Spatial Selection of Sparse Pivots for Similarity
Search in Metric Spaces *

Oscar Pedreira and Nieves R. Brisaboa

Database Laboratory, Facultade de Informatica
University of A Corufia
Campus de Elvifia s/n, 15071 A Coruiia, Spain
{opedreira, brisaboal}@udc.es

Abstract. Similarity search is a necessary operation for applications
dealing with unstructured data sources. In this paper we present a pivot-
based method useful, not only to obtain a good pivot selection without
specifying in advance the number of pivots, but also to obtain an insight
in the complexity of the metric space. Sparse Spatial Selection (SSS)
adapts itself to the dimensionality of the metric space, is dynamic, and
it is suitable for secondary memory storage. In this paper we provide
experimental results that confirm the advantages of the method with
several metric spaces. Moreover, we explain how SSS can be easily par-
allelized. Finally, in this paper we conceptualize Nested Metric Spaces,
and we prove that, in some applications areas, objects can be grouped
in different clusters with different associated metric spaces, all of them
nested into the general metric space that explains the distances among
clusters.

Key words: Similarity search, metric spaces, pivot selection

1 Introduction

Similarity search has become a very important operation in applications that
deal with unstructured data sources. The computational cost of the algorithms
that determine the similarity between two objects makes similarity search an
expensive operation. This fact has motivated the development of many research
works aiming to do efficient similarity search over large collections of data.

The similarity search problem can be formally defined through the concept
of metric space. A metric space (X,d) is composed of a universe of valid objects
X and a distance function d : X x X — R7T defined among them. This function
holds several properties: strictly positiveness (d(z,y) > 0 and if d(x,y) = 0 then
x = y), symmetry (d(z,y) = d(y,x)), and the triangle inequality (d(z,z2) <
d(z,y) + d(y,z)). The finite subset U C X with size n = |U|, represents the
collection of objects where searches are performed. A k-dimensional vector space

* This work has been partially supported by CYTED VII.J (RITOS2), MCYT (PGE
and FEDER) grants TIC2003-06593 and TIN2006-15071-C03-03, and Xunta de Gali-
cia grant PGIDITO5SIN10502PR

2 Oscar Pedreira and Nieves R. Brisaboa

is a particular case of metric space in which every object is represented by a
vector of k real coordinates. The dimensionality of a vector space is clearly k,
the number of components of each vector. Although general metric spaces do not
have an explicit dimensionality, we can talk about their intrinsic dimensionality,
following the idea presented in [1] were it is defined as u?/20? (being p and o2
the mean and variance of d respectively). The higher the dimensionality the more
difficult the search.

The definition of the distance function d depends on the type of the objects
we are managing. For example, in the case of a vector space, d could be a
distance function of the family L, defined as Lg(z,y) = (O 1<i<k|Ti — yi|5)%.
For instance, L is known as Manhattan distance, Lo is the Fuclidean distance,

and Lo, = mazi<i<k|®; — yi| is the mazimum distance.

There are three main queries of interest in a metric space: i) range search,
that retrieves all the objects u € U within a radius r of the query ¢, that is:
{u e U /d(q,u) <r}; ii) nearest neighbor search, that retrieves the most similar
object to the query ¢, that is: {u € U /Vv €U, d(q,u) < d(q,v)}; and %) k-
nearest neighbors search, retrieving the set A C U such that |A| = k and V u €
A, veU—-A, d(g,u) < d(g,v). The range query is the most used, and the others
can be implemented in terms of it [1]. In any case, the distance function is the
unique information that can be used in order to perform searches. The naive way
of implementing those operations is to compare all the objects in the collection
against the query. The problem is that the evaluation of the distance function
is very expensive, and therefore searches become inefficient if the collection has
a high number of elements. Thus, reducing the number of evaluations of the
distance function is the main goal of the methods for similarity search in metric
spaces.

The existing techniques differ usually in some features. Some of them allow
only discrete (and not continuous) distances. There are also static methods,
where the index has to be build on the whole collection, and dynamic techniques
where the index is built as elements are added to an initially empty collection.
Other important factor is the possibility of storing the index efficiently into
secondary storage, and the number of I/O operations needed to access it. In
general, the applicability and efficiency of a method depends on this issues.

Search methods can be classified into two types [1]: clustering-based and
pivot-based techniques. Clustering-based techniques split the metric space into a
set of equivalence regions each of them represented by a cluster center. During
searches, whole regions can be discarded depending on the distance from their
cluster center to the query. But the technique we present here is pivot-based,
therefore a more detailed explanation about pivot-based methods will be provided
later.

We have developed Sparse Spatial Selection (SSS), a new pivot-based tech-
nique. SSS is a dynamic method since the collection can be initially empty and/or
grow later. It works with continuous distance functions and is suitable for sec-
ondary memory storage. The main contribution of SSS is the use of a new pivot
selection strategy. This strategy generates a number of pivots that depends on

Spatial Selection of Sparse Pivots for Similarity Search in Metric Spaces 3

the intrinsic dimensionality of the space (something interesting from both the
theoretical and practical points of view). Moreover, SSS can be easily parallelized
as we show in this paper. On the other hand SSS can be extended to deal with
more complex metric spaces where the distances among subsets of objects de-
pend on specific dimensions that are not relevant for other set of objects. That
is, in some applications areas, objects can be grouped in different clusters with
different associated metric spaces, all of them nested into the general metric
space that explains the distances among clusters. To deal with these complex
spaces we propose the extension of SSS becoming Sparse Spatial Selection for
Nested Metric Spaces (SSSNMS).

The rest of the paper is structured as follows: Section 2 describes the pivot-
selection problem and its importance for the efficiency of pivot-based methods.
Then, Sparse Spatial Selection is described in Sec. 3. In Sec. 4 we present and
discuss the experimental results we obtained in the tests. Section 5 describes the
parallelization of the algorithm and the concept of nested metric spaces. Finally,
Sec. 6 shows our conclusions and future lines of work.

2 Previous Work on Pivot Selection

Pivot-based search techniques choose a subset of the objects in the collection that
are used as pivots. An index is build by computing the distances from each pivot
to each object in the database. Given a query (g,), the distances from the query
q to each pivot are computed, and then some objects of the collection can be
directly discarded using the triangle inequality and the distances precomputed
during the index building phase. Being v € U an object in the collection, we
can discard u if |d(p;,u) — d(p;,q)| > r for any pivot p;, since by the triangle
inequality, if this condition is true, its distance to ¢ will be d(u,q) > r. The
objects that can not be discarded by this condition make up the candidate
list, and they must be compared against the query. The total complexity of the
search is the sum of the internal complexity, the comparisons of ¢ with each
pivot, and the external complezity, the comparisons of ¢ with each object in the
candidate list. The most well-known pivot-based methods are: Burkhard-Keller-
Tree (BKT) [2], Fized-Queries Tree (FQT) (3], Fized-Height FQT (FQHT) [4],
Fized-Queries Array (FQA) [5], Vantage Point Tree (VPT) [6] and their variants
[7,8], Approzimating and Eliminating Search Algorithm (AESA) [9] and LAESA
(Linear AESA) [10].

It is well-known that the efficiency of a similarity search method depends on
the set of objects chosen as pivots. The number of pivots, their “location” in the
metric space and their “location” with respect to the rest of pivots determine
actually the capacity of the index to discard elements without comparing them
against the query.

Most of the pivot-based search methods choose pivots randomly. Further-
more, there are no guidelines to determine the optimal number of pivots, since
this parameter depends on the metric space we are working with. In previous
work, some heuristics for pivot selection have been proposed. For example, in

4 Oscar Pedreira and Nieves R. Brisaboa

[10] pivots are objects maximizing the sum of distances among them. [6] and [11]
propose heuristics to obtain pivots far away from each others. In [12] the impor-
tance of the pivot selection strategy was studied in depth, showing empirically
how it affects to the performance of a technique.

The main contribution in [12] is a criterion to compare the efficiency of two
sets of pivots of the same size. Using that criterion different techniques for pivot
selection were proposed and proved. Their results show that the technique called
good pivots were consistently better than a random selection of pivots or the use
of outliers (objects far away among them and to the rest of the objects).

But the performance obtained by all the techniques depends on the metric
space considered. For example the use of outliers works very well in metric spaces
were the objects are uniformly distributed but it works very bad in real metric
spaces [12].

Determining the optimal number of pivots k is an important problem. It is
known that the efficiency of the searches depends on this parameter. Moreover,
k can vary greatly for different metric spaces. In [12] a brute-force approach to
determine the optimal number of pivots is used, because this value has to be
fixed.

3 Sparse Spatial Selection (SSS)

Let (X, d) be a metric space, U C X an object collection, and M the maximum
distance between any pair of objects, M = max { d(z,y) / x,y € U }. The set
of pivots contains initially only the first object of the collection. Then, for each
element z; € U, z; is chosen as a new pivot if its distance to every pivot in the
current set of pivots is equal or greater than Ma, being « a constant parameter
that takes values around 0.4. That is, an object in the collection becomes a new
pivot if it is located at more than a fraction of the maximum distance with re-
spect to all the current pivots. The following pseudocode summarizes the pivot
selection process:

PIVOTS « {x1}
for all z; € U do
if Vpe PIVOTS, d(x;,p) > M« then
PIVOTS <« PIVOTS U {z;}
end if
end for

When a new object is inserted in the database, its distance to all the pivots
already selected is computed and stored. If its distance to all of them is equal
or greater than Ma, the object is added to the set of pivots. In this case, its
distance to every object in the database is computed and stored in the index
structure. Thus, the number of pivots does not have to be stated in advance over
an initial object collection; it grows at the same time as the intrinsic dimension-
ality of the collection does. The building of the index is completely dynamic, and

Spatial Selection of Sparse Pivots for Similarity Search in Metric Spaces 5

the set of pivots adapts appropriately to the new inserted objects (actually the
collection could be initially empty, which is interesting in practical applications).
Furthermore, it guarantees that even though the collection grows, the pivots will
be well distributed over the metric space.

It seems evident that all the selected pivots will not be too close to each
other (more that Ma). This is a desirable characteristic in a set of pivots [12],
but there are more advantages. Forcing the distance between two pivots to be
greater or equal than M, we ensure that they are well distributed in the whole
space. It is important to take into account that our pivots are not very far away
from each others neither very far from the rest of objects in the collection (i.e.,
they are not outliers). Our hypothesis is that, being well distributed in the space,
when a search is performed our set of pivots will be able to discard more search
objects than pivots selected with a different strategy.

Since our method needs only to store the distances between the pivots and
the objects in the collection, we can use storage structures suitable for secondary
memory. For example, a simple way to store in secondary memory the distances
is the use B-trees. We could create a B-tree for each pivot to store its distances to
all the objects in the database. Thus, when a new pivot is added to the structure,
a new B-tree is created for it. This implementation is suitable for the dynamic
nature of the method.

3.1 The parameter a« and the number of pivots

Although in our method it is not necessary to state in advance the number of
pivots to use, we have to set the value of . This value determines the number
of pivots. It is clear that the bigger the value of «, the smaller the number of
pivots that can be “placed” into the space. However, a must always take values
between 0.35 and 0.40, depending on the intrinsic dimensionality of the space.
That is, the optimal results in SSS are always obtained when « is set to those
values and in general a higher o works better when the intrinsic dimensionality
is higher.

Figure 1 shows the number of evaluations of the distance function in terms
of a for vector spaces of dimensionality 8, 10, 12, and 14. In this figure we can
see that the best result is always obtained for values of o that range from 0.35
and 0.40, and that the efficiency of the method is virtually the same for all the
values of « included in this interval. We can also see that when a > 0.40 the
number of evaluations of the distance function takes higher values in spaces of
high dimensionality. This result is due to the fact that an increase in the value
of o implies a reduction of the number of pivots, and that this reduction has a
stronger effect in spaces of high dimensionality.

This results show some of the main advantages of our proposal. Our method
finds itself the appropriate number of pivots for the intrinsic dimensionality of
the metric space, using only the maximum distance between any pair of objects
in the collection and the parameter «. In subsection 4.2 we present empirical
results about how SSS captures the intrinsic dimensionality of any vector or
metric space.

6 Oscar Pedreira and Nieves R. Brisaboa

. 100.000 objetos, 10.000 consultas, recuperando el 0.01% de la base de datos

—=—Dim. 8

—A— Dim. 10
—e—Dim. 12
—¥—Dim. 14

Evaluaciones de la funcién de distancia

Fig. 1. Number of evaluations of the distance function for several vector spaces, in
terms of the value of a.

4 Experimental Results

4.1 Experimental environment

We have tested the algorithm using several collections of data. First we used
synthetic sets of random points in vector spaces of dimensionalities k& = 8, 10,
12 and 14. Each collection has 100,000 vectors uniformly distributed in an hy-
percube of side 1. The Euclidean distance was the distance function used with
this data sets. Using this collections of data we can study the behavior of the
algorithm in spaces of different intrinsic dimensionality. We have also tested the
algorithm with real metric spaces. The first one is a collection of 69,069 words
taken from the English dictionary, using the edition distance as the distance
function. The second is a collection of 47,000 images extracted from the NASA
photo and video archives, each of them transformed into a 20-dimensional vector,
using the Euclidean distance to measure the similarity between them.

4.2 Number of pivots and the intrinsic dimensionality

The concept of intrinsic dimensionality was defined in [1] as p?/20% where p
is the average of distances among all the objects in the database and o? is
its variance. To show that our method captures the intrinsic dimensionality of
the space by itself, we explicitly calculated the intrinsic dimensionality of some
experimental vector and metric spaces using this formula, that is we computed
u?/20%. The results are shown in table 1. Each row shows average, variance,
intrinsic dimensionality and number of pivots with different o values for each
one of the vector or metric spaces used in the experiments.

It is clear the the number of pivots grows as the intrinsic dimensionality
grows therefore SSS can be considered as an alternative method to obtain and
insight into the dimensionality of a metric space.

On the other hand in Section 3 we emphasized that our method dynamically
generates a number of pivots that depends on the dimensionality of the space,

Spatial Selection of Sparse Pivots for Similarity Search in Metric Spaces 7

l DB [I [o [Int.Dimens.[«@ [pivots[« [pivotsl
English|8.365435|3.8853| 135.9486 |0.5| 108 |0.44| 205
Spanish|(8.281279(3.4975| 119.9314 |0.5| 64 |0.44| 124
k=8 | 1.0484 |0.0618 0.0339 |0.5] 18 |0.38] 68
k=10 | 1.0493 |0.1002 0.0551 0.5| 25 |0.38| 126
k=12 | 1.0552 [0.1598 0.0889 |0.5| 43 |0.38| 258

Table 1. Intrinsic dimensionality and Number of pivots

and not on the number of elements in the database. Table 2 shows the number
of pivots selected in several test collections of different size. The number of
objects selected as pivots increases as the dimensionality of the vector space
does. This result also shows that the number of pivots depends on the intrinsic
dimensionality of the metric space. In all the test spaces the number of pivots
grows quickly with the first objects of the database. Then that number grows
much more slowly until it becomes stable. Obviously, when the collection has few
elements, the number of pivots depends on its size. However, when the collection
reaches a given size no more pivots will be selected even if new objects are
inserted in the database. This happens because the current set of pivots covers
all the space and captures its dimensionality. With this results we can conclude
that the number of pivots generated depends on the intrinsic dimensionality of
the space, and not on the size of the collection.

n, collection size (x10%)
100]200[300[400]500[600[700[800[900[1000
81617 |19|20|21|22|22|22|22]| 22
101 20|24 |28 (29|30|30(30|30|30| 30
12144 |50 | 53 | 54| 55| 57 | 58 | 58 | 58 | 58
14156 | 62|69 | 71|73 |79 (80|80 |82 | 82

k

Table 2. Number of pivots selected in vector spaces of dimensionality & = 8, 10, 12,
and 14, against the size of the collection

4.3 Search efficiency

In this section we show the results obtained in the tests performed to evaluate
the efficiency of the algorithm in the search operation. The first set of tests used
the four vector spaces. For each of them, we got the mean number of evaluations
of the distance function over 10,000 queries. The mean number of elements
retrieved in each of them is the 0.01% of the database. In order to evaluate the
behavior of the algorithm, we compared the results with those obtained with the
pivot selection techniques proposed in [12].

8 Oscar Pedreira and Nieves R. Brisaboa

Table 3 shows the minimum number of evaluations of d we have obtained with
each pivot selection strategy, and the number of pivots used. We can observe that
the number of evaluations of the distance function obtained with our method is
always around the best result obtained with the strategies proposed in [12]. This
results show that SSS has an efficiency similar to that of other more complex
techniques. In the results of our tests we can also see that the number of pivots
that our method generates is very similar to the optimum number of pivots of
other pivot selection techniques.

k=38 k=10 k=12 k=14
pivots[eval. d pivots[eval. d pivots[eval. d pivots[eval. d
Random 85 213 | 190 | 468 | 460 | 998 | 1000 | 2077
Selection 85 204 | 200 | 446 | 360 | 986 | 800 | 2038
Incremental| 65 157 | 150 | 335 | 300 | 714 | 600 | 1458
Loc. Opt. A| 70 155 | 150 | 333 | 300 | 708 | 600 | 1448
Loc. Opt. B| 60 157 | 150 | 369 | 300 | 881 | 760 | 1930

[SSS [57 | 151 [148 | 389 [258 | 689 [598 | 1452 |

Method

Table 3. Minimum number of evaluations of d with different pivot selection strategies
in vector spaces

Table 4 shows another interesting result obtained in this tests: the average
and the standard deviation of the number of evaluations of d with SSS and a
random pivot selection. In this table we can see that, in addition to perform less
evaluations on average, SSS has also a lower standard deviation, something very
important for practical purposes.

k=8[k=10] k=12 [k=14
plofplol plo]p]o
Random [224]53[581[166[1046[316]2087[622

SSS__[151/33[390]101] 689 [193]1452[399

Method

Table 4. Average and standard deviation of the number of evaluations of d

Table 5 shows the minimum number of evaluations of d we have reached with
our pivot selection technique and the ones proposed in [12], for the collection of
words taken from the English dictionary. We have used the edit distance as the
distance function. We used a 10% of the database as queries and a query range
r = 2, that retrieves around the 0.02% of the collection. In this case, the result
obtained with our technique is better than the obtained with any other one. As
happened with vector spaces, the number of pivots that our method generates

Spatial Selection of Sparse Pivots for Similarity Search in Metric Spaces 9

is similar to the optimum number of pivots used by other strategies, that have
got this number by trial and error.

l Method [pivots[eval. dl

Random 200 | 443
Good pivots| 200 | 389
Outliers 200 | 429

[SSS [205] 370 |

Table 5. Minimum number of evaluations of d in a collection of words

Finally, Fig. 2 shows the results of the experiments with the collection of
images from NASA archives. As in the previous experiments, the 10% of the
objects were used as queries. In this case, the query range retrieves on average
the 0.10% of the database. In the Fig. 2 we can see that SSS performs always
better than a random pivot selection. However, in this case our strategy has not
a better behavior than Incremental [12], that performs 220 evaluations with 60
pivots, whereas our better result is 255 evaluations with 77 pivots.

NASA images database, 37.000 images, 3.700 queries, retrieving the 0.10% of the database
440 - - T T T T . T T

w A

& B8

3 S
T

w

8

3
T

w

8

S
T

Evaluations of the distance function
@ "
8 £
8 S
T

L L L L L L L L
0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 05

Fig. 2. Number of evaluations of d for the collection of NASA images

5 Extensions of SSS

The ideas and results presented in previous sections show that SSS has many
desirable characteristics that make it a good choice from a practical point of
view. SSS has an efficiency similar (or even better) to that of other existing
techniques. It is a dynamic method able to adapt itself to the growth of the

10 Oscar Pedreira and Nieves R. Brisaboa

collection in an efficient way. The index construction process is simpler than in
other methods and the index structure can be easily stored in secondary memory.
In this section we first describe how the method can be parallelized. Then we
present the concept of Nested Metric Spaces and how the performance of SSS
can get reduced in such collections.

5.1 Parallel processing

The structure of the index constructed with SSS makes it very easy to execute
the search operation in a parallel architecture. As mentioned in previous sections,
the index stores the distances from every object in the collection to each pivot,
so we can see the index structure as a table with a column for each pivot and a
row for each object in the collection. Suppose that the collection has n objects
and that we can use p nodes (processors) to execute the search operation. In this
situation we can store 2 rows in each node. During the search operation each
node will have to process only the rows stored in it, making the search much
more efficient. Once the search is completed in each node, a union operation
has to be executed to make up the final candidate list with the candidates from
each node. Other option is each node to process its own candidate list and then
execute the union operation to make up the final result set. The parallel search is
easy to implement and can be very important for application domains in which
the search operation has a very high computational cost due to the complexity
of the distance function.

5.2 Nested metric spaces

In all the experiments mentioned in Sec. 4, SSS always performed better than a
random pivot selection. Of course this is the result we hoped. However, during
the test phase of our research we found a test collection where Random is al-
ways more efficient than SSS and most of the other pivot-based techniques. The
collection has 100, 000 vectors of 112 coordinates each of them corresponding to
a color image. The search for an explanation of this (very) strange result led us
to the concept of Nested Metric Spaces.

Our hypothesis is that, in some metric spaces, the objects in the collection
can be grouped in different clusters or subspaces. Different dimensions explain
the difference between each pair of objects in each of this subspaces nested into a
more general one. Figure 3 illustrates this idea. The general metric space of this
picture has a main dimension along the horizontal axis and another two dimen-
sions in other directions. In the figure we can see that there are big subspaces in
which two objects are equal to each other according to the main dimension X
but different according to the own dimensions (Y and Z respectively). And this
is the reason because a random set of pivots performs better than SSS in a space
like this. The maximum distance M is given by the main dimension X, so if
previous pivots p1, p2, p3 were already selected, no more pivots can be placed in
any of the X subspaces. However, a random set of pivots has good opportunities
to place some pivots in the subspaces since they have a big number of elements.

Spatial Selection of Sparse Pivots for Similarity Search in Metric Spaces 11

Thus, two objects in a subspace will be far away from each other according to
a random set of pivots, but very close according to the pivots pi, ps, p3 selected
by SSS.

Instead of seeing this result as a bad characteristic of SSS, it has broadened
our research line in the search of refinements of SSS able to deal with this complex
cases. Our idea is Sparse Spatial Selection for Nested Metric Spaces (SSSNMS),
a new approach that tries to solve this problem. The goal of this method is
to identify the subspaces and apply SSS in each of them. In a first phase, SSS
is applied to the whole collection with a high value of a. Thus we have few
pivots and the distances from each object in the database to each of them. The
idea is to use this information to identify the subspaces searching for objects
close to each other according to the pivots but really far away according to the
distance function. In a second phase, SSS is applied in each subspace. Thus, each
subspaces as its own set of pivots, able to differentiate the objects placed in it.
Of course we have now more pivots than applying only SSS. However, during
the search operation, the pivots of each subspace are used only to do the search
in that subspace if necessary.

Fig. 3. Subspaces nested into a general metric space

6 Conclusions

In this paper we presented SSS and some variations of this method. The main
contribution of our method is the pivot selection strategy. The goal pursued
by this pivot selection technique is to generate a set of pivots well distributed
over the whole space. Furthermore, the index is completely dynamic (supporting
insertions in the collection) and the index structure can be efficiently stored in
secondary memory.

Our experimental results show that the method generates a number of pivots
that depends on the intrinsic dimensionality of the metric space, and not on
the number of elements of the collection. This fact also makes our method a
useful way to obtain an insight of the complexity of the space. This number of
pivots is very similar to the optimum number for other strategies. This makes
it unnecessary to state in advance the number of pivots needed for the index

12 Oscar Pedreira and Nieves R. Brisaboa

structure, something that no method has considered until now. The number of
pivots selected is adapted to the space complexity, avoiding to select unnecessary
pivots that could reduce the search efficiency. The efficiency of our method in
vector and metric spaces is at least as good as the best obtained in previous
works [12].

We have also described the way to parallelize the algorithm, something im-
portant in some application domains. Finally we presented the concept of Nested
Metric Spaces, its importance in the performance of the search operation and a
way to deal with it.

Our work line still maintains opened some questions that will be addressed
in the future. First, we are evaluating the behavior of SSS with other real metric
spaces, like collections of text documents or music. We are currently working in
the parallel implementation of the method. We are also working in refinements
of the pivot selection strategy able to deal with the nested metric spaces problem.

References

1. Chévez, E., Navarro, G., Baeza-Yates, R., Marroquin, J.L.: Searching in metric
spaces. ACM Computing Surveys 33(3) (2001) 273-321

2. Burkhard, W.A., Keller, R.M.: Some approaches to best-match file searching.
Communications of the ACM 16(4) (1973) 230236

3. Baeza-Yates, R., Cunto, W., Manber, U., Wu, S.: Proximity matching using fixed-
queries trees. In: Proceedings of the 5th Annual Symposium on Combinatorial
Pattern Matching, Springer-Verlag (1994) 198-212

4. Baeza-Yates, R.: Searching: an algorithmic tour. Encyclopedia of Computer Sci-
ence and Technology 37 (1997) 331-359

5. Chévez, E., Marroquin, J.L., Navarro, G.: Overcoming the curse of dimensionality.
In: European Workshop on Content-based Multimedia Indexing (CBMI’99). (1999)
57-64

6. Yianilos, P.: Data structures and algorithms for nearest-neighbor search in general
metric spaces. In: Proceedings of the fourth annual ACM-SIAM Symposium on
Discrete Algorithms, ACM Press (1993) 311-321

7. Bozkaya, T., Ozsoyoglu, M.: Distance-based indexing for high-dimensional metric
spaces. In: Proceedings of the ACM International Conference on Management of
Data (SIGMOD 1997), ACM Press (1997) 357-368

8. Yianilos, P.: Excluded middle vantage point forests for nearest neighbor search.
In: Proceedings of the 6th DIMACS Implementation Challenge: Near neighbor
searches (ALENEX 1999), Baltimore, Maryland, USA (1999)

9. Vidal, E.: An algorithm for finding nearest neighbors in (aproximately) constant
average time. Pattern Recognition Letters 4 (1986) 145-157

10. Micé, L., Oncina, J., Vidal, R.E.: A new version of the nearest-neighbor approxi-
mating and eliminating search (aesa) with linear pre-processing time and memory
requirements. Pattern Recognition Letters 15 (1994) 9-17

11. Brin, S.: Near neighbor search in large metric spaces. In: 21st conference on Very
Large Databases. (1995)

12. Bustos, B., Navarro, G., Chédvez, E.: Pivot selection techniques for proximity search
in metric spaces. In: SCCC 2001, Proceedings of the XXI Conference of the Chilean
Computer Science Society, IEEE Computer Science Press (2001) 33-40

