
Chase of recursive queries⋆

Nieves R. Brisaboa, Antonio Fariña, Miguel R. Luaces, and José R. Paramá

Laboratorio de Bases de Datos. Dept. de Computación. Univ. Da Coruña. Campus de
Elviña s/n, 15071 A Coruña. Spain. Tf. +34 981167000. Fax. +34 981167160

brisaboa@udc.es, fari@udc.es, luaces@udc.es, parama@udc.es

Abstract. In this work, we present a semantic query optimization
technique to improve the efficiency of the evaluation of a subset of
SQL:1999 recursive queries.
Using datalog notation, we can state our main contribution as an
algorithm that builds a program P ′ equivalent to a given program P ,
when both are applied over a database d satisfying a set of functional
dependencies. The input program P is a linear recursive datalog program.
The new program P ′ has less different variables and, sometimes, less
atoms in rules, thus it is cheaper to evaluate. Using coral, P ′ is
empirically shown to be more efficient than the original program.

Keywords: Recursive queries, Semantic Query Optimization.

1 Introduction

Although research in recursive queries has been carried out for the last three
decades, the appearance of the SQL:1999 reaffirmed the necessity of research in
this area, given that SQL:1999 includes queries with linear recursion. Previous
standards of SQL did not include recursion, thus research in recursive query
optimization might be able to provide the suitable algorithms, to be included
in the query optimizers of the database management systems to speed up the
execution of recursive queries.

Although our results are focused on the development of algorithms to
be included in commercial object-relational database management systems,
we use datalog syntax since it is easier to manipulate. The class of datalog
programs considered in this paper can be translated into SQL:1999 queries
straightforwardly.

Example 1. Let us suppose that we have a database with the following relations:
stretch(Number, From, To), meaning that a flight with code Number has a
stretch from the airport From to the airport To; assig(Number,Employee)
meaning that a certain Employee is assigned to the flight Number.

⋆ This work is partially supported by Grants TIC2003-06593 and TIN2006-15071-C03-
03 of Ministerio de Educación y Ciencia and PGIDIT05SIN10502PR of Xunta de
Galicia.

Let us consider the query that computes the relation conn(Number, From,
To, First Officer, Purser), meaning that flight Number connects the airport From
with the airport To, possibly using several stopovers. In addition, conn has the
information of the First Officer and the Purser of the flight. conn is the transitive
closure of each flight code with some additional information about the flight crew.

P : r0 : conn(N, F, T, O, P) : −stretch(N, F, T), assig(N, O), assig(N, P)
r1 : conn(N, F, T, O, P) : −stretch(N, F, Z), assig(N, O), assig(N, P), conn(N, Z, T, O, P)

⊓⊔

P is linear, which means it has only one recursive atom in the body of the
recursive rule. Linear programs include most real life recursive queries, then
much research effort has been devoted to this class of programs (see [17] for a
survey of optimization techniques for this class of programs).

In addition, P is a single recursive program (sirup). This implies that it has
only one recursive rule. Sirups is another class of programs considered by several
researchers (see [6, 8, 1] for example).

The combination of both features (like in our example), is called linear single
recursive programs (lsirup). These programs are the programs considered in this
work, and they were also studied by several works (see [18, 10, 8] for example).

An interesting approach to optimize a recursive query is to see if we can
transform the query, somehow, to make the recursion “smaller” and “cheaper” to
evaluate. One possibility to do that is the semantic query optimization that uses
integrity constraints associated with databases in order to improve the efficiency
of the query evaluation [5]. In our case, we use functional dependencies (fds) to
optimize linear recursive datalog programs.

In this paper we provide an algorithm to optimize single recursive
datalog programs under fds. The chase of datalog programs (ChaseF (P)) is a
modification of an algorithm introduced by Lakshmanan and Hernández [8].
It obtains from a linear single recursive program P a program P ′, equivalent
to P when both are evaluated over databases that satisfy a set of functional
dependencies F .

The chase of a datalog program P obtains an equivalent program P ′, where
the recursive rule may has smaller number of different variables and, less number
of atoms. That is, it obtains a program where the variables (in the recursive rule)
are equated among them due to the effect of fds. Moreover, those equalizations
of variables, sometimes reveal that an unbounded datalog program P is in fact
(due to the fds) a bounded datalog program.

Example 2. Considering the program of Example 1, let us suppose that our
company decides that the first officer should act as purser as well. This imposes
a constraint specifying that one flight code only has one employee assigned, that
is assig : {1} → {2}. The set of functional dependencies F indicates that the
values of the first argument determine the values in the second position in the set
of facts over the predicate assig. For example, the atoms assiged(ib405, peter)
and assig(ib405,mary) violate the fd assig : {1} → {2}.

Using the algorithm of the chase of datalog programs shown in this paper, it
is possible to compute the new program ChaseF (P) that we call, for short, P ′:

s0 : conn(N, F, T, O, O) : −stretch(N, F, T), assig(N, O)
s1 : conn(N, F, T, O, O) : −stretch(N, F, Z), assig(N, O), conn(N, Z, T, O, O)

There are two combined beneficial effects. First, there are 6 different variables
in r0, but only 5 in s0. Second, the number of predicates in the bodies of the rules
also decreases: 3 and 4 in r0 and r1, respectively, but only 2 and 3 respectively
in s0 and s1.

The reader can observe that in this case P ′ is very similar to the original
program, the only difference is that some variables have been equalized. This
equalization comes from the fact that the database fulfills the functional
dependency assig : {1} → {2}. Therefore, if during the evaluation of the query,
an atom, let say assig(N,O), is mapped to the ground fact assig(IB405, peter),
then another atom assig(N,P) should be mapped to the same ground fact.
Observe that assig(N,O) and assig(N,P) have the same variable in the first
position, thus by assig : {1} → {2}, O and P are necessarily mapped to the
same ground term. ⊓⊔

2 Related Work

Several strategies have been proposed to tackle the process of recursive queries.
Bancilhon, Maier, Sagiv and Ullman [3] introduced a technique called magic-
sets for rewriting linear queries taking advantage of binds between nodes in rule
goal trees. There is a family of papers that try to reduce the work done by a
query execution by remembering previous executions of queries that can have
intermediate values useful for the current execution. These techniques are called
memoing (see [4] for a survey).

Since in practice the great majority of recursions are linear, this class of
queries has attracted much work. From a logic programming perspective, several
works deal with the placement of the recursive atom in the body of the rules.
“Right-linear” and “left-linear” give better performance in linear recursion than
magic-sets [11].

The chase as a tool to optimize queries in the framework of datalog is
also used by several researchers. Lakshmanan and Hernández [8] introduced an
algorithm called the chase of datalog programs which is based in the use of the
chase [9, 2]. Recent data models have also adopted the chase to optimize queries.
In the semistructured model, it has been also used as a rewriting technique
for optimizing queries [7]. Popa et. al. [14] used it to optimize queries in the
framework of the object/relational model.

3 Definitions

3.1 Basic Concepts

We assume the notation and definitions of [16] and then we only define the non-
standard concepts. We use EDB(P) to refer to the set of EDB predicate names
in a datalog program P . We denote variables in datalog programs by capital

letters, while we use lower case letters to denote predicate names. For simplicity,
we do not allow constants in the programs. Let ai be a atom, ai[n] is the term
in the nth position of ai.

We say that a program P defines a predicate p, if p is the only IDB predicate
name in the program. A single recursive rule program (sirup) [6] is a program
that consists of exactly one recursive rule and several non-recursive rules and
the program defines a predicate p. A 2-sirup is a sirup that contains only one
non-recursive rule (and one recursive rule).

A rule is linear if there is at most one IDB atom in its body. A linear sirup
(lsirup) [18] is a sirup such that its rules are linear. A 2-lsirup [18] is a 2-sirup
such that its rules are linear. That is, a 2 − lsirup is a program defining a
predicate p with one non-recursive rule and one recursive rule, which has only
one IDB atom in its body.

Example 3. The program of Example 1 is a 2-lsirup. ⊓⊔

For the sake of simplicity, many of the definitions will apply to 2 − lsirups
although the algorithm presented in this paper is valid for lsirups as well. In
addition, from now on, we denote with r0 the non-recursive rule in a 2− lsirup,
and r1 to denote the recursive rule.

Let P be a program, let r be a rule and let d be a database. Then, P (d)
represents the output of P when its input is d and r(d) represents the output
of r when its input is d. Let F be a set of functional dependencies, SAT (F)
represents the set of databases that satisfies F .

Let P1 and P2 be programs. P1 ⊆SAT (F) P2, if P1(d) ⊆ P2(d) for all EDBs d
in SAT (F). P1 ≡SAT (F) P2, if P1 ⊆SAT (F) P2 and P2 ⊆SAT (F) P1.

A substitution is a finite set of pairs of the form Xi/ti where Xi is a variable
and ti is a term, which is either a variable or a constant, and Xi and ti are
different. The result of applying a substitution, say θ, to an atom A, denoted
by θ(A), is the atom A with each occurrence of X replaced by t for every pair
X/t in θ. For example, consider θ = {X/a, Y/b} and the atom p(X,Y), then
θ(p(X,Y)) is p(a, b). A substitution θ can be applied to a set of atoms, to a rule
or to a tree to get another set of atoms, rule or tree with each occurrence X
replaced by t for every X/t in θ.

4 Expansion Trees

An expansion tree is a description for the derivation of a set of (intensional)
facts by the application of one or more rules to an extensional database. First,
we start with the definition of a tree generated by only one rule. Let r be the
rule q :− q1, q2, . . . , qk. Then, a tree T can be built from r as follows: the node
at the root of T is q, and q has k children, qi, 1 ≤ i ≤ k. We denote this tree as
tree(r).

Example 4. Using the program of Example 1, Figure 1 shows tree(r1).

conn(N, F, T, O, P)

aaa

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f

stretch(N, F, Z) assig(N, O) assig(N, P) conn(N, Z, T, O, P)

Fig. 1. tree(r1).
⊓⊔

In order to be a complete expansion tree, that is, an expansion tree describing
the complete execution of a program, the tree should start with the application
of a non-recursive rule.

Let S and T be two trees. Then, S and T are isomorphic, if there are two
substitutions θ and α such that S = θ(T) and T = α(S).

The variables appearing in the root of a tree T are called the distinguished
variables of T . All other variables appearing in atoms of T that are different
from the distinguished variables of T are called non-distinguished variables of T .

Let S and T be two trees, where ht denotes the head (the node at the root)
of T . Assume that exactly one of the leaves of S is an IDB atom1, denoted
by ps. The expansion (composition) of S with T , denoted by S ◦ T is defined
if there is a substitution θ, from the variables in ht to those in ps, such that
θ(ht) = ps. Then, S ◦ T is obtained as follows: build a new tree, isomorphic to
T , say T ′, such that T ′ and T have the same distinguished variables, but all
the non-distinguished variables of T ′ are different from all of those in S. Then,
substitute the atom ps in the last level of S by the tree θ(T ′).

From now on, we use the expression tree(rj ◦ ri) to denote tree(rj) ◦ tree(ri)
and, tree(rk

j) to denote the composition of tree(rj) with itself, k times. Given a

2−lsirup P = {r0, r1}, Ti denotes the tree tree(ri
1◦r0). Ti is a complete expansion

tree since it describes the derivation of a set of IDB facts from an extensional
database. Obviously, since P is a recursive program, we may construct infinitely
many trees considering successive applications of the recursive rule. We call
trees(P) the infinite ordered collection of trees {T0, T1, T2, T3, . . .}.

Example 5. Using the program of Example 1, Figure 2 shows T2.

From now on, we shall consider only complete expansion trees. For the sake
of simplicity we shall refer to expansion trees simply as trees.

Let T be a tree. The level of an atom in T is defined as follows: the root of
T is at level 0, the level of an atom n of T is one plus the level of its parent.
Level j of T is the set of atoms of T with level j. The last level of a tree Ti is
the level i + 1. We say that two levels i and k (in a tree Tj) are separated by w
levels if |i − k| = w and i ≤ j + 1 and k ≤ j + 1.

1 That is, the case of the trees generated by lsirups, since in the recursive rule of such
programs, there is only one IDB predicate.

conn(N, F, T, O, P)

aaa

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f

stretch(N, F, Z) assig(N, O) assig(N, P) conn(N, Z, T, O, P)

aaa

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f

stretch(N, F, Z′) assig(N, O) assig(N, P) conn(N, Z′, T, O, P)

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f

stretch(N, Z′, T) assig(N, O) assig(N, P)

Fig. 2. The tree T2 using the program of Example 1.

4.1 TopMost and frontier of a tree

TopMost and frontier of a tree are two rules that can be extracted from any
tree. Let T be a tree: the frontier of T (also known as resultant), denoted by
frontier(T), is the rule h :− l1, . . . , ln, where h is the root of T and l1, . . . , ln
is the set of leaves of T ; the topMost of T , denoted by topMost(T), returns the
rule h :− c1, . . . , cn, where h is the root of T and c1, . . . , cn is the set of atoms
that are the children of the root.

Example 6. Using the tree of Figure 2:

frontier(T2): conn(N, F, T, O, P):- stretch(N, F, Z), assig(N, O), assig(N, P)
stretch(N, F, Z′), assig(N, O), assig(N, P) stretch(N, Z′, T), assig(N, O), assig(N, P)

topMost(T2) :conn(N, F, T, O, P) :- stretch(N, F, Z), assig(N, O), assig(N, P), conn(N, Z, T, O, P)
⊓⊔

Observe that the frontier of a tree in trees(P) is a non-recursive rule, while
the topMost may be a recursive one. Let P be a 2 − lsirup, d an extensional
database and T a tree in trees(P). T (d) represents the result of applying the
rules used to build T to the input extensional database d in the order specified
by T . That is, T (d) can be seen or computed as frontier(T)(d)2. Let T and Q be
two trees, T ≡SAT (F) Q means that T (d) = Q(d) for any extensional database
d in SAT (F).

5 Chase of a tree

The chase [9, 2] is a general technique that is defined as a nondeterministic
procedure based on the successive application of dependencies (or generalized
dependencies) to a set of tuples (that can be generalized to atoms).

Let us consider the following: Let F be a set of fds defined over EDB(P),
for some program P . Let Ti be a tree in trees(P). Let f = p : {n} → {m} be a
fd in F . Let q1 and q2 be two atoms in the leaves of Ti such that the predicate

2 Observe that if T is in trees(P), the body of the frontier of a tree only contains EDB
atoms.

name of q1 and q2 is p, q1[n] = q2[n] and q1[m] 6= q2[m]. Note that n can be a set
of positions. In addition, observe that q1[m] and q2[m] are variables since we are
assuming that programs do not contain constants. An application of the fd f to
Ti is the uniform replacement in Ti of q1[m] by q2[m] or vice versa. By uniform,
we mean that q1[m] is replaced by q2[m] (or vice versa) all along the tree.

5.1 Partial Chase of a tree

The partial chase of T with respect to F , denoted by ChasePF (T), is obtained
by applying every fd in F to the atoms that are the leaves of T except the atoms
in the last level, until no more changes can be made. Observe that although the
atoms which are taken into account for the computation of the chase do not
include the atoms in the last level, if a variable is renamed by the chase, such
change is applied all along the tree.

Example 7. Let F be e : {1} → {2}:
T ChasePF (T)

e(X, Y, Y) e(X, Z, Z)

e(X, X, Z)

p(X, X, Z)

!
!

!
!

!

a
a

a
a

p(X, Y, Z)

e(X, Y, Y) e(X, Y, Y)

e(X, X, Y)

p(X, X, Y)

!
!

!
!

!

a
a

a
a

p(X, Y, Y)

⊓⊔

Lemma 1. Let P be a 2 − lsirup, let F be a set of fds over EDB(P). There
is a tree Tk such that for any tree Tl with l > k, topMost(ChasePF (Tl)) is
isomorphic to topMost(ChasePF (Tk)).

Proof Note that for all i, x such that i > x > 0, Ti includes all the atoms of Ti−x

that are considered by the partial chase, then any equalization in ChasePF (Ti−x)
is also included in ChasePF (Ti). Therefore, there is a limit in the equalizations
produced in the topMost given that all trees in trees(P) with more than two
levels have the same topMost, and this topMost has a finite number of variables.

⊓⊔
The inclusion of the last level of the tree introduces equalizations that are

more difficult to model. Lemma 1 would not be true is such a case. We explored
this possibility in [13].

Lemma 2. Let P be a 2-lsirup. Let Ti be a tree in trees(P), and let F be a set
of fds over EDB(P). Then, Ti ≡SAT (F) ChasePF (Ti).

The proof can be done readily, we do not include it by lack of space.

6 The Chase of datalog Programs

In [12], there is a method to find Tk, the tree such that for any tree Tl with
l > k, topMost(ChasePF (Tl)) is isomorphic to topMost(ChasePF (Tk)). The
basic idea is sketched below.

Let us consider a tree Ti in trees(P) and two atoms qj,k and ql,m of Ti.
qj,k is in the kth position (numbering the atoms of its level from left to right)
of level j. Similarly, ql,m is in the mth position of level l. Now, let us suppose
that the variables qj,k[n] and ql,m[n] are equalized by the ChasePF (Ti). Then
in Ti+1, qj+1,k[n] is equalized to ql+1,m[n] during the ChasePF (Ti+1). When we
find a tree, say Tp, that for any equalization during its partial chase, say qj,k[n]
equalized to ql,m[n], in ChasePF (Tp−r), where 1 ≤ r ≤ 2N , qj−r,k[n] is equalized
to ql−r,m[n], then we have found Tk. Now the question is to find N .

6.1 The computation of N

To compute N we need to provide a previous tool.
Let P be a 2 − lsirup. Let ph and pb be the IDB atoms in the head and in

the body of r1, the recursive rule of P . The Expansion Graph of a program P is
generated with this algorithm.

1. If the arity of the IDB predicate in P is k, add k nodes named 1, . . . , k.
2. Add one arc from the node n to the node m, if a variable X is placed in the

position n of ph, and X is placed in the position m of pb.
3. Add one arc from the node n without target node, if a variable X is placed

in the position n of ph, and it does not appear in pb.
4. Add one arc without source node and target node m, if a variable X is placed

in the position m of pb and it does not appear in ph.

Example 8. Let P = {r0, r1} where r1 contains the following IDB atoms:

p(A, B, C, D, E, F, G, H, I, J, K, L, M) : − . . . p(B, A, E, C, D, F, W, G, G, X, J, L, L)

In Figure 3, we can see the expansion graph of P . ⊓⊔

1 2 3
3

4

5

6

7 8

9

10 11

12

13

Fig. 3. Expansion Graph of P

Let G be the expansion graph of a lsirup P , then N is the least common
multiple of the number of nodes in each path in G.

Example 9. The graph in Figure 3 has N= 6 (6= least common multiplier of 2,
3, 1, 2, 2, 2).

6.2 The algorithm

Assuming that we have found Tk, the chase of a 2 − lsirup P w.r.t. a set of fds
F is obtained with the algorithm shown in Figure 4.

Chase (P: a 2 − lsirup, F: a set of functional dependencies over EDB(P))
For any tree Ti with i < k such that

topMost(ChasePF (Tk)) is not isomorphic to topMost(ChasePF (Ti))
Output frontier(ChasePF (Ti));

Output topMost(ChasePF (Tk));

Fig. 4. Chase of a datalog program.

Our algorithm is based in Lakshmanan and Hernández’ algorithm [8], but our
algorithm obtains better results. This improvement comes from the terminating
condition. Their algorithm stops when it finds two consecutive trees with the
same topMost after the partial chase. However, it is clear that after two
consecutive trees with the same topMost after the partial chase, there would
be bigger trees that may introduce more equalizations in the topMost after the
partial chase. Our algorithm stops in a tree Tk such that it is sure that any
bigger tree than Tk would not introduce any other equalization in the topMost
after the partial chase. Hence, our algorithm introduces more equalities in the
recursive rule of the new program.

Theorem 1. Let P be a 2 − lsirup, let F be a set of fds over EDB(P).
The ChaseF (P) is equivalent to P when both are evaluated over databases in
SAT (F).

Proof In order to prove this theorem, we have to prove that P ′ ⊆SAT (F) P and
P ⊆SAT (F) P ′.

We start with the proof of P ′ ⊆SAT (F) P . Let NR be the set of non-recursive
rules in P ′, and let R be the set of recursive rules in P ′. Let s be a rule in NR,
by the algorithm in Figure 4, s = frontier(ChasePF (Ti)) for some tree Ti in
trees(P). Then, by Lemma 2, {s} ⊆SAT (F) ri

1 ◦ r0, and thus {s} ⊆SAT (F) P .
Let r be a rule in R. Therefore, r = θ(topMost(Tj)), where θ is the substitution
defined by ChasePF (Tj) and Tj is a tree in trees(P). Since r is a recursive rule
and P only has one recursive rule, then j > 0 and topMost(Tj) = r1. Therefore,
by construction, using the algorithm of the Chase of datalog programs, r = θ(r1),
and hence r ⊆ r1. Thus, we have shown that for any rule r in P ′, {r} ⊆SAT (F) P .

Now, we tackle the other direction of the proof; P ⊆SAT (F) P ′. We are going
to prove that any fact q produced by P , when P is applied to an extensional
database d in SAT (F), is also produced by P ′, when P ′ is applied to d.

Let us assume that q is in Ti(d), that is, q is obtained after the application
to d of r0 once, and i times r1. We are going to prove that q is in P ′(d). We

prove it by induction on the number of levels of the tree Ti (in trees(P)) that if
q is in Ti(d), then q is in P ′(d).

Basis i=0, q is in T0(d). Then q is in P ′(d). Observe that P ′ always
contains frontier(ChasePF (T0)), since the topMostF (ChasePF (T0)) cannot be
isomorphic to the topMost of the partial chase of any other tree in trees(P) since
r0 is the only non-recursive rule of P . Then, necessarily the algorithm always
outputs frontier(ChasePF (T0)). Therefore, by Lemma 2, if q is in T0(d) then q
is in ChasePF (T0)(d), and then q is in P ′.

Induction hypothesis (IH): Let assume that ∀q ∈ Ti(d), 1 ≤ i < k, q ∈ P ′(d).

Induction step: i=j=k. q is in Tj(d). Assume q is not in any Tm(d), 0 ≤ m < j,
otherwise the proof follows by the IH. Thus, there is a substitution θ such that
q is θ(pj), where pj is the root of Tj and where θ(tl) ∈ d for all the leaves tl of
Tj . Therefore, q is also in {frontier(Tj)}(d).

We have two cases: Case 1: frontier(ChasePF (Tj)) is one of the non-
recursive rules of P ′. Then by Lemma 2 q is in P ′(d).

Case 2: frontier(ChasePF (Tj)) is not one of the non-recursive rules of P ′.
Thus, by Lemma 2 q ∈ {ChasePF (Tj)}(d) (assuming that d ∈ SAT (F)). Let γ
be the substitution defined by the ChasePF (Tj).

Let Tsub be the subtree of Tj that is rooted in the node at the first level
of Tj that is, the recursive atom at that level. Tsub has one level less than Tj ,
therefore Tsub is isomorphic to Tj−1. Observe that this follows from the fact that
in P there is only one recursive rule and one non-recursive rule.

Let qsub be an atom in Tsub(d), since Tsub is isomorphic to Tj−1, then
qsub is in Tj−1(d). Hence, by IH qsub ∈ P ′(d). It is easy to see that q ∈
{topMost(ChasePF (Tj))}(d

⋃
qsub), that is, q ∈ {γ(r1)}(d

⋃
qsub).

By construction of P ′, in P ′ there is a rule st = θ(r1), where θ is the
substitution defined by the partial chase of Tk. By Lemma 1 and construction
of the algorithm in Figure 4, γ ≡ θ, otherwise frontier(ChasePF (Tj)) would be
one of the non-recursive rules in P ′.

We have already shown that qsub is a fact in P ′(d). Therefore, since st(d∪qsub)
obtains q, thus we have proven that if q is in Tj(d) then q is also in P ′(d). ⊓⊔

7 Empirical results

We used coral [15], a deductive database, in order to compare the running time
of the original program versus the optimized one. We ran 20 different programs
over databases of different sizes. The datalog programs were synthetic queries
developed by us. coral is an experimental system, this is a limitation, since the
maximum database size is restricted, because coral loads all tuples in memory
and then, if the database has a certain size, an overflow arises.

The computation time needed to obtain the optimized datalog program, using
a program in C++ in a 200-MHz Pentium II with 48 Mbytes of RAM, takes on
average 0.17 seconds with a varianza of 0.019. This is a insignificant amount of
time when the database to which it is applied the query has a normal size.

The average running time of the optimized program is the 43.95% of that
of the original one with a varianza of 0.10. The confidence interval of this
improvement, with a confidence level of 95%, is [28.82%, 59.10%]. That is, the
optimized program is between 1.7 and 3.5 times faster than the original one.

8 Conclusions and Future Work

Given a lsirup P and a set of fds F , we provide an algorithm that obtains a new
program P ′ equivalent to P when both are applied over databases in SAT (F). In
addition, we have shown that the algorithm is correct. The algorithm shown in
this paper is based in the partial chase, that does not consider atoms in the last
level of the chased trees. As a future work, it would very interesting the inclusion
of the last level in the computation of the chase. In that case, the chase would
introduce more equalities in the alternative optimized program.

References

1. S. Abiteboul. Boundedness is undecidable for datalog programs with a single
recursive rule. Information Processing Letters, (32):282–287, 1989.

2. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison Wesley,
1995.

3. F. Bancilhon, D. Maier, Y. Sagiv, and J. D. Ullman. Magic sets and other strange
ways to implement logic programs. In Proceedings of the Fifth ACM SIGACT-

SIGMOD Symposium on Principles of Database Systems, pages 1–16, Cambridge,
Massachusetts, 24–26 Mar. 1986.

4. F. Bancilhon and R. Ramakrishnan. An amateur’s introduction to recursive query
processing strategies. In Proceedings of ACM SIGMOD International Conference

on Management of Data, Washington, DC, pages 16–52. ACM, May 1986.
5. U. S. Chakravarthy, J. Grant, and J. Minker. Foundations of semantic query

optimization for deductive databases. In J. Minker, editor, Foundations of

Deductive Databases and Logic Programming, pages 243–273. Morgan Kauffmann
Publishers, 1988.

6. S. S. Cosmadakis and P. C. Kanellakis. Parallel evaluation of recursive rule queries.
In Proc. Fifth ACM SIGACT-SIGMOD Symposium on Principle of Database

Systems, pages 280–293, 1986.
7. A. Deutsch and V. Tannen. Reformulation of XML queries and constraints. In

ICDT, pages 225–241, 2003.
8. L. V. S. Lakshmanan and H. J. Hernández. Structural query optimization -

a uniform framework for semantic query optimization in deductive databases.
In Proc. Tenth ACM SIGACT-SIGMOD-SIGART Symposium on Principle of

Database Systems, pages 102–114, 1991.
9. D. Maier. The Theory of Relational Databases. Computer Science Press, 1983.

10. J. Naughton. Data independent recursion in deductive databases. In Proc. Fifth

ACM SIGACT-SIGMOD Symposium on Principle of Database Systems, pages 267–
279, 1986.

11. J. F. Naughton, R. Ramakrishnan, Y. Sagiv, and J. D. Ullman. Efficient evaluation
of right-, left-, and multi-linear rules. ACM SIGMOD RECORD, 18(2), June
1989. Also published in/as: 19 ACM SIGMOD Conf. on the Management of Data,
(Portland OR), May.-Jun.1989.

12. J. R. Paramá. Chase of Datalog Programs and its Application to Solve the

Functional Dependencies Implication Problem. PhD thesis, Universidade Da
Coruña, Departmento de Computación, A Coruña, España, 2001.

13. J. R. Paramá, N. R. Brisaboa, M. R. Penabad, and A. S. Places. A semantic
approach to optimize linear datalog programs. Acta Informatica. In press.

14. L. Popa, A. Deutsch, A. Sahuguet, and V. Tannen. A chase too far. In SIGMOD,
pages 273–284, 2000.

15. R. Ramakrishnan, P. Bothner, D. Srivastava, and S. Sudarshan. Coral: A databases
programming language. Technical Report TR-CS-90-14, Kansas State University,
Department of Computing and Information Sciences, 1990.

16. J. D. Ullman. Principles of Database And Knowledge-Base Systems, volume 1.
Computer Science Press, 1988.

17. J. D. Ullman. Principles of Database And Knowledge-Base Systems, volume 2.
Computer Science Press, 1989.

18. M. Y. Vardi. Decidability and undecidability results for boundedness of linear
recursive queries. In Proc. Seventh ACM SIGACT-SIGMOD Symposium on

Principle of Database Systems, pages 341–351, 1988.

