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Abstract— In this paper, we focus on the problem of preserv-
ing the data confidentiality when sharing the data for clustering.
This problem poses new challenges for novel uses of privacy
preserving data mining (PPDM) techniques. Specifically, this
paper considers the synthetic data generation as a way to
preserve the data privacy.

One of the state of the art synthetic data generators is the
IPSO family of methods. It has been stated that the use of IPSO
to generate synthetic data is appropriate when the user plans
to apply clustering to the data. Moreover, this paper aims to
associate the same property to the FCRM synthetic data gen-
erator, and at the same time, to assess the relationship between
the information loss produced when generating synthetic data
with FCRM and the clustering similarity between the original
and synthetic data.

I. INTRODUCTION

The information age has enabled many organizations to
gather large volumes of data. However, the usefulness of this
data is negligible if meaningful information or knowledge
cannot be extracted from it. Data mining, otherwise known
as knowledge discovery, attempts to answer this need. In con-
trast to standard statistical methods, data mining techniques
search for interesting information without demanding a priori
hypotheses.

A key problem that arises in any collection of data is that
of confidentiality. The need for privacy is sometimes due
to law (e.g., for medical databases) or can be motivated by
business interests. However, there are situations where the
sharing of data can lead to mutual gain. Nevertheless, in
this case, confidentiality issues should be taken into account
and data mining algorithms should be reconsidered from this
point of view. That is, privacy should be preserved.

Privacy preserving data mining [1], [6] is a novel research
direction in data mining and statistical databases [26] where
data mining algorithms are analyzed for the side-effects they
incur in data privacy. The main objective in privacy preserv-
ing data mining is to develop algorithms for modifying the
original data in some way, so that the private data and private
knowledge remain private even after the mining process.
The main consideration in privacy preserving data mining
is twofold. First, sensitive raw data like identifiers, names,
addresses and the like should be modified or trimmed out
from the original database, in order for the recipient of
the data not to be able to compromise another person’s
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privacy. Second, sensitive knowledge which can be mined
from a database by using data mining algorithms should
also be excluded, because such knowledge can equally well
compromise data privacy.

One approach to privacy preserving data mining is based
on cryptography while another approach is based on the
perturbation of the data. The former approximation first
encrypts the original data, and then performs data mining.
Finally the results of the computation are decrypted by
the data owners. This cryptographic approach ensures the
data privacy insomuch as the whole process is done using
encrypted data. The latter approach consists in perturbing the
original data, e.g. introducing some kind of noise in them.
That is, the perturbed data are released for their analysis. The
perturbative approach performs in such a way that the more
distortion the data suffers, the less data utility. Because of
this, the goal is to achieve a good balance between the level
of perturbation, and the data utility, so that the analyses with
the original data are equivalent to the ones on the distorted
data.

In recent years, the perturbative approach has been ex-
panded with a new research trend, the synthetic data gener-
ation. In this case, synthetic data, also considered artificial
data, is generated by constructing a model from the original
data set and using it to randomly generate a new data
set constrained by the model. Although it is possible to
publish the model, third parties usually prefer to receive
the synthetic data. The Information Preserving Statistical
Obfuscation (IPSO) [4] is one of the state of the art synthetic
data generators.

In this paper we study the behavior of the synthetic data
generated by the fuzzy c-regression models (FCRM), using
different data sets, with respect to clustering methods. The
aim of this study is to evaluate whether the synthetic data
generated with FCRM can be used to perform clustering
methods on it. In addition, we want to analyze the rela-
tionship between the similarity of the clustering structures
obtained when doing clustering with the original and syn-
thetic data, and the information loss incurred when releasing
the synthetic data instead of the original data set. We expect
that the higher the similarity, the lower the information loss.

This paper is structured as follows. In Section II, we
give an overview of the FCRM synthetic data generator. In
Section III, we introduce the data utility concept. Then, in
Section IV and Section V we present the clustering methods
analyzed and the clustering similarity measures used, respec-
tively. Finally, the experiments performed are presented in
Section VI and Section VII presents our conclusions.



II. FUZZY c-REGRESSION

Fuzzy c-regression models (FCRM) are a family of objec-
tive functions which can be used to fit switching regression
models to numerical and continuous mixed data. For a given
c (the number of clusters, 1 < c < n), the fuzzy c-
regression algorithm is able to get an estimation for the
parameters of c regression models, together with a fuzzy
c-partition of the data. Let us consider a set of object
data of size n, S = {(x1, y1), . . . , (xn, yn)}, where each
feature vector (xi, yi) has a dependent observation yi ∈ Rt

corresponding to a certain independent observation xi ∈ Rs.
The main difference between fuzzy c-regression models and
the simplest data fitting problems is that the latter assume
that a single functional relationship between x and y holds
for all the data while the former assume the data to be drawn
from c models:

y = fi(x;βi) + ε, 1 ≤ i ≤ c (1)

each βi ∈ Ωi ⊂ Rki , and each εi is a random vector
with mean vector µi = 0 ∈ Rt and covariance matrix
Σi. It must be told that S is unlabeled, so, for a given
feature vector (xi, yi), it is not known which model from 1
applies. Hathaway and Bezdek published in [14] a feasible
solution for this problem. Their approach is based on fuzzy
clustering techniques and is able to produce good estimates
of {β1, . . . , βc} while labeling with a fuzzy label vector each
datum in S. The labeling problem is solved by means of fuzzy
clustering assigning constrained label vectors representing
the membership of each object (xi, yi) to each of the classes
c.

The algorithm for building the Fuzzy c-Regression Models
(FCRM) is an iterative process and has the following steps:

1) Step 1. Given S = {(x1, y1), . . . , (xn, yn)} a set
of object data. Set m > 1 (a reasonable choice is
m = 1.5), specify regression models (1), and choose a
measure of error E = {Eik} so that Eik(βi) ≥ 0 for i
and k and also satisfying the minimizer property [14].
Pick a termination threshold ε > 0 (a choice for ε
in the range 0.0001 to 0.00001 usually yields good
estimates) and an initial partition U (0) ∈ Mf . In our
experiments, we used the Fuzzy c-means [2] algorithm
to get such initial partition. Then set a threshold for
rmax, the maximum number of iterations, so that r =
1, . . . , rmax in case FCRM does not converge (in our
experiments a value of rmax = 30 was used).

2) Step 2. Update the values for the c model parameters
βi = β

(r)
i and then the measure of error Eik(βi) in

fi(xk;βi) that globally minimize (over Ω1×Ω2×· · ·×
Ωc) the restricted function:

ψ(β1, . . . , βc) ≡ Em(U (r), β1, . . . , βc)

The most common example for the measure of er-
ror Eik(βi) is the squared vector norm Eik(βi) =
‖fi(xk;βi)− yk‖2. In our case this second step can
be specified by fixing Ωi = Rs, fi(xk;βi) =
((xk)Tβi) and 1 ≤ i ≤ c, so, the objective function

Em(U (r), β1, . . . , βc) becomes a fuzzy multi-model
extension of the least squares criterion for model
fitting:

Eik(βi) = (yk − (xk)Tβi)2. (2)

In addition, the new values for the regression model
parameters β(r)

i , 1 ≤ i ≤ c can be computed using
the following explicit formula if the columns of X are
linearly independent and U (r)

ik > 0 for 1 ≤ k ≤ n:

β
(r)
i =

[
XTDiX

]−1
XTDiY (3)

where X denotes the matrix in Rn×s having xk as its
kth row. Y denotes the vector in Rn having yk as its
kth component, and Di denotes the diagonal matrix in
Rn×n having (U

(r)
ik )m as its kth diagonal element.

3) Step 3. The aim of this step is to update U (r) →
U (r+1) ∈ Mf , interpreting Uik as the importance or
weight attached to the extent to which the model value
fi(xk;βi) matches yk (fuzzy membership on all c
models). The update is performed by the next formula:

Uik =

 c∑
j=1

(
Eik

Ejk

) 1
m−1

−1 if Eik > 0 for 1 ≤ i ≤ c

(4)
In case we encounter some Eik = 0, its value can be
replaced by adding a small positive number (we used
10−100 in our experiments), so step 3 can be performed
anyway.

4) Step 4. This step checks the termination of the algo-
rithm. If the difference between Ur and Ur+1 corre-
sponding to two consecutive iterations is greater than
the termination threshold, or r is less or equal to rmax

then r := r + 1 and go to step 2. Otherwise stop.

A. Using fuzzy c-regression to generate synthetic data

Once we have introduced all the proper concepts relative
to our work, the next step is to combine fuzzy clustering
and switching regression models to generate synthetic data.
In the previous section we have pointed out the formulas we
use to implement the Fuzzy c-Regression models and now
we present the basic algorithm to generate the synthetic data
(Algorithm 1).

III. DATA UTILITY

As we have stated in the introduction, we want to analyze
the relationship between the similarity of the clustering
structures obtained when doing clustering with the original
and synthetic data, and the information loss incurred when
releasing the synthetic data instead of the original data set.
The aim of information loss measures is to assess the validity
of the synthetic data for posterior analysis. In fact, it is
expected that the results of any analysis using the perturbed
data are similar to the results of the same analysis using the
original data.

Specifically, the FCRM synthetic data generator produces
new synthetic data with an associated information loss in-
versely proportional to the number of cluster representatives,



Algorithm 1: Using FCRM to generate synthetic data
Data: S = {(x1, y1), . . . , (xn, yn)}, m, ε, rmax

Result: S =
{

(x1, y
′

1), . . . , (xn, y
′

n)
}

begin
Get initial partition U (0) (e.g., Fuzzy c-Means);
r := 1;
while

∣∣Ur − Ur+1
∣∣ > ε and r < rmax do

Update the values for the c model parameters
βi = β

(r)
i and then the measure of error Eik(βi)

applying Equations 2 and 3;
Update the fuzzy membership on all c clusters
applying Equation 4;
r := r + 1;

foreach (xs, ys) ∈ S do
j := arg maxci=1Uis;
y
′

s := fi(xs;βj);

which corresponds to the parameter c of the FCRM, see
Figure 1. This property of the FCRM synthetic data generator
has been assessed in a previous work [5], and in this paper
we want to assess whether the larger the number of clusters,
the similarity between the clustering structures obtained from
the original and the synthetic data proportionally increases.

Furthermore, the information loss measures naturally de-
pend on the analyses to be performed. Due to this, some
general information loss measures have been developed. The
Probabilistic Information Loss (PIL) [20] is a widely used
information loss measure that compares some basic statistics
for the original and the perturbed (i.e., synthetic) data set.

Fig. 1. Probabilistic Information Loss (PIL) when FCRM generates
synthetic data for different values of c (horizontal axis).

IV. CLUSTERING METHODS ANALYZED

To evaluate the synthetic data generated by FCRM with
respect to clustering we have compared the clustering struc-
tures obtained from the original data and the ones obtained
from the synthetic data. Therefore, we need to apply some
clustering methods, either crisp or fuzzy. In case of crisp
methods we have applied the c-means (CM), and in case
of fuzzy methods we have considered the fuzzy c-means

(FCM), the noise clustering (NC) and the fuzzy possibilistic
c-means (FPCM). We proceed now to describe each one of
the mentioned clustering methods.

• c-means (CM). The c-means algorithm was first pro-
posed by Stuart Lloyd in 1957 but later published in
a journal in 1982 [19]. The c-means is one of the
simplest unsupervised learning algorithms. The proce-
dure follows a simple and easy way to classify a given
data set through a certain number of clusters (assume c
clusters) fixed a priori. Every iteration of this algorithm
is composed of the following steps: (i) place c points
into the space represented by the objects that are being
clustered. These points represent initial group centroids,
(ii) assign each object to the group that has the closest
centroid and (iii) when all objects have been assigned,
recalculate the positions of the c centroids. A loop
has been generated. As a result of this loop we may
notice that the c centroids change their location step by
step until no more changes are done, i.e. the algorithm
converges. Although it can be proved that the procedure
will always terminate, the c-means algorithm does not
necessarily find the most optimal configuration, corre-
sponding to the global objective function minimum. The
algorithm is also significantly sensitive to the initial
randomly selected cluster representatives. The c-means
algorithm can be run multiple times to reduce this effect.

• Fuzzy c-means (FCM). The fuzzy c-means algo-
rithm [2] is one of the most widely used methods in
fuzzy clustering. It is based on the concept of fuzzy
c-partition, introduced by Ruspini in 1969 [25]. Fur-
thermore, the FCM can be seen as the fuzzified version
of the c-means algorithm, i.e. FCM allows one piece
of data to belong to two or more clusters. From a
conceptual point of view, the underlying data categories
are considered as fuzzy. Then, with a set of objects
X = {x1, x2, . . . , xN} evaluated in terms of attributes
A = {A1, A2, . . . , AM} fuzzy c-means makes a fuzzy
partition of the objects X . Therefore, considering c
categories (C = {C1, . . . , Cc}) the problem turns out
to be the determination of c membership functions
µ1, µ2, . . . , µc, where µi is the membership function
corresponding to Ci. µi are such that for each object
x their membership to all category C adds to one.
The FCM algorithm is also defined in terms of a func-
tion to minimize, and a solution is found by iterating
over a loop similar to the one for the c-means. In
this case, the function to minimize also considers a
parameter m, which is the degree of fuzziness. The
larger the m, the fuzzier the clusters. Specifically, when
m = 1, the output of the algorithm is a crisp solution
that corresponds to the c-means. Again, the fuzzy c-
means procedure does not necessarily find the most
optimal configuration.

• Noise Clustering (NC). The noise clustering algorithm
was first introduced in [8]. This method is based on
FCM but introduces the concept of a noise cluster and



defines a similarity measure for this noise cluster. Ac-
cordingly, the NC algorithm defines an additional cluster
that will collect the noisy data points with the special
property that it is always at the same distance from every
point in the data set. Therefore, this clustering technique
reduces the effects of noisy data in the clusters obtained
by FCM.

• Fuzzy Possibilistic c-means (FPCM) This clustering
model is an extension of the possibilistic c-means
(PCM) [16], which solves the noise sensitivity de-
fect of FCM, and overcomes the coincident clusters
problem of the PCM due to its sensitivity to good
initializations. The FPCM [23] algorithm was proposed
by N.R.Pal, K.Pal, and J.C.Bezdek, and it includes both
the possibility(typicality) concept from PCM, and the
membership concept from FCM. Hence, membership
can be interpreted as a relative typicality that measures
the degree to which a point belongs to one cluster
relative to other clusters and is used to crisply label a
data point. In addition, the possibility can be viewed as
absolute typicality and it measures the degree to which
a point belongs to one cluster taking into account all
other data points. In this way, possibility can be used to
reduce the effect of outliers. Altogether, combining both
membership and possibility we obtain better clustering
results.

V. COMPARING CLUSTERING STRUCTURES

After applying the clustering methods to either the origi-
nal and synthetic data, we want to compute the similarity
between both cluster structures. Even though a large number
of evaluation criteria and similarity indexes for clustering
structures have been proposed in the literature, we have just
considered some of them. In case of crisp clustering we
have taken into account the Rand and the Jaccard Index,
whereas the Fuzzy Rand index and the α-cuts distance where
considered in case of fuzzy clustering.
• Rand Index (RI). The Rand index [24] is a well-known

measure of similarity between two crisp partitions of
a data set. Let P = {P1, · · · , Pk} ⊂ 2X and Q =
{Q1, · · · , Qt} ⊂ 2X be two crisp partitions of a finite
set X = {x1, x2, · · · , xn, } with n elements, which
means that pi 6= ∅, Pi ∩ Pj = ∅ for all 1 ≤ i 6= j ≤ k,
and P1 ∪ P2 ∪ · · · ∪ Pk = X (and analogously for Q).
Let C = {(xi, xj) ∈ X ×X|1 ≤ i < j ≤ n} denote the
set of all tuples of elements in X2. We say that two
elements (x, x′) ∈ C are paired in P if they belong to
the same cluster, i.e., if there is a cluster Pi ∈ P such
that x ∈ Pi and x′ ∈ Pi. Moreover, we distinguish the
following subsets of C:

– C1 ≡ the set of tuples (x, x′) ∈ C that are paired
in P and paired in Q.

– C2 ≡ the set of tuples (x, x′) ∈ C that are paired
in P but not paired in Q.

– C3 ≡ the set of tuples (x, x′) ∈ C that are not
paired in P but paired in Q.

– C4 ≡ the set of tuples (x, x′) ∈ C that are neither
paired in P nor in Q.

Obviously, C1, C2, C3, C4 is a partition of C, and a+b+
c + d = |C| = n(n − 1)/2, where a = |C1|, b = |C2|,
c = |C3|, and d = |C4|. The tuples (x, x′) ∈ C1 ∪
C4 are the concordant pairs, i.e., the pairs for which
there is agreement between P and Q, while the tuples
(x, x′) ∈ C2∪C3 are the discordant pairs for which the
two partitions disagree. The Rand index is then defined
by the number of concordant pairs divided by the total
number of pairs:

RI(P,Q) = a+d
a+b+c+d

Thus defined, the Rand index is a similarity measure
which takes values between 0 and 1, where 1 means
maximum similarity, i.e., P = Q, and consequently, 0
means maximum dissimilarity.

• Jaccard Index (JI). The Jaccard index, also known
as the Jaccard similarity coefficient, is a statistic used
for comparing the similarity and diversity of sample
sets. The Jaccard index measures similarity between two
crisp partitions of a data set, and is defined as follows:

JI(P,Q) = a
a+b+c

• Fuzzy Rand Index (FRI). The Fuzzy Rand index [15]
is a fuzzy variant of the Rand index which is able to
compare any pair of fuzzy partitions. Given a fuzzy
partition P = P1, P2 · · ·Pk of X, each element x ∈ X
can be characterized by its membership vector P(x) =
(P1(x), P2(x) · · ·Pk(x)) ∈ [0, 1]k, where Pi(x) is the
degree of membership of x to the ith cluster Pi. There
exists a fuzzy equivalence relation on X in terms of
a similarity measure on the associated membership
vectors. Generally, this relation is of the form

EP (x, x′) = 1− ‖P(x)− P(x′)‖
where ‖·‖ is a proper distance on [0, 1]k. The basic
requirement on this distance is that it yields values
in [0, 1]. Now, a pair (x, x′) is considered as being
concordant in so far as P and Q agree on their degree of
equivalence. Then the degree of concordance is defined
as

1− |EP(x, x′)− EQ(x, x′)| ∈ [0, 1]

Analogously, the degree of discordance is
|EP(x, x′)− EQ(x, x′)|

Finally, the distance measure on fuzzy partitions is de-
fined by the normalized sum of degrees of discordance:

d(P,Q) =
∑

(x,x′)∈C |EP(x,x
′)−EQ(x,x

′)|
n(n−1)/2 |

Likewise,
1− d(P,Q)

corresponds to the normalized degree of concordance.
Hence, it is a generalization of the Rand index for fuzzy
partitions.

• α-cuts. To compare the fuzzy clustering structures we
have considered, in addition to the FRI, the α-cuts
distance. In this distance, all those elements with a
membership value larger than α have their membership



assigned to the value 1. Then, we have computed the
absolute distance between memberships. In case of
binary memberships, the α-cuts distance corresponds
to the Hamming distance. This distance has been used
before to compare clustering structures in [17].

VI. EXPERIMENTS

We have organized the experiments considering the crisp
clustering and the fuzzy clustering separately. In both cases
the analysis is done by constructing pairs of files of the
form (original, synthetic), and then computing the clustering
on each file. Once each pair of clustering structures are
built (i.e., crisp or fuzzy partitions), we obtain the clustering
similarities by computing the different indexes and distances
mentioned in Section V. Moreover, this process is repeated
twenty times and we obtain the average clustering similari-
ties.

Furthermore, we have considered two original files named
as orig4 and orig9. These files have been extracted from
a test data [3] used in the European project CASC. We
refer to the ”Census” dataset which contains 1080 records
with 13 numerical attributes labeled from v1 to v13. This
dataset was used in the CASC project and in several other
papers [7], [9], [11], [12], [10], [18], [27]. In orig9 there are 9
dependent variables v1, v3, v4, v6, v7, v9, v11, v12, v13, and
3 independent variables, v2, v8, v10, while in orig4 there are
4 dependent variables v4, v7, v12, v13, and 9 independent
variables, v1, v2, v3, v5, v6, v8, v9, v10, v11.

Each one of the above original files has been perturbed by
creating new synthetic data with two different synthetic data
generators, the IPSO-A, IPSO-B, and IPSO-C methods [4]
and the FCRM. Although this paper focuses on the FCRM
synthetic data generator, we also considered the IPSO family
of methods because, as stated in [17], the use of IPSO to
generate synthetic data is appropriate when the user plans to
apply clustering algorithms to the data. It is for this reason
that we compare along these experiments the results obtained
when generating synthetic data either with IPSO or FCRM.

Applying the IPSO family of methods to the orig4 original
file we obtained three protected files named as anon4a,
anon4b, and anon4c corresponding to the synthetic data
generated with IPSO-A, IPSO-B, and IPSO-C respectively.
In the same way, applying the IPSO family of methods to
the orig9 original file we obtained three more protected files
named as anon9a, anon9b, and anon9c.

On the other hand, we have protected both the orig4,
and orig9 original files by generating new synthetic data
with FCRM. In this case we have run the FCRM with
different values of its parameters m and c. In case of m, the
degree of fuzziness, we have considered two possible values,
m1 = 1.5, and m2 = 2, whilst the possible values for c, the
number of cluster representatives, are c = 3·i, i = 1, · · · , 10.
Therefore, we have protected each one of the original files
using FCRM as many times as the Cartesian product m× c.
This protected files will be referenced within this section as
mV (4|9) for V = 1, 2.

Fig. 2. Indexes computed from the clustering structures of c-means for
different values of c (horizontal axis). Rand index (RI) and Jaccard index
(JI) for the orig4 original file and protection methods IPSO-A, IPSO-B and
IPSO-C (top) and FCRM (bottom) with m1 and m2.

Fig. 3. Indexes computed from the clustering structures of c-means for
different values of c (horizontal axis). Rand index (RI) and Jaccard index
(JI) for the orig9 original file and protection methods IPSO-A, IPSO-B and
IPSO-C (top) and FCRM (bottom) with m1 and m2.



A. Performing crisp clustering

In case of crisp clustering, we have built the clustering
structures by means of c-means bootstrapping it with a
maximum number of iterations of 30 and a termination
threshold of 0.00001. If we consider separately the cases
where there are 4 and 9 dependent variables, we obtain the
Figure 2 when evaluating the synthetic data generated with
the three variants of IPSO, and the Figure 3 when evaluating
the synthetic data generated with FCRM for different degrees
of fuzziness (m1 and m2). These figures show that the
FCRM and the IPSO synthetic data generators obtain similar
clusters, so we have that the FCRM behaves with respect to
the crisp clustering almost as good as IPSO does.

B. Performing fuzzy clustering

In case of fuzzy clustering, we have built the clustering
structures by means of three different clustering methods, the
FCM, NC and FPCM. All of them have been parameterized
with a maximum number of iterations of 30 and a termination
threshold of 0.00001. In addition to the previous parameters,
in case of FPCM η = 0.5. To assess the similarity between
the fuzzy partitions obtained by the previous clustering
methods, we have computed the Fuzzy Rand index (FRI) and
the α-cuts distance for c in {3, 6, 9, 12, 15, 18, 24, 27, 30}.

In case of FCM, we have protected both the orig4 and
orig9 original files with the IPSO family of methods and
the FCRM synthetic data generator. Figure 4 shows the
α-cuts distances for all values of α in {0.2, 0.4, 0.6, 0.8}
when protecting orig4 with IPSO-C and FCRM with m2.
In the same way, the Figure 5 shows the α-cuts distances
when protecting the orig9 original file. In both cases, the
m parameter of FCM was fixed to 2. These figures reflect
the similarity between the results obtained when protecting
with IPSO-C or FCRM. There is just a slightly difference
when c = 3, in this case the distance is a bit higher when
protecting orig4 with IPSO-C than FCRM. However, when
protecting orig9, the higher distance is obtained by FCRM.

On the other hand, Figures 6 and 7 show the FRI computed
when protecting orig4 and orig9, respectively. We have used
the same parameters as in the previous experiment but
considering also m1 when protecting with FCRM and in
this case the m parameter of FCM was fixed to 1.5. Although
both figures show some differences in the FRI value for small
values of c, both IPSO and FCRM converge to FRI values
around 0.8. Nevertheless, FCRM reaches higher FRI values
than IPSO, in both the orig4 and orig9 cases. Hence, FCRM
keeps the clustering properties, at least, in the same way as
IPSO.

In case of NC, we have built the clustering structures
from the orig4 and orig9 original files and the
corresponding protected files for m = 1.5 and c in
{3, 6, 9, 12, 15, 18, 24, 27, 30}. Specifically, the protection
has been done by IPSO-C and FCRM with m = 1.5.
Figures 8 and 9 show the α-cuts distances when considering
4 or 9 dependent variables, orig4 and orig9, respectively.
Following the same rationale of the previous experiments

Fig. 4. α-cuts distances for fuzzy clusters obtained by Fuzzy c-means
from the original file orig4 for m2 and different values of c (horizontal
axis). Data protected using IPSO-C (top) and FCRM with m2 (bottom).

Fig. 5. α-cuts distances for fuzzy clusters obtained by Fuzzy c-means
from the original file orig9 for m2 and different values of c (horizontal
axis). Data protected using IPSO-C (top) and FCRM with m2 (bottom).

with FCM, these figures show a similar α-cuts distance
curve when the protection has been done by IPSO-C or
FCRM. Again the higher differences are found when c < 9,
but both synthetic data generators converge to distances in
between 0.5 and 0.1. These results show that, the synthetic
data generated by FCRM, as well as when it is generated
by IPSO-C, is appropriate when clustering algorithms are
planned to be applied to the data.



Fig. 6. Fuzzy Rand index for fuzzy clusters obtained by Fuzzy c-means
from the original file orig4 for m1 and different values of c (horizontal
axis). Data protected using IPSO-A, IPSO-B and IPSO-C (top) and FCRM
(bottom) with m1 and m2.

Fig. 7. Fuzzy Rand index for fuzzy clusters obtained by Fuzzy c-means
from the original file orig9 for m1 and different values of c (horizontal
axis). Data protected using IPSO-A, IPSO-B and IPSO-C (top) and FCRM
(bottom) with m1 and m2.

Fig. 8. α-cuts distances for fuzzy clusters obtained by Noise clustering
from the original file orig4 for m1 and different values of c (horizontal
axis). Data protected using IPSO-C (top) and FCRM with m1 (bottom).

Fig. 9. α-cuts distances for fuzzy clusters obtained by Noise clustering
from the original file orig9 for m1 and different values of c (horizontal
axis). Data protected using IPSO-C (top) and FCRM with m1 (bottom).

Finally, Figure 10 aims to compare the FRI’s curve shapes
for the different fuzzy clustering algorithms considered in
this paper (i.e., FCM, NC and FPCM). The clustering sim-
ilarity for FCRM when c = 3 is worse than IPSO-C, but
for larger c values FCRM obtains slightly better similarities
than IPSO-C in all the three cases. Therefore, FCRM is
appropriate when clustering either with FCM, NC or FPCM.
In this experiment we have considered orig4 as the original



Fig. 10. Fuzzy Rand index values from the clustering structures of Fuzzy
c-means (FCM), Noise clustering (NC) and Fuzzy Possibilistic c-means
for m1 and different values of c (horizontal axis). Data protected using
IPSO-C (top) and FCRM with m1 (bottom).

file and we have generated the synthetic data with IPSO-C
and FCRM with m = 1.5.

VII. CONCLUSIONS

In this paper we have evaluated the FCRM synthetic data
generator with respect to crisp and fuzzy clustering. We
conclude that the generation of synthetic data by FCRM is as
appropriate as it is when generating synthetic data with the
IPSO family of methods and this protected data is planned to
be studied or modeled with either crisp or fuzzy clustering
algorithms.

In addition, we can derive from the results that the FRI
clustering similarity measure is inversely proportional to the
probabilistic information loss incurred when replacing the
original data set with the synthetic data generated by FCRM.
Similarly, the α-cuts clustering similarity, as it is a distance,
is directly proportional to the probabilistic information loss.
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