . ep] as candidate
overlaps. Then the first partition outputs candidates for overlap lengths ` ∈
[dp/2e, p]

⋃
[p + dp/2e, 2p]

⋃
· · · and the second partition for lengths ` ∈ [p +

1, p + dp/2e]
⋃

[2p + 1, 2p + dp/2e]
⋃
· · · Since dp/2e ≤ t, these filters together

cover all overlap lengths ` ≥ t. Obvious advantage of this strategy is that only two
sets of filters must be searched. However, the number of candidates produced is
generally higher than in strategy I. If p is really small, the number of candidates
found after dp/2e symbols grows substantially.

Unfortunately, prefix filters cannot guarantee any worst-case time complexi-
ties. We conclude with the following theorem:



Table 1. Experiments with k-mismatches. Time is reported as average time (s) per
read. Strategy II produces exactly the same overlaps as strategy I.

Method t k ε Time (s) Max. ` Avg. ` Std.dev. `

Backtracking 20 2 – 0.005 506 33.9 24.0
20 4 – 0.277 506 27.4 16.4
20 6 – ≈ 8 full result not computed

Strategy I 20 – 5% 0.365 524 42.1 34.5
20 – 10% 0.753 1040 46.5 38.1
40 – 2.5% 0.212 506 74.8 45.6
40 – 5% 0.213 524 76.7 45.7
40 – 10% 0.553 1040 78.8 46.4

Strategy II 20 – 5% 0.140 524 42.1 34.5
20 – 10% 0.990 1040 46.5 38.1
40 – 2.5% 0.029 506 74.8 45.6
40 – 5% 0.053 524 76.7 45.7
40 – 10% 0.341 1040 78.8 46.4

Table 2. Experiments with k-errors. Time is reported as average time (s) per read.
Strategy II produces exactly the same overlaps as strategy I.

Method t k ε Time (s) Max. ` Avg. ` Std.dev. `

Backtracking 40 2 – 0.031 535 77.2 49.4
40 4 – ≈ 6 full result not computed

Strategy I 40 – 2.5% 1.196 561 116.1 80.9
40 – 5% 1.960 1010 121.4 82.2
40 – 10% ≈ 6 1040 123.9 80.5

Strategy II 40 – 2.5% 0.072 561 116.1 80.9
40 – 5% 0.179 1010 121.4 82.2
40 – 10% 1.730 1040 123.9 80.5

Theorem 3. Given a set T of r strings of total length n, a minimum overlap
threshold t ≥ 1 and an error-rate ε, all approximate overlaps within edit distance
dε`e, where ` is the length of the overlap, can be found using prefix filters and in
nHk + o(n log σ) + r log r bits of space.

4 Experiments

We implemented the different techniques described in Sect. 3 on top of succinct
data structures from the libcds library4. The implementation supports both the
k-mismatches and k-errors (i.e. edit distance) models. Edit distance computation
is done using bit-parallel dynamic programming [20]. Overlaps can be searched
by using either the backtracking algorithm (for fixed k) or suffix filters (for error-
rate ε). The experiments were run on Intel Xeon E5440 and 32 GB of memory.

4 http://code.google.com/p/libcds/



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1  2  3  4  5

T
im

e 
pe

r 
re

ad
 (

s)

Number of sequences (in millions)

5% - edit distance - strategy II
5% - mismatch - strategy II
2 - mismatch - backtracking

Fig. 5. Average time per read when the number of sequences increases from 1 to 5
million. The average times for ε = 5% (both edit distance and mismatches) were
measured using strategy II with minimum overlap length t = 40. All averages were
measured by matching 10 000 reads against each set.

The algorithms were tested on sets of DNA sequences produced by a 454 Se-
quencing System [2]. All of the DNA was sequenced from one individual Melitaea
cinxia (a butterfly). Since the 454 system is known to produce sequencing errors
in long homopolymers (runs of single nucleotide) [6], all homopolymers longer
than 5 were truncated. The full set contained 5 million reads of total length
1.7 GB. The average read length was 355.1 with a standard deviation of 144.2.
Smaller sets of 4, 3, 2, and 1 million reads were produced by cutting down the
full set. Majority of these experiments were run using the smallest set of one
million reads to allow extensive coverage of different parameters in feasible time.

Our implementation of the suffix filters uses extra n log σ + O(d log u
d ) bits

(plain sequences plus a delta-encoded bit-vector in main memory) to be able to
check candidate matches more efficiently. In practice, the total size of the index
for the sets of 5 and 1 million reads was 2.8 GB and 445 MB, respectively. A
minimum overlap length t ∈ {20, 40} was used to limit the output size. Further-
more, results were post-processed to contain only the longest overlaps for each
ordered string pair.

Table 1 summarizes our results on k-mismatch overlaps for the set of one
million reads. As expected, backtracking slows down exponentially and does not
scale up to high values of k. The parameter k = 4 corresponds approximately
to 0.7% ≤ ε ≤ 20%. Strategy I is faster than strategy II when the piece length
gets small (ε = 10% and t = 20). On all other parameters, however, it is more
efficient to check the candidates produced by the two filters in strategy II, than
to search through all partitions in strategy I. Notice that strategy II (ε = 5% and
t = 40) is only about 10 times slower than k = 2 but produces a significantly
bigger quantity of long overlaps (cf. Fig. 6). Against k = 4, strategy II is on



 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0  100  200  300  400  500

N
um

be
r 

of
 o

ve
rla

ps

Overlap length

10% - edit distance
5% - edit distance

10% - mismatch
4 - mismatch
2 - mismatch

Fig. 6. Graph of overlap lengths for different error-rates ε and k-mismatches over a
set of one million reads. The mismatch curves ε = 10% and k = 4 cross each other at
overlap lengths ` where k = dε`e. The y-axis is logarithmic.

par regarding time (when t = 40) and produces longer overlaps. Table 2 gives
numbers for similar tests in the k-errors model.

In our third experiment, we measured the average time as a function of the
number of sequences. Figure 5 gives the average times per read for backtracking
with 2-mismatch and suffix filters with ε = 5% and t = 40. The suffix filters,
for both edit distance and mismatch, slow down by a factor of ≈ 3.5 between
the smallest and largest set. The backtracking algorithm slows down only by a
factor of ≈ 1.5.

The graph in Fig. 6 displays the frequencies of overlap lengths computed with
the different k and ε parameters. Notice that increasing k from 2 to 4 mismatches
mainly increases the number of short overlaps. Overlaps computed using error-
rate give a much gentle distribution of overlaps, since they naturally allow less
errors for shorter overlaps. Furthermore, at overlap lengths 100–400, the 10%-
mismatch search finds about 5 times more overlaps than methods with fixed k.
When searching with 10%-edit distance, there are more than a hundred times
more overlaps of length 300 compared to the 2-mismatch search. This suggests
that insertions and deletions (especially at homopolymers) are frequent in the
dataset.



5 Discussion

Currently, many state-of-the-art sequence assemblers for short read sequences
(e.g. [23, 29, 3]) use de Bruijn graph alike structures that are based on the q-
grams shared by the reads. It will be interesting to see whether starting instead
from the overlap graph (resulting from the approximate overlaps studied in this
paper), and applying the novel techniques used in the de Bruijn appoaches, yields
a competitive assembly result. Such pipeline is currently under implementation
[25].

Acknowledgments

We wish to thank Richard Durbin, Jared T. Simpson, Esko Ukkonen and Leena
Salmela for insightful discussions, and Jouni Sirén for implementing the bit-
parallel techniques.

DNA sequences were provided by The Metapopulation Research Group/The
Glanville Fritillary Butterfly Genome and Population Genomics Project: Rainer
Lehtonen5, Petri Auvinen6, Liisa Holm7, Mikko Frilander8, Ilkka Hanski5,
funded by ERC (232826) and the Academy of Finland (133132).

References

1. M. Burrows and D. Wheeler. A block sorting lossless data compression algorithm.
Technical Report Technical Report 124, Digital Equipment Corporation, 1994.

2. Roche Company. 454 life sciences. http://www.454.com/.

3. J. T. Simpson et al. Abyss: A parallel assembler for short read sequence data.
Genome Res., 19:1117–1123, 2009.

4. R. D. Morin et al. Profiling the hela s3 transcriptome using randomly primed cdna
and massively parallel short-read sequencing. BioTechniques, 45(1):81–94, 2008.

5. R. Li et al. Soap2. Bioinformatics, 25(15):1966–1967, 2009.

6. T. Wicker et al. 454 sequencing put to the test using the complex genome of barley.
BMC Genomics, 7(1):275, 2006.

7. P. Ferragina and G. Manzini. Indexing compressed texts. Journal of the ACM,
52(4):552–581, 2005.

8. P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Compressed representa-
tions of sequences and full-text indexes. ACM Transactions on Algorithms (TALG),
3(2):article 20, 2007.

5 Metapopulation Research Group, Department of Biological and Environmental Sci-
ences, University of Helsinki

6 DNA Sequencing and Genomics Laboratory, Institute of Biotechnology, University
of Helsinki

7 Institute of Biotechnology and Department of Biological and Environmental Sci-
ences, University of Helsinki

8 Institute of Biotechnology and Metapopulation Research Group, University of
Helsinki



9. D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press, 1997.

10. H. Hyyrö and G. Navarro. Bit-parallel witnesses and their applications to approx-
imate string matching. Algorithmica, 41(3):203–231, 2005.

11. J. Kärkkäinen and J. C. Na. Faster filters for approximate string matching. In
Proc. ALENEX’07, pages 84–90. SIAM, 2007.

12. J. D. Kececioglu and E. W. Myers. Combinatorial algorithms for dna sequence
assembly. Algorithmica, 13:7–51, 1995.

13. T. W. Lam, W. K. Sung, S. L. Tam, C. K. Wong, and S. M. Yiu. Compressed
indexing and local alignment of dna. Bioinformatics, 24(6):791–797, 2008.

14. B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg. Ultrafast and memory-
efficient alignment of short dna sequences to the human genome. Genome Biology,
10(3):R25, 2009.

15. V. I. Levenshtein. Binary codes capable of correcting deletions, insertions and
reversals. Soviet Physics Doklady, 10(8):707–710, 1966.

16. H. Li and R. Durbin. Fast and accurate short read alignment with burrows-wheeler
transform. Bioinformatics, 2009. Advance access.

17. V. Mäkinen, N. Välimäki, A. Laaksonen, and R. Katainen. Unifying view of back-
ward backtracking in short read mapping. In Tapio Elomaa, Heikki Mannila, Pekka
Orponen editors, LNCS Festschrifts. Springer, 2010. To appear.

18. Veli Mäkinen and Gonzalo Navarro. Dynamic entropy-compressed sequences and
full-text indexes. ACM Transactions on Algorithms, 4(3), 2008.

19. U. Manber and G. Myers. Suffix arrays: a new method for on-line string searches.
SIAM Journal on Computing, 22(5):935–948, 1993.

20. G. Myers. A fast bit-vector algorithm for approximate string matching based on
dynamic programming. J. ACM, 46(3):395–415, 1999.

21. G. Navarro. A guided tour to approximate string matching. ACM Comput. Surveys,
33(1):31–88, 2001.

22. G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM Computing
Surveys, 39(1):article 2, 2007.

23. P. Pevzner, H. Tang, and M. Waterman. An eulerian path approach to dna frag-
ment assembly. Proc. Natl. Acad. Sci., 98(17):9748–9753, 2001.

24. M. Pop and S. L. Salzberg. Bioinformatics challenges of new sequencing technology.
Trends Genet., 24:142–49, 2008.

25. L. Salmela. Personal communication, 2010.
26. P. Sellers. The theory and computation of evolutionary distances: Pattern recog-

nition. Journal of Algorithms, 1(4):359–373, 1980.
27. Z. Wang, M. Gerstein, and M. Snyder. Rna-seq: a revolutionary tool for transcrip-

tomics. Nature Reviews Genetics, 10(1):57–63, 2009.
28. P. Weiner. Linear pattern matching algorithm. In Proc. 14th Annual IEEE Sym-

posium on Switching and Automata Theory, pages 1–11, 1973.
29. D. R. Zerbino and E. Birney. Velvet: algorithms for de novo short read assembly

using de bruijn graphs. Genome Research, 18(5):821–829, May 2008.


