Compressed-gram Indexing for Highly Repetitive
Biological Sequences

Francisco Claude Antonio Farifia Miguel A. Martinez-Prieto Gonzalo Navarro
University of Waterloo University of A Corufla University of Valladolid University of Chile
fclaude@cs.uwaterloo.ca fari@udc.es migumar2@infor.uva.es gnavarro@dcc.uchile.cl

Abstract—The study of compressed storage schemes for highly ~ On the other hand, recent research [10] has shown that the
repetitive sequence collections has been recently boostegt the current compressed-indexing technology is also not ptpper
availability of cheaper sequencing technologies and the fbal of prepared to handle this high repetitiveness. However, they

data they promise to generate. Such a storage scheme may rang . L . .
from the simple goal of retrieving whole individual sequenes to show that the BWT of highly repetitive collections contains

the more advanced one of providing fast searches in the cotiion. 10ng runs of identical symbols, which they successfullyleip
In this paper we study alternatives to implement a particulaly to build extremely compact indices that are able not only to

popular index, namely, the one able of finding all the positios retrieve the individual sequences, but also to extractraryi

in the collection of substrings of fixed length g-grams). We ¢ nsequences of them, and to count and locate the number of
introduce two novel techniques and show they constitute pretical f arbit tri in th llecti

alternatives to handle this scenario. They excell particarly in ~ OCCUITENCES 9 arbitrary strings in E’f C(? ec '_O”'

two cases: wheng is small (up to 6), and when the collection is A weak point of these BWT-based indices is that, although

extremely repetitive (less than 0.01% mutations). counting the number of occurrences of pattern substrings is
fast, retrieving their positions in the collection is rélaty
. INTRODUCTION AND RELATED WORK slow. This is particularly noticeable when searching foorsh

The sequencing of the whole Human Genome was a cétguences, which have many occurrences. In turn, this is
ebrated breakthrough. The goal was to obtaicoasensus particularly unfortunate because the search for shortesezps
sequence accounting for the common parts of the genonie@n extremely popular task in Computational Biology. For
of all humans. Less than one decade later, DNA sequenciéxpgmple, all the techniques that build on analyziigmers
technologies have become so fast and cost-effective that &gguire that kind of search. Another example is the approx-
quencingindividual genomes will soon become a commonmate search of sequences for conserved regions, that is,
task [1], [2], [3]. Huge DNA collections are at the next carne subsequences that are sufficiently similar to a given patter

The computational challenges posed by handling collestiogequence. Such searches usually start by identifying areas
of thousands of genomes are formidable. In general, DNA awdnere short pattern substrings appear, then they extracteth
proteins are not compressible (beyond exploiting theirlsata gquence around those occurrences, and finally run a sequentia
phabet size) using classical methods [4]. Compressionadsthapproximate pattern matching algorithm on the spottedsarea
tailored for DNA, such as GenCompress [5], Biocompress [6]his is how the popular BLAST toblproceeds, for example.
Fact [7], and GSCompress [8], have only moderate successin this paper we focus on providing compressed storage
Fortunately, massive collections @flated DNA sequences are schemes for highly repetitive sequence collections, write
highly repetitive For example, two human genomes are 99.9%ding efficient indexed search for substrings of a fixed tang
and even 99.99% similar. This makes them compressible. ¢. We study two widely differerent mechanisms.

Compressing and indexing those highly repetitive sequencelhe first method is inspired in a result [11] showing that
collections, however, poses many challenges, as most of thgompresseg-gram index is more effective than the BWT-
current compression technology is not well prepared to dd#sed self-indexes when searching for short patterns. Ve co
with them. In practice, methods like thoseppndi , gzip press the sequences using a grammar-based compressor (Re-
and bzi p2 will not take advantage of the repetitivenes®air [12]) and compress the lists of occurrences of gagtam
because they search for repetitions in a bounded windoweof tsing Lempel-Ziv compression (more precisely, LZ77 [13])
text. Another less known member of the famihy,zi p, uses a after differentially encoding the positions. The ratiana that
larger buffer and is very successful, yet unable to decossprdighly repetitive sequences will induce also repetitivanin
individual sequences. Grammar-based compressors havéheasequences of relative positions where ghlgrams occur.
good chance to succeed, as long as the compression doélhe second method is inspired in a recent technique [14] to
not proceed by limited chunks. This is well illustrated byurn a grammar-based compressor into an index able not only
softwareconr ad!, which achieves good compression ratioto retrieve any part of the sequence, but also to locaterpatte
and efficient extraction of individual sequences [9]. in the collection. We explain how to adapt the method to Re-

Ihtt p: // www. ¢s. mu. 0z. au/ ~kur uppu/ conr ad 2htt p: // bl ast. ncbi . nl m ni h. gov/ Bl ast . cgi

Pair compression [12], and use it to search for the desiradmbersd; are smaller wher? is larger, that is, when the

g-grams. The index is able to search for pattern strings of alists are longer. Hence a variable-length encoding teahaiq

length, and particularly effective on short ones. that assigns shorter codewords to smaller numbers achieves
Our experimental results show that both techniques arempression especially on the longer lists.

competitive with the state of the art in this particular soém, In Natural Language, this technique takes advantage of the

where they offer practical alternatives to compress anéxndfact that some words are much more frequent than others [17],

highly repetitive sequence collections. Thegram index is but not of the fact that a collection might be repetitive. We

unrivalled for ¢ < 6, whereas the grammar-based index isow modify the scheme to account for that scenario, which is

unbeatable for collections with less than 0.01% of diffee=n the one of interest for us. Consider a sequefi¢éS, where
We useT to denote the text collection, which we represerstring S appears twice. Lety, s, ..., s, be the occurrences

as the concatenation of all the texts in the collection @sirof a giveng-gramt in S, andxy,zs, ...,z itS occurrences

proper separators). We call the total length, in symbols, of in X. Then, a repetition of the sequence of numbiss—

T. In general we will explain search operations fegrams, s1),(s3 — $2),...,(sa — Sa—1) appears inD; thanks to the

yet we will also refer to them as a pattefh We callocc the differential encoding. Because we wish to retrieve the whol

number of times the-gram or P occurs inT. list L; from the beginning, any compression algorithm able

to take advantage of long repetitions can be used. We choose

LZ77 [13], as it is fast to decompress and can detect any
A classicalg-gram index is formed by aocabularycom- repeated sequence seen in the past in order to compress the

prising all the different substrings of lengthin 7', and for upcoming text. In particular, LZ77 would spend j@3flog(a+

each of thosej-grams, aposting listrecording the positions b)) bits to encode the second occurrence ©f — s1), (s5 —

in T" where they appear, in increasing order. To reduce spasg), ..., (s, — Sq—1) in Dy.

block addressings used, that is, the text is divided into blocks Several variable-length encoders emit codes of arbitrary

of b characters and the posting lists mention only the distincumbers of bits. We opt instead for Vbyte encoding [18],

blocks where theig-gram appears. which uses a variable number of whole bytes. Its advantages
A search for all the positions where a givemgram appears are that it decompresses fast and that the repetitions will

proceeds as follows. First, the query is looked up in the becashow up as repeated sequences of bytes, which can be spotted

ulary and its posting list is retrieved. Second, each blagké by available LZ77 implementations.

list is scanned using a sequential string matching algorith Therefore, we transform each ligt; into D, by writing

and the exact occurrences of tlgegram are reported. To the differences, then encode the numbéfsusing Vbyte

ensure thag-grams overlapping blocks are correctly foundencoding, and finally use LZ77 compression on the resulting

it is necessary to replicate the firgt— 1 symbols of each list. Each posting list is compressed separately, so thedrit

block at the end of the previous block. be decompressed independently. As our LZ77 compressor we
We choose binary search for the vocabulary lookup, andel znma from thep7zi p distribution (wwv. p7zi p. or g).

Horspool algorithm [15] for the sequential search of blgck# the resulting list compressed withzna is longer than the

as it is usually a good choice for the typical range of pattermcompressed version, we represent the list using onlye/byt

lengthsq to search (4 to 12). encoding. A bitmap marks which lists are Izma-compressed.
In order to further reduce the space, we compress bath)

the ¢g-gram index and the text with techniques tailored fdp- Compressing the Text

highly repetitive sequences. As both decompress in linearThe text itself is also compressed, in such a way that rep-

time, we can already give the expected search time foretitions are exploited and individual blocks can be effitien

g-gram. The binary search time can be upper bounded @#gcompressed. LZ77 compression is not suitable because we

O(qlog N), the decompression time for the posting list bghould compress each block separately in order to be able to

O(occ), and decompression and scanning of a blockOgy). independently decompress it.

The average number of blocks, outwf= [N/b], where any ~ We opt for a grammar-based compression algorithm, as in

of the occ occurrences appear, {&V/b)(1 — (1 — b/N)°c¢). previous work [9]. These are strong enough to detect long-

Multiplied by the processing cogd(b), we have the averagerange repetitions in the text, and allow fast local decomsyre

time O(N(1 — (1 — b/N)?°¢)), which in the worst case is sion. In particular, we choose Re-Pair [12], which compesss

Il. ALEMPEL-ZIV COMPRESSEDg-GRAM INDEX

bounded byO (min(b - occ, N)). and decompresses in linear time and offers good compression
] ratios on highly repetitive sequences.
A. Compressing the Index Re-Pair operates as follows. (1) It finds the most common

A customary way of compressing inverted indexes [16fpair ab of characters in the sequence; (2) It creates aAule
which also applies tg-gram indexes, starts by differentiallyab, whereA is a new (nonterminal) symbol; (3) It replaces all
encoding the posting lists. Let; = pipo...pe the list of the occurrences afb in the sequence by; (4) It iterates from
blocks whereq-gram ¢ appears. Its differentially encodedstep (1) until no pair appears twice. Note that newly created
version isD; = dids...ds, whered; = p; andd;;1 = symbolsA can be further replaced by other rules. The outcome
pir1 — p; for 1 < i < (. Becausel < p; < n, the of the algorithm is a set of rule® and the final compressed

streamC where no repeated pairs appear. Note thas a columns. The operations we require in this work, all of which
sequence of integers, not characters, as many nontermirgaissupported i®(log n) time per datum retrieved, aré{a €
can be created. Compression, somewhat surprisingly, canAé € B) returns the label associated to the pairb) € R
executed in linear time. Decompression is linear-time ag v or L if a is not related td; R(aq,as2, b1, b2) retrieves the set
efficient in practice if we want to decompress a subsequehceod elements(a, b) € R such thata; < a < ag, by < b < by;
C: we recursively unroll each nonterminal 6funtil reaching L£(s) computes the set of paifg, b) related through labed.
the terminals (i.e., the original characters). The rulesX — X, X, are seen asX, relates toX, through
In order to detect long-range repetitions and at the saradel X”. The rows are sorted by lexicographic order®f<”
time allow for isolated block decompression in an efficierdnd the columns by lexicographic order &t We store the
way, we insert the special integer symbel after thei- permutationw that maps from rows to columns, and also
th block. As this symbol is unique, it cannot participate isupport mapping from columns to rows@(log n) time [20].
any pair that appears twice, and thus Re-Pair will not creafle operations allow direct and reverse access to the mles i
nonterminals that cross a block border. Those symbols will(logn) time per element retrievedZ(l,r) returnsj such
remain in sequena@ and will mark the limits of blocks. After that X; — X; X, if any; R(l1,[2,71,72) returns the set of
executing Re-Pair, symbols; are removed from the sequencetight-handsX; X, wherel; <1 <l andr; < r < rq; L(s)
and we set up an array of pointers to the beginning of earttrieves the paitl, r) such thatX, — X, X,.
block in C. These pointers are used to identify the are€ of The space required by the structure3islogn + nlog N
that must be decompressed and then searched for the patteits. plus lower-order term<2n logn for the binary relation,
The dictionary is stored as an array of pairs of integers. nlogn for 7, andnlog N for the length of the phrases.

[1l. A GRAMMAR-COMPRESSEDSELF-INDEX B. Searching for Primary Occurrences

Instead of combining a compressed index with a text We define the primary occurrences of a pattdPn =
compression mechanism, we can opt faedf-indexwhich is pip,...p, as those within symbolX; — X;X, so thatP
a compressed index that is able to reproduce any text passagans fromX; to X,. This meansF(X;) = ...pip2...p;
and thus it replaces the text as well [19]. However, tradalo and F(X,) = pjt1...pq... Once we find the primary
self-indexes, as explained in the Introduction, are notl walccurrences, all the occurrences of the pattern can bevetti
suited to compressing highly repetitive sequences. by obtaining symbols that contain the primary occurrences.
Recent theoretical work [14] proposes a self-index tecln other words, we track each primary occurrence inside
nique for straight-line programs (SLPs), a restricted kafd X; upwards through the parse forestefined by the rules,
grammar. This type of compression is very promising fdsy recursively usingR(i,i,1,n) and R(1,n,n (i), (i)) and
highly repetitive sequences, and such a self-index could then £(a,b) on the resulting pairga, b). We simultaneously
competitive to retrieve-grams from the collection. track the position of the occurrence as we find it inside
Finding the smallest grammar that generates a given s¢her nonterminals. This can be done in ti@éh logn) per
guence is an NP-hard problem, so one must resort to gameturrence, at worst, whereis the height of the parse forest.
heuristics. We choose Re-Pair as a concrete instance ofThe search for the primary occurrences of a pattérn
grammar-based compressor to apply, as it compresses & lingroceeds as follows. For every partitiéh= P, P,., we search
time and yields good results. Re-Pair does not generatélgxator P in the rows and fotP, in the columns using binary
an SLP, so in the sequel we explain the self-indexing teclenigsearch (orF ¥ and.F, respectively; these strings are extracted
used for Re-Pair compression, including the practicalsiecs on the fly for the comparisons). That determines the range of
made during the implementation. phrases ending witl?, and the ones starting witR.. Using
Recall thatC is the sequence resulting from applying Rethe generalR query we retrieve the elements that combine
Pair toT', andD is the set of: rules created during the processthose phrases, and thus contain the pattern as a primary
We regard every terminal symbol as a rule that generatdt itseccurrence. This take®((q + h)log®n) time per partition,
All the rules generated by Re-Pair are of the fo — and has to be repeated- 1 times, once per partition aP.
X1 X,., and no loops are allowed. We cdll(X) the expansion .)
of X into terminals, andF"¢?(X) the corrfaspzonding reversedc' Locating the Occurrences i

string (read backwards, not complemented). Once we find all the occurrences inside every nonterminal,
] we have to track where each such symbol appears, im
A. Representing the Set of Rules order to obtain the actual occurrencesTin

For representing the rules generated by Re-Pair, we use én order to locate the occurrences of each relevant nontermi
labeled binary relationdata structure (LBR) [14]. The LBR nal we useselectqueries orC: selectc (X, i) retrieves the-th
represents a binary relatioR between setsA = [1,n] and occurrence ofX in C. During our upward traversal carried out
B = [1,n], where the labels are from the sét=[1,n]®. We to propagate each primary occurrence, we ealkctc(X, i)
refer to A as the rows of the binary relation amgl as the for ¢ = 1,2... until we retrieve all the occurrences of the

3This is a particular case of the original structure, whidlvegthe purposes ~ “Recall that the rules generated by Re-Pair do not constitutemplete
of this paper. grammar that generatés, but we have to expand each symbolf

current nonterminak’, and then we continue with its parents. We also use three synthetic 100MB collections over
By representing’, as a wavelet tree without pointers [21]{A, C, G T, N}, by taking the first 1,048,576 symbols of
operationselect takes timeO(log clogn), wherec = |C|. the DNA file in PizzaChili(htt p: // pi zzachi |'i . dcc.

The only kind of occurrences remaining are those thathi |l e. cl), and repeating it 100 times. Collectiosi8001,
appear when expanding more than one consecutive symbos®01, ands01, are obtained by mutating a fraction 0.01%,
C. For solving this, we create another binary relation, netat 0.1%, and 1%, respectively, of the symbols. A mutation
then rules with thec positionsinC. If C = s1s5 ... s, thenwe chooses a random position and changes it to the value of
relate eacty; (sorted in lexicographic order of"<¥(s;)) with another random position of the initial sequence.
suffix s; 1 ... (sorted in lexicographic order of (s;y1 . ..)), We express the compression ratio as the percentage of the
with label . Any occurrence of a patter®? starting ats; compressed over uncompressed file size, assuming thealrigin
and continuing ak;; ... can be obtained with a mechanisnfile uses one byte per base. This means that 25% compression
similar as before: first binary search for the range of rulean be achieved ovdA, C, G T} files by simply using 2 bits
whose string finishes witlp; ...p;, then binary search for per symbol. These four symbols are usually predominant, so
the range of suffixes of which string start withp; 1 ...ps, it is not hard to get close to 25% on general DNA sequences.
and then retrieve all the labeldrom the intersection of both
ranges in the binary relation. Those are the positiong in A. Plain Compressors
whereP occurs, shifted by. This is done for each < j < q.

A simple sampling records the original position of ever
symbols;.¢, for some sampling stefy This permits converting
from positions inC to positions in the original sequence.

We test the compression ratio achieved by plain DNA
ompressors. As most only handle alphalétsC, G T}, we
removed the N symbols in this experiment. As explained
in the Introduction, most DNA compressors are only mildly
D. The Resulting Index successful in improving compression further than 2 bits per
symbol. There are, however, some that perform well on highly
repetitive collectionsConr ad [9], XM[23] anddna?2 [24].

Another renowned compressomNAConpress, has

The self-index requires:(logn + logc + (log N)/s) +
n(3logn + log N) bits plus sublinear terms. It finds thec
occurrences of any-gram pattern in time)(q(q + h) log(c + _ : _
n)logn + occlogn(h + logc)). We ensureh = O(log N) not ben included because it need_s proprietary software
by running abalancedRe-Pair, where compression proceedgat t ernHunter. Others, such as8i oConpress and
in rounds, such that symbols generated in a round can offgnNC0mP, did not run on our long sequences. We have
be used in subsequent rounds [22]. A simplified running tinfNsidered also general-purpose compressors that are well
upper bound i€)((¢(q + log N) + occ) log N logn). suited to highly r.epetltlve sequences, such p3zip

Note that such a self-index is not built for any particufar (Nt tP:// ww. p7zip.org), a LZ77-based compressor,
and thus it can search for any string. Yet, as we see in el OWn implementation oRe- Pai r; and an implementa-

experimental results, it performs best with smalfalues. tion us.ing a more compaqt representation for the dictignary
Re- Pai r - cr [25]. We believe our coverage of compressors

IV. EXPERIMENTAL RESULTS is sufficient to give a good perspective of the state of the art
We compared the space and time performance of ourThe table inside Fig. 3 gives the resul®na2 is the
compressed indexing proposals against the state of thevart, fastest compressor. On the other haX achieves the best
several real-life and synthetic repetitive biological seqces. compression ratios, followed hy7zi p anddna2. Conr ad
Our machine is an Intel Core2Duo E6420@2.13Ghz, withnd Re- Pai r compress less, arguably in exchange of their
4GB of DDR2-800 RAM. It runs GNU/ Li nux, 64-bit random-access abilityReé- Pai r performs better on the more
Ubunt u 8. 04 with kernel 2.6.24-24-generic. We compiledcompressible sequences). We note fRet Pai r is the com-
with gcc 4.2.4 and the option 09. pressor we use for our compressgdram index, so it gives
The experimental setup is divided into three parts. First, vihe base space consumption on top of which we add the
compare the best available compressors for repetitive DNA sompressed inverted lists. In the last column we incl8t®,
quences. Second, we experiment on several alternativgrdesihe size of our Re-Pair-based self-index. It takes much more
for the g-gram index. Third, we compare both compressegpace due to its ability to perform indexed searches.
indexes and RLCSA [10], which is the state of the art. We The table confirms that the collections are highly compress-
use four real-life collections for the experiments. ible because they are highly repetitive. The least comiiress
The datasets used dnrenn® with 7,282,339 bases;nf | u® is heno, yet it is still well below the 25% barrier.
composed of 78,041 sequences of H. Influenzae containing
112,640,397 basegar a’ with of 27 sequences of S. ParaB. Study of thej-gram Index
doxus adding up to 412,279,603 bases; amde’ with 37 comnared to previous work on compressed inverted indexes
sequences of S. Cerevisiae comprising 428,118,842 basestle] and compresseg-gram indexes [11], our compressed
Shttp://srs. ebi.ac. uk/ srsbin/ cgi - bi n/ wget z gram index has two novelties: It compresses the text with
8 tp://ftp. nchbi.nih. gov/ genomes/ | NFLUENZA/ block-aligned Re-Pair, so that the compression uses global
"htt p: / / www. sanger . ac. uk/ Teams/ Teanv1/ dur bi n/ sgrp repetitions but can decompress individual blocks (wheheas

TABLE |

Fig. 1. Space-time tradeoffs achieved by different impletagons of the CONSTRUCTION SPACE AND TIME(IN SECONDS) FOR THE INDEXES

g-gram index.

Synthetic, 0.1% point mutations, g=6

Index heno influ cere
P — , — —— , RLCSA | 5/MB 517 | 874MB 148 | 35GB 1,004
200 Rico. hepeirer —w] SLP | 197MB 17.7| 25GB 331| 10.9GB 1,899
Rice, Plain —%— g=4 | 125MB 255| 16GB 296| 6.8GB 1,104
BC, Re—Pair —8— g=8 | 125MB 717.1| 16GB 2302 6.8GB 2,505

BC, Re-Pair-cr —®&— |
BC, Plain —&—

BC+LZ, Re-Pair —e—

BC+LZ, Re-Pair-cr —&—

BC+LZ, Plain —4— 4 performance for medium < 8. This deteriorates as we look
for longer g-grams. The performance ¢LCSA, instead, is
largely independent af, both in space (where, again, the index
does not depend of) and time. When the sequences become
less repetitive 001 and s01), RLCSA takes overSLP in
both space and time.

Fig. 3 gives the result on real-life collections. The resalte
roughly similar to those fos001 ands01: I 1 andl | -cr
are competitive for smaly < 6, whereasRLCSA dominates

natural language one can use natural-language-orientad coLP-
pression [16], and on general sequences previous work 8impJ. construction Time and Space

does not compress the sequence [11]). (2) It compresses th?able | gives time and space required to build some in-

differential lists with LZ77, which exploits high repetiéness ; . . I
in the sequences (whereas previous work uses only variatﬁ%a—nceS of the indexes on thr_ee collec.tlo.ns ofdﬁ“fereret
remark that the construction is not optimized in our propety.

length coding of the differences [16], [11]). . 7
V?/e consiger the 9 combinat[ion]s [of])the alternatives @fnyway, the required resources demonstrate that this is an
important area for future work.

compressing (with Re-Pair or Re-Pair-cr) or not the segegnc
and of compressing the inverted lists using Rice codes (one V. CONCLUSIONS

of the best variable-length encoders [16]), VByte coded [18 \ye have proposed two new compressed indexes specialized
(BC, which compress less but decompresses faster), anceVByf, searching short substringg-grams) on highly repetitive

codes followed byl zma compressor. We note thdzma o0 ences. The first ond I() is particularly relevant for
spots only byte-aligned repetitions, so it cannot be swfalg ¢ o ¢ values (< 6), whereas the otherSLP) stands

comblned with Rice codes. i out on extremely highly repetitive collections (as shown on
_F|g. 1 shows the results on the _synthetlc se_quesrﬂvel, synthetic data). The real collections we have found are not
with ¢ = 6. The tradeoffs are achieved by using blocks Qfet gufficiently repetitive folSLP to be competitive on those,
1KB, 8KB, 32KB, and 128KB. We generate a unique Sgf; e expect its properties to become very relevant for the
of 100 search patterns per collection, by extracting randqfLsjve repetitive collections that are expected to apjpear
subsFrlngs of lengthy .from the _collection. Th|s IS us_ed the next years. An existing approach [10] is still unbeaabl
conS|sten_tIy for all the indexes. The search time given & th,q, searching for longer strings. These techniques wikena
average time over all the occurrences of all the patterns. possible to carry out BLAST-like sequence analyses osehe

C. Comparison of Compressed Indexes huge collections, and are also directly usable on ofbgram-
based indexed approximate sequence matching algorithms.

50

’9—9‘9—
O 1 1 1 1 N L AN 1
0 20 40 60 80 100 120 140

total space (% of original)

locate time (microsec per occ)
=
o
o

We compare oul-gram index of Section Il using vari-
ants ‘BC+LZ, Re-Pair” (11, for “inverted index”), and AcknowledgementsWe thank Jouni Sirén for his help
“BC+LZ, Re- Pai r-cr”(I1-cr), our grammar-based indexon usingRLCSA software. This work was partially funded by
of Section Il (SLP, for “straight-line program”), and the bestNSERC Canada and Go-Bell Scholarship Program (FC), by
previous index, based on run-length compressed suffix surrdlCINN grants TIN2009-14560-C03-02 (AF) and TIN2009-
(RLCSA [10]). The latter offers a space-time tradeoff given b}4009-C02-02 (MAMP), by a fellowship granted by the
a sampling parameter on the text. Regional Government of Castilla y Ledn and the European

Fig. 2 shows the result over the synthetic collections (tHgocial Fund (MAMP), and by the Millennium Institute for
missing lines ofl I and! I -cr fall well outside the plots). Cell Dynamics and Biotechnology (ICDB), Grant ICM P05-
It can be seen that thiel variants are extremely competitiveO01-F, Mideplan, Chile (GN).
for small¢ = 4 andq¢ = 6, while for ¢ = 8 both their space
and time performance degrades sharply. For very repetitive
sequencess001), the SLP alternative stands out as an [1] G. M. Church, “Genomes for ALL,Scientific Americajvol. 294, no. 1,
excellent choice, offering good space performance forgall 2] ,E,p' A7-54, 2006.

.) X . Hall, “Advanced sequencing technologies and theideviimpact in
(indeed, the index does not depend @n and good time microbiology,” The J. of Exp. Biologyvol. 209, pp. 15181525, 2007.

REFERENCES

Fig. 2.

0.01% point mutations

Comparison of compressed indexes over the syntheliections.

Synthetic,

Synthetic, 0.1% point mutations Synthetic, 1% point mutations

200 F 200

II-cr
b O SLE

(microsec per occ

-

@

=
(microsec per occ)

=

I

=
(microsec per occ)

50 | 50 |

%
SLP*

locate time
locate time
locate time

II-crap
MR L e

25 30 35 40 45

(% of original)

20

total space

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 0 5 10 15
total space (% of original)

total space (% of original)

Fig. 3. Comparison of compressed indexes over the realatiolfes. The table shows compression ratios on the 4-lettguences. The groups are general-
purpose compressors, DNA-specific compressors, and duindek.

Hemoglobin Influenza S. Paradoxus

° T T) ° T
0 o 0 gq=4 +
° oo IINer | o 200 © 200 g=6 x
4 b II-cr o g=8 X
o Q. I g=10 O

II-c II =12 =
¢] 9] ¢} Laq
8 150 8 150 8 150
o o o
5 £ 5
5 5 b
E 100} freon g 100 g 100
" II n @)
£ o £ £
- A -
© o osof *s1p s 50 550t
2 I 3 b
© II-cr 4—y + © © II-cr 11
° N e ‘ ‘ ‘ ‘ 3 ‘ ‘ ‘ ‘ ‘ ‘ ° L M ‘ ‘ ‘
S 0 S 0 S 0

0 10 20 30 40 50 60 70 0 2 4 6 8 10 12 14 16 0 2 4 [3 8 10 12 14 16

total space (% of original)

S. Cerevisiae

total space

(% of original)

total space (% of original)

§ 250

% 200 Dataset|| p7zip | Re-Pair| Re-Pair-cr|| Comrad| XM dna2 SLP

0 heno 8.79% | 30.12% 15.37% || 12.68% | 7.64% | 9.65% 61.96%
- 190 influ 1.75% | 7.40% 3.70% 519% | 1.57% | 3.41% 14.36%
Y 100 par a 2.44% | 8.21% 3.67% 6.52% | 1.25% | 1.95% 15.20%
3 cere 1.82% | 6.16% 2.67% 4.94% | 2.78% | 1.47% 11.11%
o 50

0
total space (% of original)
[3] E. Pennisi, “Breakthrough of the year: Human genetidatam,” Sci- [13] J. Ziv and A. Lempel, “A universal algorithm for sequiahtdata

ence vol. 21, pp. 1842-1843, Dec. 2007.

compression,|EEE Trans. Inf. Thegvol. 23, no. 3, pp. 337-343, 1977.

[4] C. G. Nevil-Manning and I. H. Witten, “Protein is incomgssible,” in [14] F. Claude and G. Navarro, “Self-indexed text compi@ssising straight-
Proc. DCG 1999, p. 257. line programs,” inProc. MFCS ser. LNCS 5734, 2009, pp. 235-246.
[5] X. Chen, S. Kwong, and M. Li, “A compression algorithm fDNA se- [15] R. N. Horspool, “Practical fast searching in stringSgft. Pract. Expey.
quences and its applications in genome comparisorPrir. RECOMB vol. 10, no. 6, pp. 501-506, 1980.
2000, p. 107 [16] I. Witten, A. Moffat, and T. BellManaging Gigabytgs2nd ed. Morgan
o ' o L] Kaufmann, 1999.
[6] S. Grumbach and F-. Tahi, "A new challenge for compressilgorithms: [17] G. Zipf, Human Behaviour and the Principle of Least EfforAddison-

Genetic sequencedyif. Proc. Manag, vol. 30, no. 6, pp. 875-886, 1994.

Wesley, 1949.

[7] E.Rivals, J.-P. Delahaye, M. Dauchet, and O. Delgraf§yguaranteed [18] H. williams and J. Zobel, “Compressing integers fortféie access,”
compression scheme for repetitive DNA sequences,Pinc. DCG The Computer Jvol. 42, no. 3, pp. 193—201, 1999.
1996, p. 453. [19] G. Navarro and V. Makinen, “Compressed full-text irdse,” ACM
[8] H. Sato, T. Yoshioka, A. Konagaya, and T. Toyoda, “DNA al@om- Comp. Surv.vol. 39, no. 1, p. article 2, 2007.
pression in the post genome er&genome Inf.vol. 12, pp. 512-514, [20] J. Munro, R. Raman, V. Raman, and S. S. Rao, “Succincesgntations
2001. of permutations,” inProc. ICALP, ser. LNCS 2719, 2003, pp. 345-356.
[9] S. Kuruppu, B. Beresford-Smith, T. Conway, and J. ZobRkpetition- [21] F. Claude and G. Navarro, “Practical rank/select aqgsenver arbitrary
based compression of large DNA datasets,Pimc. RECOMB 2009, sequences,” ifProc. SPIRE ser. LNCS 5280, 2008, pp. 176-187.
poster. [22] H. Sakamoto, “A fully linear-time approximation aldgtm for
[10] V. Makinen, G. Navarro, J. Sirén, and N. ValimakiStorage and grammar-based compressioa, Discr. Algor, vol. 3, pp. 416-430, 2005.
retrieval of individual genomes,” ifProc. RECOMB ser. LNCS 5541, [23] M. Cao, T. Dix, L. Allison, and C. Mears, “A simple stafisal algorithm
2009, pp. 121-137. for biological sequence compre“ssm_n,” fmoc. DCG 2007, pp. 43-52.
[11] S. Puglisi, W. Smyth, and A. Turpin, “Inverted files vesssuffix arrays (24] GI M.ar?z'f,” a?td M. Rastrero, IA simple and fast DNA comgsien
for locating patterns in primary memory,” iRroc. SPIRE ser. LNCS algorit m, Soft. Pract. Exper.yo. 34, pp. 1397_.1411.’ 2004. N
[25] R. Gonzalez and G. Navarro, “Compressed text indextisfast locate,

4209, 2006, pp. 122-133.

J. Larsson and A. Moffat, “Off-line dictionary-basedmpression,Proc.
of the IEEE vol. 88, no. 11, pp. 1722-1732, 2000.

[12]

in Proc. CPM ser. LNCS 4580, 2007, pp. 216-227.

