
New approaches for the school timetabling problem ∗

Ana Cerdeira-Pena1 Luisa Carpente2 Antonio Fariña1 Diego Seco1

1Database Laboratory 2Department of Mathematics
University of A Coruña

Campus de Elviña s/n. A Coruña, 15071. Spain
{acerdeira, luisacar, fari, dseco}@udc.es

Abstract

School timetabling is a hard task that educational cen-
ters have to perform regularly and which implies a large
waste of time and human efforts. For such reason design-
ing techniques for the automatic generation of timetables is
still of interest. Even though many contributions exist, the
characteristics of the problem vary depending on the school
policies, the country (laws), and other particular variables.

The complexity of this problem makes it difficult to find
an optimal solution, so approximated techniques are tra-
ditionally used in practice. In this paper, we focus in the
Spanish school timetabling problem and present several ap-
proaches to deal with it. The first technique proposed is
based on the random non ascendent method (RNA). Then
we provide several genetic algorithms which differ on the
policies used for selecting how the next generation is cre-
ated (including elitism) as well as on the levels of mutation
considered. Finally, we study how to combine the two previ-
ous approaches. We run experiments both on synthetic and
real scenarios in order to compare all the proposals. Even
though the RNA and some of the pure genetic algorithms ob-
tain good results in practice, we show that by joining RNA
with genetic algorithms we gain stability in the results.

1. Introduction

Timetabling problems arising from educational institu-
tions are related to the task of distributing teachers, peri-
ods of time, lessons and available resources (classrooms,
labs,...) in such a way that some particular requirements are
satisfied. Traditionally, depending on the institution these
problems can be classified in three main groups: university,
school, and exam timetabling problems.

∗Funded in part by MEC (SEJ2005-07637-C02-02) and Xunta de
Galicia (PGIDIT06PXIC207038PN) for the second author, and by MEC
(TIN2006-15071-C03-03) and AECI (A/8065/07) for the first group.

In this paper, we focus in the school timetabling prob-
lem. Particularly, we are interested in all those cases where
it is necessary to match fixed periods of time with lessons
that are given by certain teachers. Under this context, dif-
ferent constraints have to be considered. Some of them,
referred as hard constraints have to be satisfied for a solu-
tion to be considered valid (for example, a teacher cannot
teach two lessons at the same time). Others, referred as soft
constraints, reflect the preferences given by the teachers or
by the policies of the school (for example, teachers usually
want to minimize the holes in their schedule, and a school
policy could aim at avoiding practising sports after lunch).
Therefore, the accomplishment of hard constraints indicates
the feasibility of a solution, whereas the soft constraints per-
mit to quantify its goodness.

The timetabling problem we consider (including all the
constraints) admits a mathematical programming represen-
tation [7], so an exact solution can be obtained by apply-
ing well-known techniques in this field [9]. However, it is
known to be a NP-complete problem [4, 6, 10]. In practice,
the high dimensionality of the problem makes it impossi-
ble to find an exact solution, and approximated methods are
needed to tackle it. In most cases, they lead to good quality
solutions in a reasonable amount of time, even at the ex-
pense of not guaranteeing that the best solution is reached.

We can find in the timetabling literature many works em-
ploying these kind of techniques. In [1] they give a sur-
vey oriented to the university timetabling problem. A graph
coloring-based algorithm is shown in [3] also for the same
scope. For the school timetabling field, we found solutions
that are based on the use of genetic algorithms [2], but un-
fortunately they meet neither the requirements nor the struc-
ture of our problem. An interesting paper from Schaerf
[7] discusses how to adapt both local search and tabu al-
gorithms to this context.

In this work, we study a local search technique known as
Random Non Ascendent Method (RNA) as well as two vari-
ants of genetic algorithms adapted to deal with our problem.
The later differ basically in how new populations are ob-

tained, depending on whether parents having descendence
can be chosen again or not. Moreover, we have obtained
different variations of both genetic algorithms by applying
distinct criteria for mutation and elitist policies. We com-
plete our work with experimental results obtained for differ-
ent synthetic scenarios. We first compare these techniques
separately, and then we also study the effects of combining
RNA with the others. Finally, we also test a reduced set of
our best algorithms in a real case scenario.

In small scenarios, the three original algorithms man-
age hard constraints quite effectively, but RNA is usually
the best choice for dealing with the soft constraints in most
cases, with the unique exception of a variation of a genetic
algorithm that uses an elitist policy. In larger scenarios,
RNA does not behave so well, and some variants of the ge-
netic algorithms outperform it.

The paper is organized as follows. In Section 2 we de-
fine the framework of the school timetabling problem we
deal with. Then in Section 3 we describe the techniques de-
veloped. Section 4 shows the experimental results obtained
for the synthetic scenarios. Section 5 analyze the behavior
of some of the best alternatives in a real case. Finally, the
conclusions of our work are discussed in Section 6.

2. The school timetabling problem

2.1. Overview

Considering the existence of groups of students, teachers
who teach particular subjects to those groups, and a fixed
scheduling of periods, the school timetabling problem con-
sists in finding in which period of time a given teacher has
to teach a certain subject to a specified group. Additionally,
two different types of constraints have to be considered
during this process: hard and soft constraints. The first
ones refer to constraints that must be satisfied to obtain a
feasible solution of the problem, whereas the second ones
permit to measure the goodness of a solution. That is, a
good valid timetable must satisfy the hard constraints, and
it should also fulfill as many soft constraints as possible.
Common examples of hard constraints are that a teacher
can only teach a lesson to one group at the same time, and
that a given group cannot receive more than one lesson at
the same time (possibly by different teachers). Soft con-
straints usually depend on school policies or on teacher’s
preferences (i.e. minimizing the amount of periods with
lessons, minimizing the holes in the timetable, avoiding
some subjects at a specified time, etc).

2.2. Constraints involved

As an optimization problem, the school timetabling
problem can be defined by a mathematical formulation that
describes the feasible regions through a solution space; and
an objective function, which permits to lead a search pro-
cess towards an optimal solution. On the one hand, from
a theoretical point of view, the constraints that define such
space and must be satisfied by a solution are actually the
hard constraints. On the other hand, each soft constraint
has usually an assigned weight and contributes to the value
of the objective function. Therefore, if such constraint does
not hold, the value of the objective function will increase,
and consequently, the quality of the solution worsens.

In practice, we are interested in managing both kind of
constraints with a function called cost function that leads the
search process for a solution of the problem. The algorithms
we present in this paper use such cost function. Therefore,
they are search algorithms that move not only through the
solution space, but through a wider search space that in-
cludes both feasible and non feasible solutions. As a con-
sequence, during the search of a good solution, they have
to be able to distinguish between feasible and non feasible
solutions, as well as considering the goodness of a given
solution. It seems that it could worth to design search al-
gorithms that could move only through the feasible space
towards a good solution. However, in most problems, it
would be very difficult to find an initial feasible solution to
start with. This is the reason why we added the distance to
feasibility to the objective function that permits us to deter-
mine the optimality of an obtained solution. Finally, it is
important to point out that in order to lead the search pro-
cess towards feasible regions, the hard constraints are given
a higher weight than that of the soft constraints, but both of
them are included in the evaluation of the cost function.

Before describing the constraints considered by our al-
gorithms, let us define the term period, shown as the unit
of time in which a lesson is taught. So the weekly sched-
ule is divided into periods, excepting breaks and free hours
that are not considered periods. We define a class (referred
to different concepts in the literature) as the association be-
tween a subject (such as Maths, Foreign language, etc.) and
one or more groups of students that are previously defined
by the educational institution. Groups are named depend-
ing on the level (1st, 2nd,... course) and on how all the
students in the same educational level are partitioned (A, B,
C,...). For example, as the Mandatory Secondary studies are
known as E.S.O. in Spain, we will refer as 2A E.S.O. to the
first partition of students (A) in the second level of E.S.O.
Therefore, we will have classes such as:

• 1A E.S.O.-Maths: Maths in the group 1A E.S.O.

• 1A/B/C E.S.O.-Computer Science: an association of

students coming from different groups (in this case,
from 1A E.S.O., 1B E.S.O. and 1C E.S.O.) who are
taught Computer Science subject together.

2.2.1 Hard constraints & Soft constraints

We describe in detail the different constraints we take
into account in our algorithms.

Hard constraints. Four constraints are used to measure the
feasibility of a solution:

• Overlaps: They avoid the possibility of a class been
taught by more than one teacher in the same period. It
also avoids that classes sharing resources (ie. a class-
room, lab, etc.), as well as, classes in which the same
group is involved, could be assigned to the same pe-
riod. The case of a teacher giving more than one lesson
at the same time is not considered as our representation
of the problem avoids this issue (see Section 3).

• Simultaneity: Two classes are defined as simultaneous
classes if they are taught by different teachers at the
same time. Sometimes a group must be divided into
two or more subgroups that are taught different sub-
jects (for example, the case of elective subjects) by dif-
ferent teachers in different classrooms simultaneously.
We also consider classes that must be divided into two
(or more) subclasses. That is, where the group asso-
ciated to that class is divided into two or more sub-
groups that receive the same lesson possibly in a dif-
ferent place and with a different teacher. A good ex-
ample would be a group of 50 students doing an indi-
vidual exercise in two different rooms with 25 comput-
ers each (and two different teachers). In this case, the
class might be divided into as many subclasses (simul-
taneous or not) as subgroups are needed. In the exam-
ple above, if only one computers room were available,
both subclasses would not occur simultaneously.

• Unavailability: It considers periods when a class can
not be given or when a teacher cannot teach.

• Consecutiveness: This constraint checks whether a
distribution of hours for a pair teacher-class is fol-
lowed. For example, some practical lessons should be
taught in two consecutive periods of time.

As the search space of our algorithms avoids some typical
non-feasible scenarios, some constraints are not considered
hard. For example, a class not being given all their lectures,
or a lecture not taught at an unchangeable period.

Soft constraints. According to the preferences shown in
Spanish schools, we show some interesting constraints that
a schedule should try to fulfill:

• Overuse: It refers to the number of periods per day
in which a teacher gives its lessons, over its specified
maximum of periods per day.

• Underuse: When teachers have preferences on their
minimum number of periods per day, it indicates the
number of periods under such minimum.

• Holes: We consider the number of empty periods be-
tween two consecutive periods where a teacher is as-
signed a class. Breaks and free-time periods are not
considered holes.

• Splits: They consider the number of periods between
two non consecutive assignments to a same class in the
same day.

• Groups: Assuming a specified maximum of periods
per day for an association teacher-class, it considers
the number of exceeding periods in such day. This
constraint is only considered if a maximum number of
consecutive periods (related with consecutiveness) for
the pair class-teacher is not specified.

• Undesired: Assuming that there are periods in which
a teacher would prefer not to teach, this constraint in-
dicates the number of such periods where that teacher
is assigned a class. This constraint is the soft version
of the mandatory unavailability constraint (referring to
teachers).

2.3. Cost function

The constraints described in the previous section are in-
cluded into a function that associates a cost value to a given
solution. Such value can be used to compare the goodness
of different solutions. This function is defined as follows:

Definition 1 Let S be the search space; s ∈ S, a solution;
N , the number of constraints considered and fi(s) the value
of a specific function which scores the number of conflicts
of the ith constraint for the solution s. Then the cost func-
tion Fc(s) is defined as: Fc(s) =

∑N
i=1 fi(s).

We can see that the lower the value Fc(s) for a given
solution s, the more quality of s. Therefore, the school
timetabling problem can be shown as the search for the so-
lution si ∈ S such that Fc(si) = mins∈S Fc(s).

Notice that we measure both the distance to feasibility,
and the goodness of the solution. Therefore, by giving more
weight to the hard constraints than to the soft ones, our al-
gorithms lead the search process towards valid solutions.
Additionally, by varying the weights of the soft constraints
a given school can adjust the importance of the involved
preferences.

3. Algorithms

In this section we first describe the representation of the
problem used in our algorithms. Then we describe three
different techniques to solve our timetabling problem (the
first one is a RNA-based and others are based on genetic
algorithms). Finally, we combine them obtaining two new
hybrid algorithms. All of them are heuristic-based search
methods which try to reach a good quality solution at a
reasonable computational cost, even though it is not guar-
anteed its optimality or feasibility. This approach is com-
monly used in optimization problems which belong to the
NP-complete class, as well as, in those ones that can be
solved with an exact method, but whose solution is not com-
putationally feasible.

3.1. Previous concepts

3.1.1 School timetabling problem representation

Many different representations have been chosen when
tackling this problem, among them [5, 8]. In our case, we
used a teacher-oriented representation. Hence, timetable is
represented as a two-dimensional matrix containing in each
cell (i, j), the class given by the ith teacher at the jth pe-
riod. As shown before, this representation avoids implicitly
the case of a teacher giving more than one class at a same
time.

3.1.2 Underlying movements

Although our algorithms represent different approaches, all
of them need to traverse the search space to find good so-
lutions. Traversing such space is done through moves. We
defined two kind of moves: i) simple-moves, that are ob-
tained by swapping two distinct values in a given row of the
timetable. Obviously, moves including either the swap of
identical classes or the swap of empty cells are skipped; and
ii) double-moves that are the combination of two simple-
moves when the first move leads to an unfeasible scenario.
Otherwise, it consists just in the first simple-move.

Notice that the search space remains connected and any
solution si can be reached from any other sj in a finite num-
ber of moves.

3.1.3 Initial solution

Our search algorithms need to start, at least, with an initial
solution. Genetic algorithms need more than just one solu-
tion as they have to begin with a initial population of indi-
viduals. From that starting point, they navigate through the
search space by means of moves. An initial solution can be
provided a priori, for example, by starting with a previous
timetable. However, in most cases, a random initial solution

is generated. Actually a greedy procedure can be used to
minimize the conflicts generated by some constraints such
as overlaps and unavailabilities.

3.2. RNA Search

Following the RNA local search technique, we have de-
veloped an algorithm which, starting from an initial solu-
tion, iteratively moves from a solution to another doing
double-moves. These are repeated until they make no im-
provements during a given number of iterations. It keeps
track of the current best solution (sb) at each stage, and by
applying those moves generates a new solution si, trying to
improve the value of Fc(sb). When Fc(si) ≤ Fc(sb), si

becomes the new best solution.

3.3. Genetic algorithms

Genetic algorithms are included into a branch of the
evolutionary computation (EC) field called evolutionary al-
gorithms (EAs), and base their operation on the evolution
mechanism, in particular, on natural selection and inheri-
tance features. Those algorithms do a simultaneous search
in different regions of the search space. Starting with a pop-
ulation, a set of individuals or potential solutions, best can-
didates are selected based on their fitness value which mea-
sures the quality of each individual. These will be the par-
ents of a new group of individuals obtained by modifying
(recombining and mutating) the previous ones, which will
compose a new population to be used in the next iteration
of the algorithm. In all this process, both genetic operators
and selection technique play an important role. The first
ones determine how the genetic information is combined or
modified. Among them, the most relevant are crossover and
mutation, which allow passing information from parents to
offspring, and jumping from a point to another of the search
space, guaranteeing the genetic diversity, respectively. The
second ones, decide what individuals will become parents
of a new population. Many alternatives are known, but we
will explain below those involved in our algorithms.

We consider a solution to our school timetable problem,
that is, a timetable, as an individual, and obviously a set of
them, as a population. The fitness value will be given by our
cost function evaluation and we will be doing a mutation by
means of a simple-move. We define the one point crossover
that randomly selects a crossover point within the timetable,
in such a way that all rows from the first one to that point are
inherited from one parent and the rest ones, from the other.
We have developed two main different approaches:

Tournament (GAT) Starting with a population randomly
generated, two pairs of individuals are selected and then the
best candidate of each one is chosen, according to its fit-
ness value. In this way, the parents of the next generation

are obtained. New children result from applying the defined
crossover operator and they will mutate at a given probabil-
ity before being inserted into the population. The process is
then repeated, updating the best solution found among the
individuals up to now, and it stops when a certain number
of cycles is completed. As can be noticed, some individuals
can be selected as parents more than once, something that
will not happen in the following approach.

Four Children Tournament (GAT4C) The main differ-
ence with the previous algorithm is that once two individu-
als are chosen to form a pair they are discarded, so they will
never be chosen again. Hence, the size of a population must
be multiple of four and also four children must be created
in each iteration. The rest of the operation follows the same
guidelines than the previous algorithm.

3.4. Hybrid algorithms

We can combine the previous techniques to study the
performance of two different basic approaches: RNA and
genetic algorithms. We check the usefulness of mutation as
the way to avoid local minima. Thus, we have developed
two new algorithms:

Tournament & RNA (GAT & RNA) In this approach,
Tournament is alternated with RNA until a certain number
of iterations is reached. First, a Tournament phase is per-
formed. It is followed by a RNA phase which starts taking
the best individual found among all the generations as the
initial solution. After finishing the RNA stage, a new popu-
lation of n individuals must be created as the input to a new
genetic phase. To do this, during the RNA phase a list with
the n best timetables is kept. Therefore, we guarantee that
the best candidates known up to now are always included at
the beginning of every Tournament phase, and consequently
the best genetic material.

Four Children Tournament & RNA (GAT4C & RNA)
This technique works exactly as the previous one. The only
difference is the use of a Four Children Tournament phase
instead of the Tournament one.

Apart from these techniques we have proposed some
variants for our genetic-based algorithms. We include these
strategies in our experiments. A brief description of such
strategies is presented below:

v1) To increase dynamically the number of mutations after
a given number of iterations without improvements.

v2) To apply a more elitist selection technique of the best
candidates, so reducing its proportion to a given per-
centage.

v3) Not to eliminate the loser candidates when we work
with a Four Children Tournament phase, in such a way,
all the individuals could be parents at least once.

4. Experimental results on synthetic data

In this section we summarize our experimental results
over two sets of synthetic test cases with different size and
configurations. Each collection is composed of a given
number of test files. Each file was created depending on: i)
the number of unavailable and undesirable periods for each
teacher; ii) the number of unavailable periods for each class;
and iii) the distribution of classes along the whole week (at
most 2 periods per day). We run experiments1 with our al-
gorithms using in all cases the same configuration of their
parameters. Those parameters are: i) the weight associated
to each hard constraints was set to 1000. ii) The weight
of the soft constraints varies: the weight of overuse, splits,
and groups is set to 6; that of underuse is 4; for undesired
periods we used the value 3; and finally the weight of holes
is 1. iii)For the genetic algorithms we fixed the population
size to 32, and the probability of mutation to 0.4. And iv)
in the hybrid algorithms, we fixed the maximum number of
iteration of the RNA phase to 150.
Small test collection The first test collection is composed of
10 files. Each of them has 6 groups, 70 classes and a number
of 15 − 16 teachers who teach during 15 periods weekly.
Table 1 shows the average value of unsatisfied constraints
and the standard deviation from those values for 10 runs of
each algorithm over the test data set. Each runs was limited
in time to 30 minutes. Results show that most algorithms
obtain good results and perform quite similarly, with the
exception of a small group that perform very badly: variants
v1 and v1+v2 of the genetic algorithms and variant v3. The
best choices seem to be RNA and GAT4C.
Large scale scenario After discarding the algorithms that
behave badly in the small scenario, we designed a huge
file containing 27 groups, 333 classes and 71 teachers who
teach during 15 periods weekly. Again, we run 4 times
the different algorithms over the test file, limiting time to 5
hours each. In Table 2, results show that variant v2 obtains
very good results, especially version GAT & RNA, that re-
duces the variability. RNA and variant v1+v2+v3 behave
also well, but they lead to a high number of unsatisfied soft
constraints.

5. A case study

In this section we test a selection of our best algorithms
with real data obtained from a Secondary school (I.E.S.

1We used an Intel Core2Duo E6420@2.13Ghz with 2Gbytes of DDR2-
800 memory. The computer ran Windows Xp OS. Prototypes were imple-
mented in Java 1.6.

Table 1. Results for the small synthetic sce-
nario.

Algorithm constraints
Avg(Fc) Std(Fc)

hard soft hard soft
original
RNA 0.16 0.60 0.09 0.39
GAT 0.22 1.45 0.22 0.32
GAT4C 0.31 2.05 0.29 0.68
GAT & RNA 0.44 2.30 0.50 1.35
GAT4C & RNA 0.38 2.46 0.33 0.93
var: v1
GAT 6.94 23.57 3.81 3.88
GAT4C 7.07 23.32 3.99 3.84
GAT & RNA 0.34 2.74 0.29 0.96
GAT4C & RNA 0.28 2.74 0.25 1.20
var: v1+v2
GAT 3.99 15.57 2.86 2.85
GAT4C 5.53 18.90 3.50 2.23
GAT & RNA 0.47 1.90 0.48 0.96
GAT4C & RNA 0.41 1.76 0.43 0.73
var: v2
GAT 0.26 0.74 0.14 0.45
GAT4C 0.23 0.74 0.16 0.44
GAT & RNA 0.44 1.74 0.46 0.92
GAT4C & RNA 0.33 1.41 0.34 0.84
var: v1+v2+v3
GAT4C & RNA 0.49 2.06 0.42 0.70
var: v1+v3
GAT4C & RNA 0.43 4.33 0.42 1.55
var: v2+v3
GAT4C 0.28 0.75 0.22 0.43
var: v3
GAT4C 27.62 42.19 7.52 3.97

Menendez Pidal) in A Coruña-Spain. This school has 3
sections with different diplomas. Our data comes from one
of them including: commerce, marketing, and international
commerce studies. That scenario includes 11 teachers who
can select 3 undesirable and 3 unavailable periods respec-
tively. Teachers can be assigned classes from 1 to 5 periods
per day. There are 33 classes, and 3 simultaneity relation-
ships between classes.

In the top table in Figure 1 we can see that even though
all the chosen algorithms reach good results, we can high-
light those of RNA and GAT4C (which is the best choice).
The bottom plot in that figure shows the evolution of the
cost function in GAT4C with respect to execution time (1
hour). It is remarkable that during the first minutes the curve
of the cost function is very steep, and that after 20 minutes

Table 2. Results for the large synthetic sce-
nario.

Algorithm constraints
Avg(Fc) Std(Fc)

hard soft hard soft
original
RNA 0.88 63.58 0.82 3.77
GAT 2.88 67.21 2.11 8.42
GAT4C 3.88 71.04 2.26 5.85
GAT & RNA 1.50 62.54 1.54 6.50
GAT4C & RNA 1.75 70.33 1.35 3.95
var: v1
GAT & RNA 1.75 63.75 1.19 4.71
GAT4C & RNA 2.25 69.04 2.12 4.49
var: v2
GAT 1.94 26.04 1.39 4.17
GAT4C 2.69 34.08 1.53 6.53
GAT & RNA 0.94 30.38 0.98 2.77
GAT4C & RNA 1.94 35.71 1.44 4.12
var: v1+v2+v3
GAT4C & RNA 1.00 52.67 0.73 5.71
var: v2+v3
GAT4C 2.75 49.88 1.71 4.64

the quality of the solution obtained is very good. Finally,
after 40 minutes the improvements are almost negligible.

6. Conclusions and future work

We have developed different solutions for the secondary
school timetabling problem focusing on the Spanish con-
text. They are based on the use of RNA and genetic-based
algorithms. A wide study was done by introducing some
variations of the genetic-algorithms, as well as by creating
hybrid versions. To test the behavior of the different alterna-
tives developed we first applied them to synthetic scenarios
(what allowed us to discard some of them). Finally, we stud-
ied how the best techniques performed over a large scenario
and over a real case.

Our results showed that the RNA method behaves well
in most cases. It is usually able to reduce drastically the
number of unsatisfied hard constraints, and consequently
the cost function. However, it does not manage soft con-
straints so effectively. This issue is improved by some of
the genetic-algorithms variants. More precisely, that called
GAT4C performed very well in small scenario. It obtained
similar results to those of RNA for the hard constraints and
improved values for the others. In our large synthetic sce-
nario the best choice was a hybrid solution (GAT&RNA)
using an elitist policy.

Algorithm constraints
Avg(Fc) Std(Fc)

hard soft hard soft
original
RNA 0.88 5.95 0.74 1.72
GAT 1.05 6.90 1.01 2.92
GAT4C 0.55 6.37 0.72 1.83
GAT & RNA 1.63 8.10 1.07 2.71
var: v2
GAT4C & RNA 2.20 8.42 1.95 3.69

0 10 20 30 40 50 60
0

2

4

6

8

10

12
x 10

4

Time (minutes)

C
os

t F
un

ct
io

n
(

F
c)

GAT4C

Figure 1. Results for a real case scenario.

As a future work, we are focusing in the generation of
better initial solutions. The idea is to create initial timeta-
bles using a greedy procedure to avoid infeasibility. We
also consider that more intelligent (although maybe heav-
ier) moves can be used to skip bad quality timetables during
the search process.

References

[1] M. W. Carter and G. Laporte. Recent developments in prac-
tical course timetabling. pages 3–19, 1998.

[2] A. Colorni, M. Dorigo, and V. Maniezzo. A genetic algo-
rithm to solve the timetable problem. Technical Report 90-
060, 1990.

[3] P. de Haan, R. Landman, G. Post, and H. Ruizenaar. A
four-phase approach to a timetabling problem in secondary
schools. In Practice and Theory of Automated Timetabling
(PATAT 2006), pages 423–425, 2006.

[4] D. de Werra. An introduction to timetabling. European
Journal of Operational Research, 19(2):151–162, February
1985.

[5] S. Gyri, Z. Petres, and A. R. Vrkonyi-Kczy. Genetic algo-
rithms in timetabling. a new approach.

[6] A. I. S. Even and A. Shamir. On the complexity of timetable
and multicommodity flow problems. SIAM Journal on Com-
puting, 5:691–703, 1976.

[7] A. Schaerf. Local search techniques for large high-school
timetabling problems. Technical Report 4, 1999.

[8] K. A. Smith, D. Abramson, and D. Duke. Hopfield neural
networks for timetabling: formulations, methods, and com-
parative results. Comput. Ind. Eng., 44(2):283–305, 2003.

[9] A. Tripathy. School timetabling–a case in large binary in-
teger linear programming. Management Science, 30:1473–
1489, 1984.

[10] R. Willemen. School timetable construction: algorithms and
complexity. PhD thesis, Technische Universiteit Eindhoven,
The Netherlands, 2002.

