
Definition and Implementation of an Active Web
Map Service

Nieves R. Brisaboa 1, Antonio Fariña 1, Miguel R. Luaces 1, David Trillo 1,
José R.Viqueira 2

1 Database Laboratory
Facultade de Informática,
University of A Coruña

Campus de Elviña, 15071. A Coruña. Spain
{brisaboa, fari, luaces, dtrillo}@udc.es

2 Systems Laboratory
Department of Electronics and Computer Science,

University of Santiago de Compostela
Instituto de Investigaciones Tecnológicas

Campus sur, 15782 Santiago de Compostela, Spain
joserios@usc.es

Abstract. The most widespread Open Geospatial Consortium (OGC) speci-
fication for GIS defines the interface of a Web Map Service (WMS). A ser-
vice implementing this interface accepts an HTTP request from a client and
replies with a map encoded in either a raster format or a vector format such
as SVG (Scalable Vector Graphics). However, in both cases, the response
of the WMS represents a static map that cannot react to user actions. It
would be useful to obtain vector maps encoded in active SVG that can exe-
cute actions and change their visual appearance in response to user-
triggered events.

In this paper, we present the specification of an Active Web Map Service
(AWMS), which is defined as an extension of the OGC WMS specification
that allows the retrieval of active SVG maps. Given that a WMS uses the
OGC SLD language (Styled Layer Descriptor) to describe the set of layers
and visualization styles available, our AWMS specification also needs an
extension of such specification to describe the active component of the
maps. This is achieved by adding a new type of SLD element called Active
Symbolizer that enables the definition of active and dynamic behaviour for
the geographic objects that belong to each geographic information layer.

Keywords: GIS, web services, Web Map Service (WMS), Active Vectorial
Information

1 Introduction

Many different methods have been defined in the last years for querying,
analyzing, processing and visualizing geographic information. The lack of
standards caused that many different data formats have been defined to
represent information in geographic information systems (GIS). Currently,

 This work was partially supported by Xunta de Galicia (refs. PGIDIT05SIN10502PR and 2006/4)

and Ministerio de Educación y Ciencia (refs. TIC2003-06593 and TIN2006-15071-C03-03)

the Open Geospatial Consortium (OGC) [1] is defining free and interoper-
able standard specifications for the development of geoprocessing applica-
tions (i.e., GIS applications). These specifications set the ground that en-
ables the development of open source service-based applications with a
highly modular architecture. Applications based on the OGC standards
improve traditional GIS applications, which are based on monolithic and
proprietary architectures, by enabling the development of interoperable
and extensible applications.

The most widespread OGC specification for GIS defines the interface of
a Web Map Service (WMS) [2]. A service implementing this interface ac-
cepts an HTTP request from a client and retrieves the geographic objects
that form the map from a database system, a geographic information ser-
vice, or any data source. Then, the answer map is composed by applying to
each geographic object a visualization style and encoding the result in ei-
ther a raster or a vector image format that is sent back to the client.

Information in a WMS is structured in layers. Each layer can be seen as
a transparent sheet with a set of geographic objects represented on it. A
map consists of an ordered stack of layers so that geographic objects in the
top layers hide those in the bottom ones. Clients of the service can request
maps of any complexity by adding or removing layers from the request.
Visualization styles for each layer in a WMS are defined using the SLD
language (Styled Layer Descriptor) [3]. With this language, clients can de-
fine which geographic objects are included in each layer by means of a fil-
ter and how the geographic objects are rendered in the resulting map. The
OGC recommends the SVG language (Scalable Vector Graphics) [4] to
encode the maps generated by a WMS. This XML-based language defines
a vector graphic format that can include user-defined scripts to react to
user events and to dynamically modify the visual representation of the geo-
graphic objects displayed.

Even though SVG includes support for user-defined activity and dy-
namic responses to user events, neither the WMS nor the SLD specifica-
tions take this functionality into account. That is, SLD does not allow the
association of any behavior to geographic objects as a reaction to a given
user event. For instance, we could not use the SLD language if we wanted
to define a map where road sections changed their color when the user
moved the mouse over them, or a map where an information window ap-
peared when the mouse was clicked on a road section.

Due to our experience in the development of GIS applications [7, 8], we
know that activity and dynamic responses to user events are required in
any user interface for a GIS application. However, we always had to im-
plement this functionality in a non-standard way because it was not in-
cluded in the WMS or the SLD specifications. Thus, we propose in this

paper an extension of the WMS standard (called Active Web Map Service
or AWMS for short) that maintains all the characteristics of this standard
while enabling clients to define activity and dynamic responses to user
events for each layer. This activity and dynamic responses will be sup-
ported by the advanced capabilities of SVG or any other format with the
same capabilities.

In order to be able to define visualization styles for layers that associate
behavior to the geographic objects in the map, the language that is used to
define the styles also has to be extended. This is why we have also ex-
tended the specification of the SLD language by means of a new element
type called Active Symbolizer. We have called the resulting language Ac-
tive SLD, or ASLD for short. This new language also conforms to the SLD
standard in the sense that any SLD file is also an ASLD file.

 a) Client of WMS Service b) Client of AWMS Service

Fig. 1. Architecture of Web Applications

Figure 1 depicts the architecture of a web application that acts as a client
to this kind of services. In Figure 1(a), the web application is a client of a
WMS service. Maps are requested invoking the getMap operation of the
service. Then, the service retrieves the geographic objects from the data
source (a DBMS in this case) and uses the visualization styles defined us-
ing the SLD language to render the geographic objects in a map, which can
be encoded using any image data format (e.g. SVG). In Figure 1(b), the
web application acts as a client of an AWMS. In this case, maps are re-
quested using the same operation and the service retrieves the geographic
objects in a similar manner. The difference appears when the information
is rendered because visualization styles can be defined using the ASLD
language that enables clients to associate scripts to user events. The result-

ing map is active in the sense that the viewer can interact with the objects
displayed in the map.

We have already completed the definition of the ASLD language, and
we have analyzed the effect of this new language in the WMS specifica-
tion that led us to the definition of the AWMS specification. We are cur-
rently working on the verification of a prototype implementation of this
service.

The rest of the paper is structured as follows. Section 2 presents some
related work and describes some basic concepts needed to understand the
paper, particularly some of the OGC standards already introduced. The
formal definition of active maps is presented in Section 3, whereas Section
4 defines the ASLD language. Section 5 describes the general processing
algorithm of a service implementing the AWMS specification. Then, in
Section 6 we describe two web applications that were implemented using
our prototype AWMS implementation. Finally, the last section of the paper
presents some concluding remarks and future lines of work.

2 Related Work

A WMS accepts map requests from client applications using the HTTP
protocol and replies with the map encoded in the format specified in the
request. The visualization style that has to be used to render each geo-
graphic object is also specified in the request and defined using the SLD
language. The main functionality offered by a WMS includes: i) obtaining
metadata of the service (e.g., list of layers offered, list of styles available),
ii) rendering maps composed of sets of layers each with a specific visuali-
zation style, and iii) acting as a visualization style library allowing users to
manage the layers and visualization styles available in the service.

This functionality is offered by implementing a number of operations,
particularly two mandatory and five optional ones. We describe now
briefly some of these operations:

• GetCapabilities: This operation replies with metadata of the service.
Particularly, a client application can discover the functionality supported
by the service, the list of layers and styles available, and detailed
information of each layer or style.

• GetMap: This operation represents the main functionality of the service.
Figure 2 shows an example getMap request. The first line is the URL of
the service whereas the rest of the lines are parameters of the request.
The parameter LAYERS is used to specify the layers that compose the
map. In our example, two layers are requested: bvg:municipalities and

bvg:roads. Similarly, the parameter STYLES is used to indicate the
visualization style that has to be applied to each layer. In our example it
has been left blank and therefore the default style is applied. The portion
of the world that has to be displayed in the map is specified using the
parameters SRS and BBOX. The first one represents the spatial
reference system to be used in the map, and the second the bounding
box of the world that we want to display in the map (in coordinates of
the spatial reference system). Finally, the properties of the resulting map
image are specified in the remaining parameters of the request,
particularly the representation format (SVG in this case).

Fig. 2. Example of a getMap request

There are two types of layers and styles: those predefined by the service
and those defined by clients of the service. The WMS specification pro-
vides operations that enable clients to use a WMS as a library of styles.
Using these operations a client can add and remove the definitions of lay-
ers and styles. The operations are the following two:

• GetStyles: It enables a client to retrieve the definition of any style
represented using the SLD language.

• PutStyles: Using this operation, a client can add or remove style
definitions from the service. The styles are defined using SLD.

Finally, an additionally parameter of a getMap request, named
SLD_BODY, enables a client to request a layer that is not predefined in
the service. The definition of this layer must be given using SLD. SLD
(Styled Layer Descriptor) is an XML-based language to encode the visual
appearance of the geographic objects in a layer. For instance, SLD can be
used to specify that roads in a map must be rendered as two pixel wide red
lines. Two different types of layers can be defined in a SLD document:
named layers and user layers. The former represents layers whose defini-
tion is known by the service (for instance, because it is defined in a con-
figuration file), whereas the latter represents user-defined layers. Both

types of layers are associated to a number of styles, which can be in turn
named styles or user styles. The meaning of each type is similar to that of
layers: named styles are predefined in the service whereas user styles are
defined by a client.

Each user style consists of a collection of rules. Each rule defines the
way a particular set of geographic objects is rendered and it is composed of
the following elements:

• Filter: The specification of the geographic objects to which this rule has
to be applied. The filter is represented using the language defined by the
OGC in [5].

• Scale range: The minimum and maximum scales at which the
geographic objects are rendered. If the current scale of the map being
rendered is not between these limits, the geographic objects selected by
the rule filter are not rendered in the result map.

• Symbolizers: For each rule, a set of symbolizers can be given. Five
different types of symbolizers are defined in the SLD specification: a
point symbolizer that renders the object as a symbol, a line symbolizer
that renders the geographic object as a line, a polygon symbolizer that
renders the geographic object as a filled polygon, a text symbolizer that
renders the geographic object as a text label, and a raster symbolizer
that is used to render raster images.

The fact that a style is composed of a set of rules enables the user to render
different sets of geographic objects in a layer with different visualization
styles and hence compose a thematic map. For example, the style defini-
tion for a layer that renders municipalities with more than 50000 inhabi-
tants in dark blue and the rest in light blue consists of a style with two
rules. The first one selects the municipalities with more than 50000 inhabi-
tants and associates a polygon symbolizer to them that renders the geo-
graphic objects with a dark blue fill. The second one selects the rest of the
municipalities and associates a polygon symbolizer to them that renders
the geographic objects with a light blue fill.

Similarly, the fact that a rule can have a set of symbolizers enables a
user to render a single geographic object with different simultaneous visual
representations. For instance, the style definition of a layer that renders
municipalities with a light yellow fill and a label with its name consists of
a rule with two symbolizers: a polygon symbolizer to render the munici-
pality surface and a text symbolizer to render the text label with the name.

Figure 3 shows an example SLD document that defines a new visualiza-
tion style for the layer bvg:roads that renders the geographic objects of this
layer as polygons with a black border and grey fill.

After the WMS retrieves the geographic objects and renders them using
the visualization style defined in the SLD document, the resulting map has
to be encoded in the format specified by the user in the request. One of the
most common two dimensional vector graphics formats is the SVG lan-
guage (Scalable Vector Graphics). SVG is an XML-based language that
supports three different types of graphic objects: vector geometric shapes,
images, and text. SVG can also be used to represent dynamic animated
graphics. One of its main advantages is that script languages can be used to
describe the response to user-triggered events. These script functions have
complete access to all the properties of the graphic objects, and hence a
script can modify any attribute of any object such as the fill colour, the line
width, or the text position.

Fig. 3. SLD Document Example

To the best of our knowledge, there have been few attempts to extend
SLD to include new funcionality. In [6], the authors propose such an ex-
tension by extending SLD with characteristics of the W3C Cascading Style
Sheets and by observing the demands of location based services. However,
the paper only describes motivation and intent and there is no reference to
related work, the model is quite simple, and there is no validation of the
proposal with real-world applications.

3 Active maps

Even though SVG supports dynamic graphics, neither the WMS standard
nor the SLD language allows clients to define visualization styles for lay-
ers that include dynamic behaviour. In this paper, we make use of the ad-

vanced characteristics of the SVG language to define a new representation
for maps that includes dynamic behaviour of its geographic objects.

We define an active map as a collection of geographic objects (points,
lines and surfaces), each of them having the following characteristics:

• A visualization style: border and fill colours, border width, symbol
associations, etc.

• A behavior: expressed using a script language (such as ECMAScript or
JavaScript).

An active map can be represented using the SVG language or any other
language that supports these characteristics. Figure 4 shows an example of
an active map represented in SVG. In this case, the map consists of a sin-
gle geographic object (a silver polygon) whose colour changes to white
when the user clicks the mouse on it. This is achieved by associating the
script function change_colour to the geographic object.

Fig. 4. Active Maps in SVG Format

4 Active SLD

As we have already seen, the SLD language uses the concept of symbolizer
to define the visual representation of geographic objects. The specification
defines five types of symbolizers and each consists of a collection of style
attributes. By giving values to these attributes a user can define a specific
visualization style. For instance, a polygon symbolizer allows a user to set
the fill colour as well as the fill pattern. Similarly, a text symbolizer de-
fines attributes for the font family or the font size.

In order to enable the definition of visualization styles that associate a
given behaviour with geographic objects without modifying the SLD stan-
dard, a new type of symbolizer has to be defined. An active symbolizer
represents the behaviour associated to a set of geographic objects by means

of a collection of attributes that specify the event that triggers the behav-
iour and the script function that implements the response to the event.

Figure 5 shows the definition of the content of an active symbolizer.
Two different languages are used for this definition: an XML Schema
specification and a UML class diagram. Corresponding parts of the defini-
tion are enclosed in dashed boxes and labelled with the same letter.

 A

B

C

C

F

B

ActiveSymbolizer ActiveBehaviorType

*

UserEventType

ondblclick

onmouseout

….

ActiveComponent

ServerActiveComponentType

ClientActiveComponentType

functionName: String

UserServerActiveComponent

functionName: String
functionImplementation: String

NamedServerActiveComponent

name: String

onclick

A

D

D

E

E

F

G

G

Fig. 5. Active Symbolizer Definition using XML Schema and UML

An active symbolizer is composed of a collection of active behaviors.

Each of them is in turn composed of a user event and an active component.
The former specifies the particular user event to which the behavior is as-
sociated, and the latter specifies the action that will be executed when the
event is triggered. The fact that an active symbolizer consists of a set of ac-
tive behaviors enables a user to specify in a single symbolizer different be-

haviors in response to different user events on the geographic object. For
instance, a single symbolizer can be used to specify the behavior for mouse
clicks and mouse moves.

An active component can be of two different types: a server active com-
ponent or a client active component. The difference between them is that
the script code of a server active component is provided by the service,
whereas in a client active component the script is provided by the applica-
tion requesting the active map. Server active components enable client ap-
plications to receive self-contained active maps, in the sense that no exter-
nal scripts are needed to render them. This type of active components is
more suitable when the behavior is generic and can be reused across many
applications, such as highlighting a geographic object. On the other hand,
applications using client active components can use scripts in the active
maps that are not known to the service. This is useful when the client ap-
plication needs a very specific behavior of the geographic objects, such as
invoking a particular functionality available on the client side.

Fig. 6. Active Symbolizer Example

The content of a client active component is quite simple. It consists of
the name of the function that has to be invoked when the event is triggered.
The content of a server active component is a bit more complex. It can be
of two different types: a named server active component or a user server
active component. A named server active component represents a script
that is known to the service in some manner. For instance, it could be pre-
defined and available when the service starts up, or it could be added by a
user and stored in a database of scripts in the service. In these cases, a user
only needs to specify the name of the script. On the other hand, in a user
server active component the service does not know the script that imple-
ments the behavior, which has to be provided by the user. Hence, the con-
tent of this element consists of a function name and a function implemen-
tation given as a text.

Figure 6 shows an example of the XML definition of an active sym-
bolizer for the active map presented in Figure 4. The active symbolizer
consists of a single active behavior for the user event onclick. This behav-
ior is defined by a user server active component that includes a function
named change_colour and the script that implements it.

5 Active WMS Description

Once the extension to the SLD language has been defined, it is necessary
to describe a WMS service that uses the ASLD language for the definition
of active visualization styles. We call this new type of WMS service Active
WMS (AWMS for short). The following pseudocode represents the main
processing algorithm of this type of service:

for each layerName-styleName in getMapRequest do (1)
 currentStyle = findASLDStyle(layerName, stylName) (2)
 rules = currentStyle.getRulesForScale(currentMapScale) (3)
 geographicObjects = getGeographicObjects(layerName) (4)
 for each geographicObject in geographicObject do (5)
 for each rule in rules do (6)
 if rule.evaluateFilter(geographicObject) = true then (7)
 for each symbolizer in rule do (8)
 SVG.render(geographicObject, symbolizer) (9)
 end for (10)
 end if (11)
 end for (12)
 end for (13)
end for (14)

For each layer and style requested in the getMap request, the algorithm re-
trieves the active SLD definition (line 2), and selects the rules that are ac-
tive for the current map scale (line 3). Then, all geographic objects from
the current layer are retrieved (line 4) and each one in turn is evaluated to
check whether it satisfies the filter of any rule (lines 5, 6 and 7). For each
rule that the geographic object satisfies, the collection of symbolizers is re-
trieved and the geographic object is rendered following the visualization
style defined in the symbolizer.

6 Client Applications Using Active Maps

The main problem related to the use of active vector formats such as SVG
is that web browsers do not usually have native support for them. There-
fore, it is necessary to install plug-ins that enable the visualization of those

formats in the browser. In this section, we present two examples of client
applications of the AWMS service that visualize active maps inside any
web browser without the need of installing any plug-in at all. The first ap-
plication is based on DHTML (HTML + Javascript), whereas the second
one is based on Java Applets. Since both alternatives allow the visualiza-
tion of active maps inside a web browser without the need of installing any
additional component, they represent an interesting advance in the field of
web-based GIS applications.

Our first client application uses a web service (SVGtoDHTML) [7] that
transforms any active map represented in SVG into a new active map rep-
resentation that uses only DHTML elements (HTML + Javascript). This
representation improves accessibility to active maps generated by an
AWMS in the sense that any web browser that supports DHTML will be
able to display them. This representation has also the best advantages of
vector and raster formats. A raster representation of the map is used as a
background image, whereas a vector representation is used to render those
geographic objects that have any behavior defined. This means that the
map is rendered almost as fast as a raster image while keeping the active
characteristics of vector formats.

 a) Using DHTML b) Using a Java Applet

Fig. 7. Architecture of Web Applications Using an AWMS

Figure 7(a) shows the architecture of a web-based GIS application that

uses a SVGtoDHTML web service. The request to the service is encoded
in an XML post request that includes the getMap request to an AWMS
service. The SVGtoDHTML service retrieves the active map from the
AWMS and returns the equivalent DHTML representation, which can be

displayed directly by any web browser. Figure 7(b) depicts the architecture
of a different type of web-based GIS application. In this case the web-
based GIS application uses a Java Applet to visualize active maps in the
web browser of the client. The first time the application is used an applet is
downloaded automatically. This applet is able to render the active map and
execute its behavior in response to the user events.

7 Conclusions and Future Work

The main advantage of the active maps defined in this paper is that the
geographic objects displayed in them can react to user-triggered events.
This is achieved by associating behavior to each geographic object by
means of a script function.

In order that this functionality is integrated seamlessly in web-based
GIS applications we have proposed an extension to both the WMS and the
SLD specifications. We defined the ASLD language as a superset of the
SLD language that includes a new type of symbolizer called active sym-
bolizer. This symbolizer is used to represent the association of a particular
behavior, represented as a script function, with a specific user event. Script
functions can be provided either by the client application or the service,
and in this case, they can be functions known by the service or given by
the client application in the request. It is important to remark that our pro-
posal does not modify the specifications. Instead, we extend them in the
sense that a service implementing the AWMS and ASLD specifications
still conforms to the WMS and SLD specifications. It can be used in a
transparent way by existing WMS client applications. We have developed
an implementation of the AWMS and SLD specifications and we are
working on the final tests before making it public.

We have also presented two applications that use an AWMS service to
obtain active maps. The requirement of installing plug-ins in web-browsers
to enable the visualization of vector graphic formats is a well-known prob-
lem . Plug-ins are the most efficient way to extend the functionality of a
web browser but they present two important disadvantages: i) administra-
tor permission are usually needed during the installation of any plug-in be-
cause of their potential security problems and ii) they are usually highly
dependent on the web-browser and the technology (e.g., Internet Explorer
vs. Mozilla, and Windows vs. Linux vs. Mac OS). The applications we
presented use two different alternatives to overcome this problem: one
uses a service that transforms SVG into DHTML and the other uses a Java
Applet. Using a service that transforms SVG into DHTML has the advan-

tage that the client application is very accessible in the sense that any web
browser supporting DHTML can be used. The second approach, using a
Java Applet, is more efficient and gives additional functionalities due to
the use of Java instead of Javascript. However, it keeps the drawback that a
Java Virtual Machine has to be installed in user’s computer, which still is a
weaker requirement than those posed by plug-ins.

Finally, as future work, we are considering the formalization of the
AWMS specification and its proposal to the Open Geospatial Organiza-
tion. This would enable its use in web-based GIS applications as a source
of active maps.

References

1. Open Geospatial Consortium. Open Geospatial Consortium Specifications.
Retrieved February 2007 from http://www.opengeospatial.org

2. Open Geospatial Consortium. Web Map Service Specification. Version 1.3.
August 2004. Retrieved from http://www.opengeospatial.org in February
2007

3. Open Geospatial Consortium. Styled Layer Descriptor. Version 1.0.0. Sep-
tember 2002. Retrieved from http://www.opengeospatial.org/ in February
2007

4. World Wide Web Consortium. Scalable Vector Graphics (SVG) 1.1 Specifi-
cation. January 2003. Retrieved from: http://www.w3.org/TR/SVG11/ in Feb-
ruary 2007

5. Open Geospatial Consortium. Filter Encoding. Version 1.0.0. September
2001. Retrieved from: http://www.opengeospatial.org in February 2007

6. Thomas Brinkhoff. Towards a Declarative Portrayal and Interaction Model for
GIS and LBD. In Proceedings 8th Conference on Geographic Information
Science (AGILE 2005), Estoril, Portugal, 2005, pp. 449-458.

7. Nieves R. Brisaboa, Miguel R. Luaces, José R. Paramá, David Trillo, Jose R.
R. Viqueira. Improving Accessibility of Web-Based GIS Applications. In
Proceedings of the 16th International Workshop on Database and Expert Sys-
tems Applications (DEXA 2005), pp. 490-494. Copenhagen (Denmark) 2005.
IEEE Computer Society.

8. Nieves. R. Brisaboa, Antonio Fariña, Miguel R. Luaces, José R. Paramá, Mi-
guel R. Penabad, Ángeles S. Places, José R Viqueira. Using Geographical In-
formation Systems to Browse Touristic Information. IT&T: Information,
Tourism and Technology, vol. 6, num. 1, pp. 31-46. USA, 2003.

