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Vicenç Torra∗ and Susana Ladra∗∗
∗ IIIA-CSIC, Campus UAB, E-08193 Bellaterra, Catalonia, Spain

E-mail vtorra@iiia.csic.es
∗∗ Database Laboratory, University of A Coruña,

Campus de Elviña, 15071 A Coruña (Galicia, Spain)

Abstract

Data protection mechanisms need to find a trade-
off between information loss and disclosure risk. To
this end, information loss and disclosure risk measures
have been developed.

Due to the fact that when data is published it is usual
to ignore which kind of analyses a user will pursue with
the data, generic information loss measures are used
to analyse the impact of the perturbation method onto
the data. Such generic information loss measures are
defined in terms of a few general-enough statistics.

Nevertheless, a more fine-grained analysis is needed
for particular data uses.

In this paper we provide the reader with a review
of a few results on cluster-specific information loss
measures. More specifically, we consider the case of
using fuzzy clustering to the perturbated data.

1. Introduction

Data protection mechanisms [4], [24] modify an
original data set with the goal of ensuring the privacy
of the respondents. That is, they do changes to the data
to ensure that sensitive information cannot be inferred
from the modified data. Nevertheless, in practical ap-
plications a complete protection cannot be achieved
unless the changes to the data are so large that the
modified data is useless for real analyses.

Due to this, in real applications, a trade-off is sought
between the protection and the data utility. That is,
good protection mechanisms are the ones that ensure
a reasonable level of privacy while permitting, at the
same time, the user to perform almost correct analyses
and inferences from the data.

To measure the goodness of the methods, two fam-
ilies of measures have been studied [5]. They are the
disclosure risk and the information loss measures.

Disclosure risk measures [5] are to determine to
what extent a protected file ensures privacy. In short,
the measure is proportional to the amount of relevant
information that can be inferred from the protected
data. One of the approaches to define risk is using
record linkage algorithms. Formally, a subset of the
original data (the one that is assumed an intruder might
have) is linked against the protected data (the one that
will be published). In this case, when all the records
of the original data are linked with the corresponding
records in the protected file, we have zero protection.
In contrast, when no record can be linked, we have
total protection. In general, the proportion of correct
links corresponds to a measure of the risk. It has to
be said that other approaches exist for measuring the
risk, as computing the uniqueness of the records.

Information loss measures are to determine to what
extent the perturbated data is useful for doing the same
analyses and inferences that a user would like to carry
out with the original data.

When defining information loss measures, an im-
portant aspect to be taken into account is the intended
use of the data by the user. Nevertheless, such use
is usually not known. In fact, the use might be rather
diverse for a single file, as sometimes data is published
in the web and different users will apply different
techniques and analyses. Due to this, some generic
information loss measures have been developed. They
are measures for a non specific use. They are defined as
the divergence of a few statistics between the original
data file and the protected data file. The probabilistic
information loss measure [13] is an example of such
measures. See [3], [5], [25] for details on such mea-
sures.

Nevertheless, although such generic measures play
an important role, real analyses and inferences are
based on the application of particular methods, and the
behavior of such methods might diverge in a relevant
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way from what is stated by such generic measures.
Due to this, it is important to develop analyses of the
influence of the protection methods on particular tools
for data analysis.

In this paper we study this problem, focusing on
the case of clustering, and, more particularly, on fuzzy
clustering. That is, we consider the analysis of how
protection mechanisms influence the results of cluster-
ing. This problem can be formulated in terms of spe-
cific information loss measures and, more specifically,
on cluster-specific information loss measures. That is,
measures that evaluate the extent to which the results
of clustering are influenced by the changes introduced
in the data.

The structure of the paper is as follows. In Section 2,
we review fuzzy clustering. Then, in Section 3, we
consider the definition of cluster-specific information
loss. Finally, the paper finishes with some conclusions
and lines for future research.

2. Preliminaries

In this section we review a few topics that are needed
later on. In particular, we review fuzzy partitions and
fuzzy clustering algorithms.

2.1. Fuzzy sets and fuzzy partitions

We review here the concept of fuzzy partitions as
fuzzy clustering algorithms give, as a result, a fuzzy
partition.

Definition 1: Let X be a reference set. Then μ :
X → [0, 1] is a membership function.

Definition 2: Let X be a reference set. Then, a set
of membership functions M = {μ1, . . . , μm} is a
fuzzy partition of X if for all x ∈ X it holds

m∑
i=1

μi(x) = 1

2.2. Fuzzy clustering

Typically, clustering methods are to partition a set of
data into disjoint sets. In the case of fuzzy clustering,
a fuzzy partition is built instead of a crisp one. In
this paper we will mainly focus on Fuzzy c-means,
although other algorithms for fuzzy clustering will also
be considered. See e.g. [7], [14], [16] for details on
fuzzy clustering. Fuzzy c-means, that was first pro-
posed in [1], is described in most books on fuzzy sets
and fuzzy clustering. See, e.g., the above mentioned
references.

Algorithm 1 Fuzzy c-means
Step 1: Generate initial μ and V

Step 2: Solve minμ∈MJ(μ, V ) computing:

μik =
( c∑

j=1

( ||xk − vi||
2

||xk − vj ||2

) 1

m−1

)−1

Step 3: Solve minV J(μ, V ) computing:

vi =

∑n

k=1
(μik)mxk∑n

k=1
(μik)m

Step 4: If the solution does not converge, go to step
2; otherwise, stop

We describe below Fuzzy c-means. In the descrip-
tion we will use the following notation. We have a set
of objects X = {x1, . . . , xn} and we want to build
c clusters from this data. Then, the method builds a
fuzzy partition of X . The fuzzy partition (the clusters)
are represented by membership functions μik, where
μik is the membership of the kth object (xk) to the ith
cluster.

Fuzzy c-means needs an additional value m that
should satisfy m ≥ 1. When m is near to 1, solutions
tend to be crisp (with the particular case that m = 1
corresponds to the crisp c-means, or k-means). In
contrast, when m is large, solutions tend to be clusters
with large fuzziness in their boundaries.

Formally, fuzzy c-means constructs the fuzzy parti-
tion μ from X solving the minimization problem stated
below. In the formulation of the problem, vi is used
to represent the cluster center, or centroid, of the i-th
cluster.

JFCM (μ, V ) = {

c∑
i=1

n∑
k=1

(μik)m||xk − vi||
2} (1)

subject to the constraints μik ∈ [0, 1] and
∑c

i=1
μik =

1 for all k.
A (local) optimal solution of this problem is ob-

tained using an iterative process that interleaves two
steps. One that estimates the optimal membership
functions of elements to clusters (when centroids are
fixed) and another that estimates the centroids for each
cluster (when membership functions are fixed). This
iterative process is described in Algorithm 1.

Noise clustering (NC), possibilistic c-means (PCM)
and fuzzy possibilistic c-means are some of the varia-
tions of fuzzy c-means. We have used them on our
analyses. Noise clustering was introduced in [2] to
reduce the effects of noisy data. To do so, the method
introduces a special noise cluster. Possibilistic c-means
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also includes some noise clusters but in this case
there is a noise cluster for each regular cluster. This
method was introduced in [9]. Fuzzy possibilistic c-
means is a variation of PCM, introduced in [17], to
avoid coincident clusters and to make the final clusters
less sensitive to initializations.

3. Information loss measures for clustering

Given an original file X and the corresponding
protected file X ′, information loss measures are based
on the comparison of the results of a few statistics (or
data analyses) on both X and X ′. For example, we
can compare the mean of X and X ′ for the different
variables in the files. Then, the larger is the difference,
the larger the information loss.

Similar approaches can be applied to any other data
analysis tool. This is also the case for clustering. Let
us consider a given clustering algorithm clust with
parameters par, and let denote its application to the
data file X by clustpar(X). Then, we can define the
information loss of clustpar applied to the data file
X and its protected data file X ′ as the divergence or
distance between clustpar(X) and clustpar(X

′). That
is,

IL(X, X ′) = distance(clustpar(X), clustpar(X
′)).

Naturally, the larger the divergence, the larger the loss.
In the case of partitive crisp clustering (that is, a

method that returns a partition of the objects), there
are a few tools for comparing the clusters (see e.g. [8],
[18]). To name a few, there exist the Rand [19] and
the Adjusted Rand index, the Jaccard index, and the
Mántaras distance [12]. We can define the loss as
proportional to the distance, or inversely proportional
to the above mentioned indices.

3.1. Comparison of fuzzy clusters

Nevertheless, there is no such variety of methods
for comparing fuzzy clusters. In the rest of this section
we describe a few approaches we have introduced for
tackling this problem.

A first approach [10] was to consider the transfor-
mation of the fuzzy partition into crisp sets applying
α-cuts. Recall that the α-cut of a fuzzy set for a given
α ∈ [0, 1] is a standard subset (the set of elements
with a membership function larger than α). However,
this approach presents a problem as an α-cut of a
fuzzy partition does need to be a partition. Therefore,
we cannot apply directly the indices and distances for
fuzzy partitions. Therefore, we need to apply an adhoc
approach. In our experiments we used three α-cuts

FCM NC PCM PFCM PIL
0.1 0.0037 0.0030 0.0036 0.0029 4.1310
0.2 0.0084 0.0049 0.0072 0.0063 6.4298
0.4 0.0153 0.0092 0.0136 0.0192 9.2348
0.6 0.0209 0.0141 0.0197 0.0188 12.6145
0.8 0.0310 0.0165 0.0261 0.0270 16.6538
1.0 0.0229 0.0322 0.0318 0.0245 18.5534
1.2 0.0943 0.0796 0.0393 0.0840 24.5021
1.4 0.0314 0.0257 0.0414 0.0560 28.6009
1.6 0.0356 0.0448 0.0491 0.0603 33.7005
1.8 0.0969 0.0735 0.0585 0.0934 35.6461
2.0 0.1622 0.0367 0.0737 0.0654 37.5090

0.7679 0.7403 0.9780 0.8923 1.0000

Table 1. (a) Columns 2-5 give the α-cut based
distance computed for several files (protected with
noise addition with different values of noise, first
column) when the clustering algorithm selected is
one of the fuzzy clustering methods; (b) the last
column includes the averaged probabilistic
information loss measure (aPIL); (c) last row

corresponds to the correlation of the
cluster-specific measures with respect to the

aPIL.

(with α1 = 0.9, α2 = 0.5 and α1 = 0.1) and then we
used the distance between the resulting crisp clusters.

Table 1 presents the results of such distances com-
puted on the results of different fuzzy clustering al-
gorithms for a data file with 1080 records and 13
variables. Each row corresponds to a different level
of protection (protection using noise addition with a
parameter p = 0.1, 0.2, . . . , 2.0 – the first col-
umn indicates the degree of protection). The data file
(named census), which is public and is described in
detail in [26], has been used by several researchers in
several experiments [5], [25]. The Table also includes
the correlation of such measures with respect to the
average PIL [13], a generic information loss.

Later on, in order to overcome the difficulties of the
previous approach and, at the same time, avoiding the
transformation from a fuzzy partition to a set of crisps
sets, we proposed two different distances for fuzzy
partitions. This result, presented in [21], permitted to
analyse two fuzzy clustering methods: fuzzy c-means
and fuzzy c-means with tolerance [6].

The two distances proposed were based, respec-
tively, on the cluster centers and the membership
functions. We define them below.

• Distance based on cluster centers. The distance
is solely based on the cluster representatives of
each cluster. That is, their centroids. First, a
mapping between the clusters is obtained so that
the clusters of each clustering result are aligned
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(the nearest cluster center is assigned in the
alignment). Then, the Euclidean distance between
a center and its associated one is computed. The
overall distance is the summation of the distances
between the pairs of clusters. We will denote this
distance by d1.

• Distance based on membership functions. The
distance is based on the membership functions.
The computation uses the mapping established
before, and then computes for each record, the
distance between its membership values to the
clusters obtained for the original file and the
membership values to the clusters obtained for
the protected file. We will denote this distance by
d2.

The range of the two distances are rather different.
The maximum values we have obtained for d1 and
d2 after all our experiments using different clustering
algorithms, parameterizations and noisy data, we have
got a maximum of 130 for d1 and 5500 for d2.

The application of these distances to real data
presents an additional problem. Clustering algorithms
ensure convergence to a local optima, but not to a
global one. Due to this, different executions of the
method might result into different clusters.

Local convergence of clustering algorithms is not a
big problem in some applications of unsupervised ma-
chine learning. The different fuzzy partitions obtained
in different executions can represent different knowl-
edge, and might correspond to different points of view.
Nevertheless, in our case, when we are interested in
measuring the information loss, this is a big problem.

Note that due to the local optima, different execu-
tions of the same algorithm with the same data might
result into different clusters. Therefore, we might have
that clustpar(X) �= clustpar(X) for different execu-
tions of clust with parameter par on the same data
set X . Moreover, we might have that the difference
between clustpar(X) and clustpar(X

′) is very large
not because X and X ′ are different but because we
are just in rather different local optima.

In [21], for each data file X , each cluster algorithm
clust and each parameterization par, we have consid-
ered several executions of clustpar(X) computing for
each of them its objective function. Then, we have se-
lected the fuzzy partition with the lowest membership
function. Such fuzzy partition is the one used latter for
comparison.

Up to 20 executions have been done in [21] for
each < X, clust, p >. Nevertheless, we still got
several local optima as we got a few results with
clustpar(X) �= clustpar(X

′) when X ′ = X + noise

with noise = 0.

d1 d2 O.F.

0.0 3.21 40.73 2826.0
0.1 3.21 40.67 2827.0
0.2 3.17 40.86 2829.0
0.4 0.32 0.92 2859.0
0.6 3.28 42.09 2844.0
0.8 3.48 43.48 2862.0
1.0 3.55 48.87 2886.0
1.2 2.24 55.56 2908.0
1.4 1.44 18.35 2935.0
1.6 2.27 36.83 2978.0
1.8 2.71 45.59 3006.0
2.0 4.24 96.87 3028.0

0.0125 0.4073

Table 2. Distances d1 and d2 between the
clusters originated from the original and the
protected file for different values of noise and

using the fuzzy c-means (FCM) as the clustering
algorithm. Executions with the number of clusters
set to 10 (i.e., c = 10). The values achieved for the
objective function are also included for each
protected file (last columne). The optimal value
found for the original file was 2851. The last row
corresponds to the correlation with aPIL.

Table 2 shows the results of the distance between
the original file and the protected one when data is
clustered using fuzzy c-means on the whole file (all
13 variables) and the number of clusters is 10 (i.e.,
c = 10). The two distances defined above d1 and d2 are
used. Nevertheless, the results show that the distance
is not monotonic with respect to the noise added. This
is due to the different local minima found.

In Table 3 we present similar results, but in this
case only 2 of the variables are considered in the
clustering. As in this case we get a better convergence,
we have monotonicity of the distance with respect
to the noise. Two cases are presented, one with the
number of clusters equal to 10 (i.e., c = 10) and the
other with the number of clusters equal to 20 (i.e.,
c = 20).

4. Conclusions and future work

In this paper we have studied cluster-specific infor-
mation loss measures. We have reviewed a few ap-
proaches for computing the differences between clus-
ters and we have shown the difficulties such methods
pose. In particular, we have explained that fuzzy clus-
tering algorithms converge into an optimum that might
be a local optimum. This causes some inconveniences
when comparing the results of the same clustering
algorithm on both the original and the protected file.
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c = 10 c = 20

d1 d2 O.F. d1 d2 O.F.

0.0 5E-9 1E-15 225.26 2.86 208.90 107.19
0.1 0.10 0.92 225.67 3.03 157.10 107.20
0.2 0.08 1.74 225.02 0.69 13.46 107.21
0.4 0.21 8.45 224.63 1.80 113.00 106.97
0.6 0.49 25.27 225.45 2.15 73.73 106.67
0.8 3.16 217.38 224.85 3.22 214.29 108.47
1.0 1.29 73.13 226.53 2.80 224.25 108.66
1.2 3.80 252.37 225.21 3.96 259.46 109.11
1.4 0.66 80.99 227.00 4.45 318.17 109.61
1.6 3.13 257.35 228.43 2.92 337.55 112.14
1.8 3.20 315.55 230.97 5.11 454.07 111.77
2.0 3.25 313.78 231.82 5.31 510.52 110.00

0.78 0.87 0.75 0.85

Table 3. Distances d1 and d2 between the clusters
originated from the original and the protected file
for different values of noise and using the fuzzy
c-means (FCM) as the clustering algorithm; and
values for the objective function (O.F.). Results
correspond to the best result after 20 executions.
Clustering was based on the first 2 variables of
the file and 10 clusters (left) and 20 clusters

(right). The optimal value found for the original file
was 225.26 for the case of 10 clusters (left) and
107.06 for the case of 20 clusters (right). The last
row corresponds to the correlation with aPIL.

To solve the difficulties presented here, we have
considered the use of intuitionistic fuzzy sets for
expressing the results of the execution of fuzzy clus-
tering. Intuitionistic fuzzy sets are used when there is
some uncertainty on the membership function.

Formally, this uncertainty is represented with a pair
of functions μ and ν. μ corresponds to the membership
function and ν permits to express the uncertainty.

Then, using intuitionistic fuzzy sets, we might con-
sider the definition of an intuitionistic fuzzy partition,
that permits us to summarize the 20 fuzzy partitions
obtained from the 20 executions of the fuzzy clustering
algorithms. Initial steps on the definition of intuition-
istic fuzzy partitions have been presented in [22].

As a future work, we need to check whether the
approach presented in [22] is suitable for our purposes
here. That is, if it is suitable to define cluster-specific
information loss measures. At present, only formal and
theoretical results on the suitability of the approach
have been obtained. We have proven [22] the conver-
gence of our definition to a fuzzy partition when the
number of executions is large. Convergence results can
be proven for a few fuzzy clustering methods. E.g.,
fuzzy c-means and fuzzy c-means with entropy [15].
Finally, as future work, we have to evaluate the cluster-
specific information loss for some families of protec-

tion methods.

Acknowledgments

Partial support by the Spanish MEC (projects ARES
– CONSOLIDER INGENIO 2010 CSD2007-00004 –
and eAEGIS – TSI2007-65406-C03-02) is acknowl-
edged.

References

[1] Bezdek, J. C. (1981) Pattern Recognition with Fuzzy
Objective Function Algorithms, Plenum Press, New
York, 1981.
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