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Abstract

Nowadays, there are many applications that manage very largedatabases of objects
in which the searches do not rely on comparisons of the equality/inequality of
two objects, but on how similar the objects are. This is the case of problems
such as searching for similar �ngerprints to one given as a query, content-based
image retrieval in multimedia databases, sequence searching in genome databases,
duplicate document detection in web search engines, and spam detection, just to
name a few of them.Metric spaces provide a generic and useful framework for those
problems where the exact comparison of two objects is not possible or does not make
sense since it is useless. Inside this framework di�erent methods for indexing and
search have been proposed. In this work we provide an extensive description of the
state of the art.

In all these domains where a similarity search is needed, adistance function to
compute the value of the similarity or proximity between any two objects in the
database is available. The naive implementation of similarity search would consist in
sequentially scanning the entire database. However, that isnot a feasible solution in
practice, since the computation of the distance between twoobjects, that is, the use
of the distance function, is in general very costly. Methodsfor searching in metric
spaces make similarity search e�cient by indexing the database and reducing as
much as possible the number of distance computations neededfor solving a query.
That is, methods for searching in metric spaces avoid to compare (using the distance
function) all the objects in the database with the query.

In order to index the database, all methods using the metric space approach
select a set ofreference objects from the database and store in the index the distances
between those reference objects and the rest of objects in the database. The way
these distances are stored and used allows us to classify existing methods in pivot-
based methods, which store the distances from the reference objects to therest of
objects in the database, andclustering-based methods, which partition the space
into a set of clusters around the reference objects. In both cases, the selection
of good reference objects determines the e�ectiveness of the index for pruning the
search space and thus reduce the cost of the search.
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The main contribution of this thesis is a new method for the selection of
e�ective reference objects. An important di�erence with previous methods is that
the reference objects selected with our method are well distributed in the space.
Our method for selecting reference objects has also other interesting properties: it
automatically determines the optimal number of reference objects, it works with
both discrete and continuous distances, it adapts the set ofreference objects to
the characteristics of the space, and the references are selected dynamically as new
objects are inserted into an initially empty database with no extra cost.

Other contributions of this thesis are:

• A pivot-based method that uses our method for the selection of reference
objects. This method is competitive when compared with previous methods in
search cost, and is clearly better in other aspects: it is dynamic and adaptive,
it determines by itself the optimal number of pivots, and it d oes not impose
an additional cost for the selection of pivots.

• A clustering-based method that uses our method for the selection of reference
objects to create an unbalanced index structure adapted to the characteristics
of the space. By using an unbalanced structure to index the space, it clearly
outperforms previous clustering-based methods.

• A criteria for re�ning the set of references by removing those that do not
contribute to increase the capability of the set of references for discarding
objects. The result is a smaller set of references that conserves its capacity
for pruning the search space.

• Finally, we introduce the concept of nested metric spaces to explain certain
irregularities that appear in real problems. We show how these irregularities
can a�ect the search performance of some methods, and we showthat by
detecting and treating them is it possible to improve the search performance.

Therefore, this thesis contributes to the state of the art in this �eld with
methods that combine an improvement of the search cost with other practical
aspects important for their application to real problems.



Resumo

Hoxe en día existen moitas aplicacións que xestionan grandesbases de datos nas
que as buscas non se basean en comparacións de igualdade ou desigualdade entre
dous obxectos, senón no similares que son. É o caso de problemas como a busca de
pegadas dixitais semellantes a unha dada como consulta, a recuperación de imaxes
por contido en bases de datos multimedia, a busca de secuencias en bases de datos
xenéticas, a detección de documentos duplicados en buscadores Web, ou a detección
de spam, entre outros. Osespazos métricos proporcionan un marco de traballo
xenérico para os problemas nos que a comparación exacta de dous obxectos non é
posible ou non ten sentido porque é inútil. Dentro deste marco de traballo podemos
atopar diferentes métodos de indexación e busca. Neste traballo proporcionamos
unha descrición extensiva do estado da arte.

En todos estes dominios nos que se necesita facer buscas por similitude, hai
unha función de distancia para calcular o valor da similitude ou proximidade entre
dous obxectos. A implementación trivial da busca por similitude consistiría na
comparación do obxecto de consulta con todos os obxectos da base de datos.
Porén, esta non é unha solución factible na práctica, xa que acomparación de dous
obxectos, isto é, o uso da función de distancia, é moi custosaen xeral. Os métodos
de busca en espazos métricos fan a busca por similitude máis e�ciente mediante a
indexación da base de datos, reducindo así o número de comparacións necesarias
para resolver unha consulta. Isto é, os métodos de busca en espazos métricos evitan
a comparación (utilizando a función de distancia) de todos os obxectos da base de
datos coa consulta.

Para indexar a base de datos, todos os métodos de busca en espazos métricos
seleccionan un conxunto deobxectos de referencia da base de datos, e almacenan
no índice as distancias entre estes obxectos de referencia eo resto dos obxectos da
base de datos. Pola forma en que se almacenan estas distancias, podemos clasi�car
os métodos existentes enbaseados en pivotes, que almacenan as distancias entre
os obxectos de referencia e o resto dos obxectos da base de datos, e baseados en
clusters, que particionan o espazo nun conxunto de clusters arredor dos obxectos de
referencia. En ambos os casos, a selección de bos obxectos dereferencia determina
a efectividade do índice parapodar o espazo de busca e reducir así o custo da busca.
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A principal contribución desta tese é un novo método para a selección
de obxectos de referencia efectivos. Unha diferenza importante con métodos
previos é que os obxectos de referencia seleccionados estánben distribuídos no
espazo. O noso método para a selección de obxectos de referencia ten outras
propiedades interesantes: determina automaticamente o número óptimo de obxectos
de referencia, traballa tanto con funcións de distancia discretas como continuas,
adapta o conxunto de obxectos de referencia ás características do espazo, e permite
que o conxunto de obxectos de referencia se seleccione dinamicamente a medida que
se insiren novos obxectos nunha base de datos inicialmente baleira.

Outras contribucións desta tese son:

• Un método baseado en pivotes que utiliza o noso método para a selección de
obxectos de referencia. É un método competitivo con propostas anteriores
en custo de busca, e é claramente mellor noutros aspectos: é dinámico e
adaptativo, determina por si mesmo o número óptimo de pivotes, e non impón
un custo adicional para a selección de pivotes.

• Un método baseado en clusters que utiliza o noso método de selección de
obxectos de referencia para crear unha estrutura de índice non balanceada e
adaptada ás características do espazo. Usando unha estrutura non balanceada
para indexar o espazo, este método supera claramente a outros métodos
baseados en clusters.

• Un criterio para re�nar o conxunto de obxectos de referencia mediante a
eliminación daqueles que non contribúen a mellorar a capacidade do conxunto
para descartar obxectos do espazo de busca. O resultado é un conxunto de
referencias máis pequeno que conserva a capacidade para podar o espazo de
busca.

• Finalmente, introducimos o concepto deespazos métricos anidados para ex-
plicar certas irregularidades que aparecen en bases de datos reais. Mostramos
como estas irregularidades poden afectar ao rendemento de certos métodos,
e mostramos como se pode mellorar o rendemento na busca ao detectalas e
tratalas.

Por tanto, esta tese contribúe ao estado do arte neste campo con novos métodos
que combinan a mellora no custo da busca con outros aspectos prácticos importantes
de cara á súa utilización en aplicacións reais.
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Chapter 1

Introduction

1.1 Motivation

Data-centric systems have substantially evolved during the last years and no longer
manage only numeric or alphanumeric data organized into tuples and relations in a
relational database. Nowadays, data-centric systems face the problem of managing
very large collections of objects of semistructured and unstructured complex data
types, that is, data types which could not have a well-de�ned and semantically
clear structure [Manning et al., 2008]. In these contexts, the classical exact-match
search model is not applicable, and more general search models are needed in order
to manage and exploit the data.

When working with structured data, searches usually involve comparisons of
equality or inequality. For example, in a relational database, we could be interested
in retrieving the records of the customers whose city is exactly equal to a city given
as a query. But when working with semistructured or unstructured data, this type
of search is no longer useful, or even possible. For example,if we were interested
in searching for images with a similar content to another image given as a query, it
would not make sense to compare pixel by pixel the contents ofthe images, since
only the images exactly equal to the query would be in the result. The same problem
arises when working with databases that contain objects as �ngerprints, videos, or
text documents, for example.

Similarity search can be de�ned as searching for objects that are similar under
some criterion to another object given as a query. For any application like the ones
we have already mentioned, if we can de�ne a distance function that determines the
value of the similarity between any two objects of the database, similarity search
turns into a very useful search model. Similarity search is the underlying search
model in applications like content-based image retrieval in multimedia databases,

1
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sequence searching in genome databases, or duplicate document detection in search
engines. E�ciency is an implicit requirement in order to ful �ll the search needs of
a wide range of applications.

Speci�c solutions for e�cient similarity search have been developed for particular
problems. Most research on information retrieval has focused on the retrieval of
similar textual documents, and di�erent models have been developed, as the Boolean
model, the vector space model [Salton and Lesk, 1968], and the probabilistic
model [Robertson and Jones, 1976] (see [Baeza-Yates and Ribeiro-Neto, 1999] for a
complete survey). Other research lines have addressed the development of methods
for similarity search in databases of images, sound, or video. However, there
are other problem domains in which similar search capabilities are needed for
di�erent data types. It is the case of computational biology, pattern recognition, or
recommendation systems, and, surely, more cases will appear in the future.

The naive way of implementing similarity search would consist in sequentially
comparing the query object with all the objects in the database, adding to the
result those objects satisfying the similarity criterion with the query. However, in
most cases the comparison of two objects using the distance function involves a
high computational cost. Thus, a sequential scan of the entire database is not a
feasible solution in practice, since its computational cost would be prohibitive for
real applications.

Therefore, the main goal of methods for similarity search ismake similarity
search e�cient by avoiding the sequential scan of the database, that is obtained by
reducing as much as possible the number of distance computations needed to solve
a query. To achieve this goal, these methods preprocess the database and build
an index with useful information that will be used during the search to discard as
many objects as possible without comparing them with the query.

Metric spaces

Although it would be possible to develop speci�c solutions for each problem domain,
it is also possible to address all of them with the same, uni�ed approach. That is,
instead of developing a speci�c method for each particular problem, it is possible
to develop application-independent methods for e�cient similarity search that are
not tied to a speci�c data type or problem. Since these methods must work for
di�erent data types, a formalization of the problem of simil arity search is necessary,
abstracting the basic properties of the data space, and making no assumptions either
on the internal representation of the objects or on the de�nition of the distance
function.

The mathematical abstraction of metric spaces provides a generic framework for
searching in large collections of any data type for which a distance function that
measures the dissimilarity or distance between two objectsexists. The computation
of the distance between two objects using the distance function is assumed to be
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expensive, since, in most real applications, comparing twoobjects involves a high
computational cost. A metric space is a pair (X, d) composed of a universal set of
objects X, and a metric de�ned on it, that is, a distance function d : X ×X → R
that holds the following properties:

• (Strictly positiveness) d(x, y) ≥ 0 and d(x, y) = 0⇔ x = y

• (Symmetry) d(x, y) = d(y, x)

• (Triangle inequality) d(x, y) ≤ d(x, z) + d(z, y)

These properties ensure the consistency of the values of distance returned by
the distance function. Methods for similarity search can only use the information
provided by the de�nition of the metric space, that is, the existence of a distance
function that holds the properties of strictly positiveness, symmetry, and the
triangle inequality. Methods for similarity search do not use any other information
about the objects or about how the distance function is de�ned.

Several methods for similarity search in metric spaces havebeen proposed.
A uni�ed taxonomy of methods for searching in metric spaces can be found in
[Chávez et al., 2001b]. At a �rst glance, they can be classi�ed in pivot-based or
clustering-based methods:

• Pivot-based methods select a subset of objects from the collection to be used
as reference objects, called pivots. During the preprocessing of the collection,
the distances from these pivots to the rest of the objects in the database are
computed and stored in the index.

During the search, the query object is compared with the pivots. The distances
from the query object to the pivots, the precomputed distances stored in the
index and the property of triangle inequality of the distance function are used
to discard as many objects as possible from the result without comparing
them with the query.

• Clustering-based methods select a set of objects from the database as reference
objects, in this case, called cluster centers. The cluster centers are used to
divide the space into a set of partitions or clusters. The index stores useful
information about each cluster, as the covering radius, that is, the distance
from the cluster center to its furthest object in the cluster.

During the search, the query object is compared with the centers of each
cluster. These distances and the information stored in the index are used to
discard complete clusters from the result, so none of the objects contained in
the discarded clusters has to be compared with the query object.

Pivot-based methods are signi�cantly more e�cient than clu stering-based
methods in what refers to the number of distance computations needed for solving a
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query. However, the amount of memory they require to store thedistances from the
pivots to the rest of objects is signi�cantly higher than tha t needed by clustering-
based methods. While clustering-based algorithms requireusually linear space,
pivot-based algorithms store a large matrix of distances.

In both cases, reducing the number of distance computationsneeded for solving
a query is the main measure of search e�ciency, since it is themain component
in the overall search cost. Thecomplexity of the search is given by the sum of the
internal complexity, which is the number of comparisons of the query object with the
reference objects, and theexternal complexity, which is the number of comparisons
of the query object with the objects that could not be directly discarded.

Although the main goal of methods for searching in metric spaces is to reduce
as much as possible the number of distance computations for solving a query, there
are other aspects involved on the index performance that have also to be taken
into account. First, the overall search performance depends also on the extra I/O
time for loading the index from secondary memory, and the extra CPU time for
processing the information it stores during the search. Thememory requirements
of the index are important since they can be signi�cant, depending on the number
of objects in the database.

Some methods can only work with discrete distances, while others can work
with both, continuous and discrete distances. The edit distance between two
strings (computed as the number of symbols to be added, removed, or replaced
to transform a string into another) is an example of discrete distance function.
The Euclidean distance between two vectors is an example of acontinuous distance
function. Methods designed for working with discrete distances can not be applied
in problems where the distances between objects are continuous.

Another important aspect is whether the indexing of the collection is static
or dynamic. Static methods build an index on a complete collection, and further
insertions of objects are either not possible, or possible at the cost of degrading
the index performance. A dynamic method should start from an initially empty
database, and build the index and transform it as new objectsare inserted into,
or removed from the database. All these aspects are importantand determine the
applicability of a method to certain problem domains.

Selection of e�ective indexing objects

A key issue for all methods is how the reference objects, pivots or clusters, are
selected. Although most existing methods select them at random, it has been shown
that the speci�c set of objects used as references and the waythey are selected,
signi�cantly a�ect the search performance. Although this pr oblem is present in
both pivot-based and clustering-based methods, most existing proposals refer to
the selection of e�ective pivots.
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Several techniques have been proposed for the selection of e�ective pivots (a
detailed description of them is provided in Chapter 2). They are based on the ideas
of selecting as pivots objects that are far away from each other and from the rest
of objects of the database, and/or optimizing some given criterion of e�ectiveness.

Although these techniques signi�cantly improve the search performance against
a random pivot selection, they present some drawbacks. The most important is
perhaps that they all are static: the user has to specify the number of pivots to
select, and the algorithm obtains them from a complete database through a usually
costly process. Therefore, the database can not be initially empty and grow later
(which is its natural behavior). The user has to obtain the optimal number of pivots
by trial and error from the complete collection. Further insertions of objects may
be possible at the cost of degrading the search performance obtained by the index.
Other important drawback is the computational cost of the selection of pivots in
most of these techniques, which can be very high in some cases.

Less attention has been paid to the selection of e�ective cluster centers in
clustering-based methods. However, it seems obvious that the number of cluster
centers, their position in the space with respect to each other and their position
with respect the rest of objects in the database determine the partition of the space
and thus the search performance of the method during the search.

1.2 Contributions of this thesis

The main contribution of this thesis is Sparse Spatial Selection (SSS), a new method
for the selection of e�ective reference objects adapted to the characteristics and
distribution of the objects in the space. This method is fully dynamic, that is, the
reference objects are selected as new objects are inserted into an initially empty
database, and it works with continuous and with discrete distance functions. In
addition, it is not necessary to specify how many reference objects are needed, since
our method selects new references as they are needed when thedatabase grows.
An important di�erence with previous proposals is that the cost of selecting new
reference objects in our method is the minimum possible.

Other contributions of this thesis are:

• We present a new pivot-based method that uses Sparse SpatialSelection (SSS)
for obtaining the set of pivots of the index. Our experimental evaluation
shows that the search performance it obtains is better or at least equal than
the obtained by previous techniques. In addition, it is completely dynamic:
the database is initially empty, and the index is built as objects are inserted
in the database, adapting the structure and information of the index to the
content of the database in each moment.
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• We address the problem of the selection of e�ective cluster centers, and
propose a new recursive tree-like clustering-based method, Sparse Spatial
Selection Tree (SSSTree). The cluster centers are selected with Sparse Spatial
Selection. This gives as result a tree structure in which theinformation and
resources of the index are adapted to the characteristics and complexity of
the space. An important di�erence with previous proposals isthat the tree is
not necessarily balanced, since its structure is adapted tothe characteristics
and complexity of the space.

• We introduce Non-Redundant Sparse Spatial Selection (NR-SSS), a new
criterion for detecting and replacing redundant reference objects, that is,
references that do not contribute to improve the e�ectiveness of the overall
set of reference objects as a whole. This method obtains a smaller set of
pivots than the original SSS, but maintains the e�ectiveness of SSS, therefore
reducing the search complexity and the space requirements of the index.

• We introduce the concept of nested metric spaces as an explanation of certain
irregularities of the space that can appear in real problems. We analyze
how those nested spaces can a�ect the performance of some techniques, and
propose a method for detecting these situations and adapt the indexing to
those complex spaces.

1.3 Structure of this work

The rest of the thesis is organized as follows:

• Chapter 2 introduces the basic concepts of indexing and searching in metric
spaces and sets thus the basis for this work. It also presentsthe more relevant
proposals of the state of art to the date, with a special focusin the previous
work on algorithms for pivot selection.

• Chapter 3 presentsSparse Spatial Selection (SSS), our main contribution, and
a new pivot-based method that uses this method for the selection of the pivots
used in the index.

• In Chapter 4 we address the problem of the selection of e�ective reference
objects to clustering-based methods, and propose Sparse Spatial Selection
Tree (SSSTree), a new recursive and unbalanced tree-like structure that
improves the results of previous techniques by taking advantage of the good
distribution of the reference objects provided by SSS.

• Chapter 5 presentsNon-Redundant Sparse Spatial Selection (NR-SSS). It is
a modi�cation of the original SSS method. The idea is to detect and remove
reference objects that do not contribute to increasing the capacity of the index
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for discarding objects. In this chapter we describe the criteria for evaluating
the contribution of each reference object and the policy fortheir removal or
replacement.

• Chapter 6 introduces the concept ofnested metric spaces, showing how this
kind of space a�ects the search performance of some methods,and presents a
new method for detecting and dealing with these irregularities of the space.

• Chapter 7 presents the conclusions of this work, and lines offuture work.

• Appendix A lists the publications and other research resultsderived from this
thesis, and the works published by other researchers that take our proposals
into consideration and quote our work.

• Appendix B summarizes the notation used throughout the thesis.

• Appendix C describes with detail the common test environmentused for all
the experiments described in this work.
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Chapter 2

Indexing and searching in
metric spaces

2.1 Overview of the chapter

In this chapter we introduce the background and basic concepts related with
searching in metric spaces. We start by presenting the basicconcepts and notation
of metric spaces and how they are used to formalize the problem of similarity search.
We also present the most important similarity queries, and typical metrics that can
be used in a wide range of problems.

Searching in metric spaces could be trivially implemented as a sequential scan
of the entire database. However, this is not feasible in practice, due to the high
computational cost of computing the distance between two objects. Therefore, the
main goal of methods for searching in metric spaces is to avoid the comparison of
the query object with the whole content of the database. In this chapter we provide
a description of the most important state-of-art methods, and we study the policies
they apply in order to avoid a sequential scan of the database. We also review the
concept of intrinsic dimensionality and how it can a�ect the performance of search
methods in certain metric spaces.

All methods for searching in metric spaces try to improve the e�ciency of the
search by building an index on the collection, based on some objects selected as
indexing objects, also called reference objects. We end thechapter with an analysis
of the how the selection of indexing objects a�ects the search performance and other
parameters of the indexes. We provide a detailed description of the previous work
on this issue, since our proposals are compared to them in next chapters.

9
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2.2 Basic concepts on metric spaces

Metric spaces are one of the mathematical tools that can be used to formalize the
problem of similarity search. A metric space is a pair (X, d) composed of a universe
of objects X and a metric d. The universe is the universal set of objects of a
speci�c type, and a metric is a distance function d : X × X −→ R+ that satis�es
the following properties:

• (Strictly positiveness) d(x, y) ≥ 0, and d(x, y) = 0⇔ x = y

• (Symmetry) d(x, y) = d(y, x)

• (Triangle inequality) d(x, y) ≤ d(x, z) + d(z, y)

These properties ensure the consistency of the metric. For every x, y ∈ X, the
number d(x, y) is called the distance between the objectsx and y with respect to
the metric d. The distance d(x, y) is a measure of the di�erence or dissimilarity
between x and y with respect to the metric d. The more similar the objects are,
the smaller the distance between them. The de�nition and meaning of the distance
function depend on the application domain and on the goals ofthe application.
Note that although we use the term distance, it is not necessarily a spatial distance
(actually, it is not in most cases). For example, considering that X is a set of words
in natural language, and that d is the edit distance (computed as the minimum
number of characters to be inserted, replaced, or removed ina word to transform
it into the other), the distance between the words �tip� and � trip� is 1, because the
di�erence between them is given by one character. In this example, it is clear that
the distance is not spatial.

The database or collection of objects is represented by a �nite subsetU ⊆ X of
sizen = |U |. A query is expressed as a query objectq ∈ U , and a constraint about
its similarity to the objects in the database. The result set is the subset of objects
in U that, using the distance function, satisfy the constraint of similarity to the
query object. A query could consist, for example, in obtaining all the objects up to
a certain distance to the query objectq.

A set of all the words of a given language and the edit distanceform a metric
space. Dictionaries are possible databases of objects. In this example, we could
be interested into retrieving all the words up to a given distance of a speci�c word
given as a query for spelling correction.

The internal details of the objects and the distance used to compare them are
abstracted by the formalization of the problem. No matter if we are searching in
a database of biological sequences, or comparing words for spelling correction in a
text editor, any method for e�ciently search in metric space s could be applied.

There are other alternatives to formalize similarity search. Vector spaces are
one of them. In some cases, complex objects can be represented as vectors of
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features, where each component of the vector is a numeric representation of a
feature of interest of the object. The distance between two objects is computed
as the Euclidean distance between their feature vectors. For example, images can
be represented by feature vectors obtained with computer vision algorithms.

When similarity search is formalized using vector spaces, methods for similarity
search can take advantage of the properties of the Euclideangeometry. But there
are many data types that can not be represented by feature vectors. Since metric
spaces are much more general than vector spaces (actually, vector spaces are a
particular case of metric spaces), they can be applied to a wider range of problems.
As we have already explained, methods for searching in metricspaces only know
the existence of a distance function that holds the properties of strictly positiveness,
symmetry, and the triangle inequality.

2.2.1 Metrics

Several metrics could be de�ned for objects of the same data type. A metric that
is useful for a certain domain can be useless in another. In some cases it is di�cult
to �nd distance functions that hold the three necessary properties to be a metric.
When the distance function does not hold the symmetry property it is called a
quasi-metric. In the case that the function does not hold the property of strictly
positiveness it is called apseudo-metric. In both cases the distance function can be
transformed in other function that holds the metric propert ies.

This section describes typical metrics that can be applied in many application
domains. As we will see, some of them are discrete and other continuous. This
distinction is important since some algorithms can only work with discrete metrics,
which restricts the problems in which they can be applied.

Metrics for vectors

In some applications the objects are represented by featurevectors, where each
component represents a certain feature of interest of the object. It is the case of
applications for content-based image retrieval, where each image is represented by
features as the colors, textures, or the presence of shapes of interest. In this section
we describe several metrics that can be used when working with vector spaces.

The family of Minkowski distances is a parametric set of distance functions for
vector spaces. They are de�ned as:

Lp(~x, ~y) =
� X

1≤i ≤k |xi − yi |p
� 1

p

where k is the dimensionality of the vector space, andxi and yi are the
components of the vectors~x ∈ Rk and ~y ∈ Rk respectively.
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Each value of the parameterp between 0 and ∞ gives as a result a di�erent
distance function, and all of them satisfy the conditions for being metrics. L1 is the
Manhattan distance. For instance, whenk = 2, L1 measures the distance between
two points as the number of vertical and horizontal movements from one point to
another. L2 is the Euclidean distance, the usual choice.

An interesting metric is L∞ = max1≤i ≤k |xi − yi |, called the maximum distance,
since it measures the maximum pairwise di�erence between the coordinates of two
vectors.

Minkowski distances assume that the components of vectors are independent,
that is, that each component of a vector is only compared withits corresponding
component of the other vector. However, in some cases there are correlations
between di�erent coordinates, and the comparison of the objects should take them
into account. Quadratic form distances are de�ned as [Hafner et al., 1995]:

dM (~x, ~y) =
q

(~x− ~y)T ·M · (~x− ~y)

where ~x ∈ Rk and ~y ∈ Rk are two vectors of dimensionk, and M is a k × k
matrix which components take values between0 and 1. The matrix M represents
the correlations between the components of each vector. Thecomponent M(i, j)
represents the weight of the correlation between the component xi of ~x and the
component yj of ~y.

Quadratic form distances are used, for example, for the comparison of images
represented by feature vectors in which a certain feature has a relation with another.
If some features correspond to colors, there will be relationships between similar
colors and, therefore, di�erent components of the feature vector. The weight of the
relations between colors (or any other feature) can be re�ected in the matrix.

All the metrics of the Minkowski and quadratic form families are continuous.

Metrics for strings

The edit distance or Levenshtein distance [Levenshtein, 1965] between two strings
of symbols from a given alphabet, is de�ned as the minimum number of symbols
to insert, replace, or remove to transform one string into the other. Therefore, it
is a discrete metric. The edit distance can be used when working with dictionaries
of words for spelling correction (as it is the case of many text editors and search
engines). Sequences of proteins or DNA are also strings of symbols that can be
compared using the edit distance.

There are several variations on this de�nition. A direct generalization consists in
assigning di�erent weights to each edit operation (addition, removal, or replacement
of a symbol), depending on the cost of each of them in a particular application.
In some cases not all the edit operations make sense. TheHamming distance
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allows only replacements of symbols. In the same way, theEpisode distance allows
removals of symbols. In these cases the distance between twostrings can be∞.
The contextual normalized edit distance [de la Higuera and Micó, 2008] takes into
account the length of the strings to normalize the �nal result.

Metrics for trees

The tree edit distance between two labeled trees is the minimum number of edit
operations necessary for transforming a tree into the other. In this case the edit
operations consist in adding, removing, or relabeling nodes [Bille, 2005]. This
de�nition can be generalized as in the case of the edit distance for strings, allowing
only some operations or assigning di�erent costs to them. For example, the cost
assigned to the insertion of a node can be higher for deeper levels of the tree, since
it involves a high computational cost that may be signi�cant for the application.

The edit distance for trees has been used for comparing XML documents
[Guha et al., 2002], represented as trees. As in the case of theedit distance for
strings, the edit distance for trees is a discrete metric.

Metrics for sets

Some applications need to compare objects that are represented as sets that contain
or not certain features or elements of interest. For example, the description of a
user pro�le in a virtual shop could be represented as the set of all the products
the user has viewed or bought. The user pro�les could be compared with sets of
products for obtaining the most promising users for a directmail campaign. User
pro�les in social networks can be also viewed as sets.

Given two arbitrary sets A and B, the Jaccard coefficient is de�ned as:

Jaccard(A, B) = 1−
|A ∩B|
|A ∪B|

That is, the Jaccard coe�cient measures the dissimilarity between two sets as the
ratio between the cardinalities of the intersection and the union of the compared
sets. The higher the number of objects common to both sets is,the smaller the
distance between them. The distance between two sets according to the Jaccard
coe�cient is measured as the percentage of objects they havein common.

However, in some applications it is not possible to know if twoelements of the
sets A and B are exactly equal, so it is not always applicable. For example, if we
compare two sets of images, it does not make sense to compare if two images of
those sets are exactly equal.

The Hausdor� distance considers the distances from objects in a set to objects
in the other set, and therefore obtains a more re�ned distance than the Jaccard
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coe�cient, that considers only the exact equality between the elements of the two
sets compared.

Given a metric space(X, d) and two sets A, B ⊆ X, the Hausdorff distance
between the setsA and B is de�ned as:

Hausdorff (A, B) = max{supx ∈A d(x, B), supy∈B d(A, y)}

where d(x, B) is the distance from the objectx to the set B (that is, the minimum
distance from x to any element of B), and d(A, y) is the distance from the objecty
to the set A (that is, the minimum distance from y to any element of A).

Complexity

Table 2.1 shows the computational complexity of the metricswe have described in
this section, in terms of the size of he objects compared. As wecan see in the table,
most of them have a high computational cost. This is specially important when
they are used to compare very large objects. For example, comparing two words
in natural language with the edit distance may not be very costly, but the edit
distance is also used with sequences of proteins or DNA with hundreds of thousands
of symbols. In this case, the comparison of two objects involves a signi�cant cost.

Distance function Complexity

Minkowski distances O(n)
Quadratic form distances O(n2 + n)
Edit distance O(n×m)
Tree edit distance O(n4)
Hausdor� distance O(n×m)

Table 2.1: Complexity of metrics for vectors, strings, trees and sets.

Note that the most costly operation when processing a similarity query is the
evaluation of the distance between two objects. That is the reason why the main
goal of methods for indexing and searching in metric spaces is to reduce as much
as possible the number of distance computations.

2.2.2 Similarity queries

Several interesting types of query have been proposed for similarity search. In this
section we describe the most important types of query.
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Figure 2.1: Example of range search inR2.

Range search

The most important type of query is range search, since it is the more general and
the implementation of other types of queries relies on it. Given a query object
q ∈ X and a search radiusr ∈ R+ (also called range), a range search retrieves all
the objects in the database up to a distancer from q:

Range(q, r) = {x ∈ U, d(x, q) ≤ r}

Note that q is an object in X, but not necessarily an object in the databaseU .
Retrieving the words up to a certain distance of another one is an example of range
search. As we will see later, methods for searching in metric spaces discard objects
by estimating if they are out of the region in the space de�nedby the query object
and the search radius, avoiding the direct comparison with the query. Therefore,
the higher the search radius is, the more di�cult the search.

Figure 2.1 shows an example of range query in a two dimensional scenario. In
this example, the query object q and the radius r de�ne a two-dimensional query
ball. The result set is the subset of objects in the database that are contained in this
ball, that is, the region of the space aroundq encircling those objects that answer
the query. In this case,x5, x8 and x11 are in the result set.

Nearest neighbors search

In some domains range search is not adequate since it can be di�cult to set an
appropriate value of the search radius. In a collection of words we know the meaning
of retrieving the words at distance two of another one: the words with at most two
spelling errors. But in the case of a collection of images compared with the Euclidean
distance, the radius does not have a clear meaning. In some cases the problem is
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Figure 2.2: Example of nearest neighbors search inR2.

that the size of the result set can be very variable for a givenradius depending on the
query object. This is very common when working with discretedistance functions.
Some applications just need a �xed number of results and searching for them can
be even more e�cient than a range search.k-nearest neighbor search (kNN-search)
retrieves the k closest objects to the query objectq:

kNN(q) = {A ⊆ U, |A| = k, ∀x ∈ A, y ∈ U −A, d(x, q) ≤ d(y, q)}

A particular case of kNN-search is1NN-search, usually callednearest neighbor
search, that retrieves just the closest object to the query. kNN-search can
be implemented upon range search by using dynamic search radius. That is,
the kNN-search is answered by carrying out as many range searches asneeded,
starting with a small search radius and increasing it until the result of the
range search contains thek closest objects forq [Chávez et al., 2001b]. However,
there are also speci�c algorithms for this operation that can achieve better
performance, as [Clarkson, 1999].

Figure 2.2 shows an example of4NN-search, the four nearest neighbors search
in a two dimensional scenario. In this case the result set contains the objects x8,
x11, x5 and x9, the four most similar objects to the query, despite of the values of
the distances from them to the query.

In some problems the search must proceed in the opposite direction. That is,
given a query objectq, �nd the objects for which q is among their nearest neighbors.
This operation is called reverse nearest neighbor search. Decision support systems
can use this operation to detect in�uence sets around an object of interest. Several
variations of these types of query exist.
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Similarity join

Another interesting type of query in metric spaces is similarity join. In relational
databases, a join query returns the objects in two or more relations that are linked
through common values in equal domain attributes. This ideacan be extrapolated
to the case of metric spaces. Given a metric space(X, d) and two databasesU ⊆ X
and V ⊆ X, similarity join retrieves all the pairs (u, v) ∈ U × V for which u and v
are up to a distancer:

SimJoin(U, V, r) = {(u, v) ∈ U × V, d(u, v) ≤ r}

In [Bayardo et al., 2007] the search of all similar pairs is used to �nd all the
similar user pro�les in a social network. Similarity join could also be used in
databases of objects from di�erent universes if a metric to compare them is available.

The join operation in relational databases is a particular case of similarity join.
Given two relations R and S, with attributes U and V respectively, such that
dom(U) = dom(V ), the similarity join Sim(U, V, 0) searches all the pairs of objects
(x, y) ∈ U × V where d(x, y) = 0, that is, where x and y are equals.

2.3 Search in metric spaces

The naive implementation of similarity search consists in performing a sequential
comparison of the query object with all the objects in the database. However, this
implementation is not feasible in practice. Due to the high computational cost of
evaluating the distance between two objects using the distance function, and the
typically very large size of the databases, a sequential scan of the database would
result in a prohibitive cost for real applications.

The goal of methods for searching in metric spaces is to solvethe queries without
comparing the query object with all the objects in the database. That is, the goal
is to solve the queries by comparing the query object only with a small fraction of
the objects in the database. To achieve this goal, methods for searching in metric
spaces build indexes on the database to avoid the comparisonof the query object
with all the objects in the database.

An index is a data structure that maintains useful information about the
collection that will be used during the search to discard as many objects as possible
from the result without comparing them with the query object . It is important to
note that when we use the termmethod for searching in metric spaces, we refer to
the set made up by the index data structure and the algorithmsto build the index,
to modify the index when an object is inserted into or removedfrom the database,
and to process the index during the search to prune the searchspace.
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Although reducing the number of comparisons of objects needed to solve a query
is the main goal of methods for searching in metric spaces, there are other aspects
that a�ect the overall search e�ciency obtained with a metho d:

• Processing the information stored in the index to prune the search space
during the search involves an extra CPU time. Although it is usually supposed
to be less costly than the comparison of two objects, it a�ects the overall search
performance.

• The space requirements of the index have also to be taken intoaccount. If
the index does not �t in main memory, the possibility of e�cie ntly store the
index into secondary memory and the number of I/O operationsneeded to
load it are also important.

• Some methods can only work with discrete distance functions, while others
can work with continuous distances too. This constraint can restrict the
applicability of the method in some problems.

• Some methods are static, that is, the index is built on the complete collection
of objects and the index does not admit further insertions or deletions of
objects in the database. Others admit insertions or deletions of objects
although the search performance can degrade if the number ofchanges is not
small. Dynamic methods build and adapt the index as objects are inserted
into or removed from an initially empty database.

Many methods for searching in metric spaces have been proposed to the date.
Some of these methods were developed as solutions for speci�c problems in di�erent
areas, as data engineering, statistics, pattern recognition or computational biology,
for example. This situation led to some ideas and concepts being reinvented. Some
authors [Chávez et al., 2001b] proposed a uni�ed taxonomy ofmethods for searching
in metric spaces. That taxonomy groups all these proposals under a common,
application-independent framework. At a �rst level, the ta xonomy distinguishes
between pivot-based and clustering-based methods, also known asVoronoi-type
methods.

In this section we describe in general terms how methods of each group work.
In section 2.5 we review the most important methods of the state of the art.

2.3.1 Pivot-based methods

Pivot-based methods select a small subset of objects from the database to be used as
reference objects, calledpivots, P = {p1, . . . , pm }, pi ∈ U . The distancesd(x, pi ),
1 ≤ i ≤ m, from the objects in the databasexi ∈ U to the pivots pi ∈ P are
computed and stored in the index. The distancesd(xi , pj ) are used during the
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search to prune the search space by discarding as many objects as possible from the
result without comparing them with the query.

When given a range query(q, r), the query object is compared with the pivots to
obtain the distancesd(q, pj ), 1 ≤ j ≤ m. Let xi ∈ U be an object in the database,
and pj ∈ P be a pivot. Applying the triangle inequality, we know that:

d(xi , pj ) ≤ d(xi , q) + d(q, pj )

Note that we know the value of the distance d(xi , pj ), that is stored in the
index, and the value of the distanced(q, pj ), that is obtained when the query object
is compared with the pivots. By rearranging the triangle inequality, we obtain a
lower bound on the distance from the objectxi to the query object q as:

d(xi , q) ≥ |d(xi , pj )− d(q, pj )|

If the lower bound is greater than the search range, that is, if:

|d(xi , pj )− d(q, pj )| > r

then d(xi , q) > r, and the object xi is discarded from the result without comparing
it with the query.

Note that for each object in the database we can obtain as many lower bounds
on its distance to the query objects as pivots used in the index. If an object is not
discarded by a particular pivot, it may be discarded by another one.

Figure 2.3 shows how pivot-based methods proceed to prune the search space.
In this example, the database contains ten points in a two-dimensional space. Four
of them are selected as pivots,P = {p1, . . . , p4}. The algorithm for building the
index computes and stores in a table (for example) the distances from the pivots
to the rest of objects in the databaseU − P = {x1, . . . , x6}. When given a range
query (q, r), the query object is compared with the four pivots. The distances from
the pivots to the rest of objects and the distances from the query to the pivots are
used during the search to discard as many objects as possiblefrom the result.

Figures 2.4 and Figure 2.5 show how the triangle inequality and the distances
stored in the index are used to discard objects from the result without comparing
them with the query. The value of the distanced(xi , pj ) has been computed during
the indexing of the collection and it is available in the index. The value of the
distance d(q, pj ) has been obtained when the query object was compared with the
pivots. In the example shown in the �gure, the lower bound obtained asd(q, xi ) ≥
|d(xi , pj )−d(q, pj )| > r is greater than the search radiusr, and therefore, the object
xi can be directly discarded from the result without being compared with the query
object q.
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Figure 2.3: Indexing and searching with pivot-based indexes.

Since we are working with values of positive distances, it does not matter which
of them is greater than the other. That is the reason for introducing the absolute
value of the di�erence between the distances in the equationof the lower bound. In
Figure 2.4 the distanced(q, pj ) is greater than the distanced(xi , pj ). In Figure 2.5
the situation is the opposite. However, the value of the lowerbound is the same in
both cases.

Obviously, if the object is in the result set, it is not possible to discard it applying
this criterion, that is, there are no false negatives. But, note that even if the object
x is not in the result set, it may not be possible to discard it without comparing it
with the query. Figure 2.6 shows two examples. In the �rst case the lower bound
is greater than the search radius andx can be discarded. In the second case, the
lower bound is not greater than r and the object can not be discarded. In this
second case, although the objectx is not in the result set, we can not discard it
since the lower bound we obtain for it does not guarantee us that this object is not
in the result set. Therefore, it is necessary to compare the objects that could not
be discarded with the query in order to avoid false positives.

The condition for discarding an object can be expressed in other form. Given
an object x ∈ U , a pivot p ∈ U , and a query (q, r), x can be discarded from the
result set if d(x, p) /∈ [d(p, q)− r, d(p, q) + r]. Figure 2.7 shows graphically this idea.
The dashed circles delimit the area of the objects that can not be discarded.
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In these examples we showed how to obtain a lower bound ofd(x, q) using only
one pivot. However, the indexes use a set of several pivots with which they obtain
di�erent lower bounds for d(x, q). If a pivot is not able to discard the object,
perhaps it can be discarded by another pivot. As we can see in �gure 2.7, the list
of candidate objects is given by the intersection of the lists of candidates of each
pivot. The search space is signi�cantly pruned with each newpivot. The more the
pivots, the smaller the candidate list will be.

Existing pivot-based methods di�er on how pivots are selected, the infor-
mation they store, and the data structures they use to store it. Some meth-
ods store the distances from objects to pivots in tree-like structures, as FQT
[Baeza-Yates et al., 1994], FHQT [Baeza-Yates, 1997], and FMVPT
[Chávez et al., 2001b]. Other methods store the distances intables or other
array structures, as AESA [Vidal, 1986], LAESA [Micó et al., 1994], FMVPA
[Chávez et al., 2001b], and FHQA [Chávez et al., 2001a]. Some methods follow
an approach know as scope coarsening, and do not store all the distances
from objects to pivots (thus reducing the scope of action of each pivot), as
BKT [Burkhard and Keller, 1973], VPT [Uhlmann, 1991], and MVPT [ Brin, 1995,
Bozkaya and Ozsoyoglu, 1997].
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Figure 2.6: Avoiding distance computations with pivot �ltering.

Figure 2.7: Example of pivot �ltering with two pivots.

2.3.2 Clustering-based methods

Clustering-based methods follow a di�erent approach. In this case, the space is
decomposed in a Voronoi partition. That is, the space is divided in a set of m
clusters Ci such that Ci ∩ Cj = ∅, 1 ≤ i, j ≤ m, and

S
Ci = U . To create

such partition, a set of objects arec1, . . . , cm taken from the database as reference
objects, in this case, cluster centers. Each cluster is de�ned as the subset of objects
closest to its center than to any other center, that is:

Ci = {x ∈ U, d(x, ci ) ≤ d(x, cj ), 1 ≤ j ≤ m}

While pivot-based methods try to obtain good lower bounds ofthe distance from
the object to the query for each individual object in the database, clustering-based
methods try to obtain good lower bounds for groups of objects.

Although the information stored in the index for each cluster varies for the
di�erent clustering-based methods, all methods store at least a reference to the
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Figure 2.8: Indexing and searching with clustering-based methods.

center of the cluster, and the covering radius, which is the distance from the center
of the cluster to its furthest object in the cluster, that is:

rci = max{d(x, ci ), x ∈ Ci }

The center and the covering radius de�ne a ball in the space. The ball associated
to the cluster Ci is the set of all points of X at distance less thanrci from ci (note
that we say objects in X, not objects in U ), that is:

(ci , rci) = {x ∈ X, d(x, ci ) ≤ rci}

It is important to note the di�erence between the cluster, and its associated ball.
The cluster is a set of objects. The ball is a region in the space. For example, in a
two-dimensional vector space, a cluster is a set of(x, y) points in the space, while
the ball is a circumference with centerci and radius rci . The intersection of two
clusters is always empty, but their associated balls can intersect.

When given a range query(q, r), the query object is compared with the cluster
centers. These distances and the covering radius of each cluster permit us to
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Figure 2.10: Use of ball partitioning in clustering-based methods.

determine if the intersection between the ball corresponding to the cluster and
the ball corresponding to the query is empty. The clusterCi is discarded from the
result set if:

d(q, ci ) ≥ rci + r

whererci is the covering radius ofCi . If this lower bound is greater than the search
radius r, no object of the cluster is in the result set and thus the cluster can be
pruned from the search. In the example shown in Figure 2.8, all the objects on
clusters C1, C2, C4, C7, C8, and C9 are directly discarded from the result without
being compared with the query.

Figures 2.9 and 2.10 show two examples of how the policy for discarding clusters
works. In the example of Figure 2.9, the lower bound is greater than the search
radius and the complete cluster can be discarded. As we can seein the �gure, the
query ball does not intersect with the ball corresponding tothe cluster. However,
in the case of the example shown in Figure 2.10, the query ballintersects with the
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ball corresponding to the cluster and it is not possible to discard it, nor any of the
objects in it. Note that in the case of (q2, r), there is no necessarily any object of
the cluster in the result set. The ball corresponding to the cluster is used as an
approximation of the real contents of the cluster. The ball is used to try to discard
it. Since it is an approximation, the fact that both the clust er and query balls
intersect does not guarantee that any object of the cluster is in the result set.

The capacity of pruning the search space depends on the characteristics of the
partition. On the one hand, if the clusters are too large, it is more di�cult to discard
them from the result, since it is more probable that the query ball will intersect
them. On the other hand, having a lot of small clusters improves the pruning of
the search space but increases the internal complexity of the search, since the query
object has to be compared with a larger number of cluster centers.

Most clustering-based methods create a multilevel recursive partition of the
space for this reason. In a �rst level, the space is decomposed in few, large
clusters. Each of them is then recursively decomposed in subclusters that will
also be decomposed in smaller clusters until the resulting clusters are small enough.
During the search, the larger clusters are used �rst, and therecursive decompositions
of each of them is used if they can not be discarded from the result.

The resulting partition of the space depends directly on theset of objects chosen
as cluster centers and the criteria for creating the clusters. With this approach, two
clusters can have a di�erent number of elements. Some methods use di�erent criteria
for obtaining a balanced partition of the space, although it has been shown that it
is not the best choice in terms of search performance [Chávezand Navarro, 2005].

Existing clustering-based methods di�er in how they choosethe cluster centers,
how they partition the space, and in the information they store in the index for
each cluster. Clustering-based methods can be classi�ed inthose based on the use
of hyperplanes, as GHT [Uhlmann, 1991], and those based on the use of the covering
radius (distance from the center to its furthest object in the cluster) of each clus-
ter, as BST [Kalantari and McDonald, 1983], VT [Dehne and Noltemeier, 1987],
M-Tree [Ciaccia et al., 1997] and List of Clusters [Chávez and Navarro, 2005].

Comparison

There are important di�erences between pivot and clustering based methods.
On the one hand, pivot-based methods signi�cantly outperform clustering-based
methods in what refers to search cost (that is, the number of distance computations
needed for solving a query).

On the other hand, clustering-based methods use linear space for storing the
index, while in the case of pivot-based methods the space requirements depend
directly on the number of pivots, and, therefore, on the distance computations they
store in the index.
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2.3.3 Search complexity

As we have already explained, the search performance of a method for searching in
metric spaces is measured as the average number of distance computations needed
for solving a query. The total number of distance computations carried out during
a search is given by the sum of the internal and external complexities:

• Internal complexity: is the number of comparisons for comparing the query
object with the pivots or cluster centers used by the index. It is called internal
since this number of comparisons depends on the resources and internal
structure of the index.

• External complexity: is the number of comparisons needed for comparing the
query object with the objects that could not be discarded by the index during
the search. As we have already explained, it is necessary to compare them
with the query in order to avoid false positives in the �nal result.

In most methods there is a trade-o� between both components of the search
cost. Reducing the external complexity by using more pivotsor cluster centers
increases the internal complexity, and reducing the internal complexity of the
method increases the external complexity.

2.4 Intrinsic dimensionality

The intrinsic dimensionality of a metric space is an interesting concept that has an
important in�uence on the search performance obtained withmethods for searching
in metric spaces. In a vector space, the dimension of the space is the number
of components of each vector. In general, when vector spacesare indexed with
multidimensional access methods, the higher the dimensionality, the more di�cult
the search.

Though general metric spaces do not have an explicit dimensionality, as vector
spaces have, we can talk about their intrinsic dimensionality following the same
idea. The intrinsic dimensionality of a metric space is a measure of its complexity.
The higher the dimensionality, the more di�cult the search. That is, discarding
objects from the result without comparing them with the query is more di�cult in
spaces with high intrinsic dimensionality.

This concept has been studied in depth in [Chávez et al., 2001a], that proposes a
way of estimating the intrinsic dimensionality of a metric space, and that permits to
have an idea of its complexity and the e�ciency that could be achieved with indexing
algorithms. To obtain this estimation, [Chávez et al., 2001a] uses the histogram of
all the distances between objects in the metric space. The idea is that the more
concentrated the histogram, the more di�cult the search. Th erefore, the intrinsic
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Figure 2.11: Spaces with low (left) and high (right) dimensionality.

dimensionality of the metric space will be higher when the mean µ of the histogram
is higher and the varianceσ2 lower. Figure 2.11 illustrates this idea.

Given a random range query(q, r), the distances between the query objectq
and the pivots are distributed according to the histogram of distances. The policy
for discarding an object using pivots determines that any object x ∈ U can be
discarded if:

d(p, x) /∈ [d(p, q)− r, d(p, q) + r]

Thus, the shadowed areas in Figure 2.11 represent the objects in the space that
the method can not discard. The more concentrated the histogram around the
mean, the less the objects that can be directly discarded.

Based on this idea, [Chávez et al., 2001a] proposes a formulafor estimating the
intrinsic dimensionality of a metric space (we omit the analytical steps that led to
this formula, available in [Chávez et al., 2001a]):

ρ =
µ2

2σ2

The intrinsic dimensionality of a space is therefore given by the distribution and
topology of the objects in the space. Even among collectionsof objects of the same
nature, one of the collections can be more di�cult than the ot her in terms of the
number of distance computations that can be avoided for solving the query.
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2.5 State of the art

2.5.1 Pivot-based methods

As we explained in Section 2.3, pivot-based algorithms use a subset of objects of
the collection as reference objects, called pivots. The indexes maintain distances
from these pivots to the objects of the collection. During the search, the query
is compared with the pivots, and these distances are used with the index and the
triangle inequality to discard objects without comparing t hem with the query (see
Figure 2.3), as we have already explained.

In this section we review the most important proposals in pivot-based methods.
As we will see, the existing methods di�er mainly on how they choose the pivots
in the space, the information they store in the index, and thedata structures they
use to store that information.

Burkhard-Keller Tree (BKT)

Burkhard-Keller Tree (BKT) [Burkhard and Keller, 1973] was probably the �rst
proposal to the problem of similarity search in metric spaces. It works only with
discrete metrics. The information about the space is storedin a tree-like structure,
recursively built as follows: an object p ∈ U is selected at random to be the �rst
pivot, and the root of the tree. For all the values i > 0 that can be returned by the
distance function, the set Ui is de�ned as:

Ui = {x ∈ U, d(x, p) = i}

That is, Ui is the set of objects placed at distancei from the pivot p. For each
non-empty Ui , a child node is added to the root, and the corresponding branch is
labeled with the distance value i. The same process is recursively applied to each
new node. When a subsetUi has less thanb objects, a leaf node is created for it
and the recursive construction of the index stops in that branch. The index uses as
many pivots as nodes has the tree, and the distances from the pivots to the rest of
objects of the database are stored in the branches of the tree.

Given a range query(q, r), the search is carried out by traversing the tree from
the root to the leaves. The query objectq is compared with the pivot stored in the
root of the tree. Once the distanced(q, p) has been computed, the search proceeds
recursively through the branches for which:

d(p, q)− r ≤ i ≤ d(p, q) + r

When the search reaches a leaf node (with up tob objects), the objects of the
leaf are directly compared with the query. Each time the query is compared with
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Figure 2.12: First level of a BKT tree for a set of points in R2.

either a pivot or an object in a leaf node, it is added to the result set if d(q, x) ≤ r.
With this structure, the search process can prune some branches of the tree by using
the triangle inequality and the precomputed distances that label each branch of the
tree. Therefore, the search space is pruned and the query object is not compared
with objects that can be discarded by using the information of the index.

Figure 2.12 shows an example of how BKT works in a two-dimensional scenario.
The left side of the �gure shows the set of points indexed. The�rst object selected
as a pivot is x11. The �gure shows the lines that intersect the objects placedat
each distance of this �rst pivot. For each one of these distances, a new branch is
added to the tree. The right side of the �gure shows the �rst level of the tree. As
we can see in the �gure, the branch of objects placed at distance 5 from the pivot
can be pruned, sox2 and x10 can be directly discarded from the result set.

Fixed-Queries Tree (FQT)

Fixed-Queries Tree (FQT) [Baeza-Yates et al., 1994] is a modi�cation of BKT that
achieves a smaller number of evaluations of the distance function by reducing the
number of comparisons of the query object with the pivots of the index. In FQT,
all the nodes of a given level of the tree use the same object asa pivot, and the
rest of objects of the database are stored in the leaves of thetree. Note that, in
this case, an object used as a pivot in a node does not necessarily belong to the
subset of objects processed in that node. In this way, the index reduces the number
of comparisons by reducing the internal complexity (comparisons of the query with
pivots). Only one comparison is needed in each level of the tree . Avoiding these
distance computations can be signi�cant if the distance function can return too
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Figure 2.13: First level of a FQT tree for a set of points in R2.

many di�erent values, something that would generate a very broad tree, or if the
collection had a large number of objects, that would make thetree to be very deep.
The search proceeds as in a BKT tree.

Figure 2.13 shows the FQT tree corresponding to the set of points we used in
the previous example, assumingb = 2 (we do not show the set of points with the
distances to each pivot for reasons of space). As we can see in the �gure, the pivot
used in the root of the tree is againx11. However, instead of using a di�erent pivot
for each node in the next level, the objectx7 is used as a pivot for all of them. All
the rest of objects of the database are referenced in the leaves of the tree.

A modi�cation of this algorithm, Fixed-Height Tree (FHT) [Bae za-Yates, 1997],
structures the tree with all the leaf nodes are at the same height h, independently
of the number of objects they store. In this way, the shortestpaths are extended
through additional paths. The fact of having a deepest tree can improve the search,
since those deeper paths can be discarded before reaching the leaf nodes (avoiding
the comparison of the query with the objects stored in that leaf). Since the number
of pivots is the number of levels of the tree, we can easily state how many pivots
are going to be used. Although the extra cost for processing the structure is
higher in this way, having more pivots permits to discard more objects by using
the triangle inequality. While in BKT and FQT the number of pi vots depends on
the speci�c collection and the values returned by the distance function, in FHT the
number of pivots has to be stated in advance. The experimental results shown in
[Baeza-Yates, 1997] show that a deeper tree can reduce the number of evaluations
of the distance function.

Fixed Queries Array (FQA)

Fixed Queries Array (FQA) [Chávez et al., 1999, Chávez et al., 2001a] is a compact
representation of FHT. That is, instead of implementing the tree with nodes and
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Figure 2.14: Fixed Queries Array (FQA) for a set of points in R2.

pointers, it is transformed into a plain vector representation with the associated
algorithms for e�ciently performing the necessary operations on it.

Given a FQHT tree of height h, the FQA representation of the tree is obtained
by performing a traversal of the leaves of the tree from the left to the right, storing
the objects of the leaves in an array. For each object in the array, we obtain the
h numbers that determine the path for reaching that object in the tree (that is, h
distances in the tree). Each of theseh numbers is coded inb bits in such a way that
the highest levels of the tree correspond to the more signi�cant digits.

The resulting vector is sorted by the hb-bits for each element. In this way, each
interval of the FQA corresponds to a subtree of FQHT, and a movement in the
FQHT is simulated with binary searches in the FQA. This implies an additional
CPU cost for processing the index.

Figure 2.14 shows the FQA corresponding to the FHT index we used in the
previous example. The advantage of this structure is that, using the same memory,
FQA can use more pivots than FQHT, and this can improve the number of objects
discarded by the algorithm. This reduction in the number of evaluations of the
distance function compensates the extra CPU time needed forprocessing the
structure. In addition it is more adequate for storing it in s econdary memory.

BKT, FQT, FHT, and FQA are designed to work with discrete dista nce functions
that return a �nite, and relatively small, set of values. If a pplied with continuous
distance functions, the tree would be completely plain and the search would consist
in a sequential scan. Baeza-Yates et al. [Baeza-Yates et al., 1994] proposed a way
of using these data structures with continuous distance functions by dividing the
range of distances of the metric in a set of intervals and assigning intervals to each
branch of the tree.

Vantage Point Tree (VPT)

Vantage Point Tree (VPT) [Yianilos, 1993] is also a tree-like pivot-based index. The
index is a binary tree recursively built as follows: a �rst pi vot p ∈ U is selected
at random as the root of the tree, and the distances from this pivot to the rest of



32 Chapter 2. Indexing and searching in metric spaces

x10 x4x12 x7x5x6

x1

x8x3

x11

x2 x9 x13

<= 4.25

<=2.32 >= 2.32

>= 4.25 <= 3.04 >= 3.04

>= 3.30>= 7.13<= 7.13 <= 3.30

x7

x1

x2

x10

x12

x13

x9

x6

x4

x11

x8

x5

x3

Figure 2.15: Vantage Point Tree, example of tree construction

objects of the collection are computed. Ifm = median{d(p, x), x ∈ U}, the objects
x ∈ U for which d(x, p) ≤ m are processed in the left subtree, and the objects
for which d(x, p) > m are processed in the right subtree. Each node stores the
pivot and the median distance to the rest of objects processed in that node. This
procedure is recursively applied in each node until reaching the stop condition when
the number of objects assigned to a subtree is small enough. In this structure the
objects are stored in all the nodes of the tree, and not only inthe leaves.

Figure 2.15 shows an example of a VPT structure on a set of points in a two-
dimensional vector space. As in previous examples,x11 is the �rst object selected
as a pivot. The dashed line corresponds to the median of distances from this
pivot to the rest of objects of the collection. The recursive construction of the
index gives as result the tree shown in the right side of the �gure (we assume
that b = 2).

Given a range query(q, r), the search starts by computing the distanced(p, q)
at the root of the tree. If d(p, q)− r ≤ m, the search has to process the left subtree;
if d(p, q)−r ≥ m the search has to process the right subtree. Note that in any node
of the tree, it may be necessary to continue the search in bothchildren nodes if
the pruning condition does not hold for any of them. The structure is very simple
but the options for pruning a branch depend on the query radius. As argued in
[Yianilos, 1993], the index is very e�cient for small query radius.

Other important contribution of VPT is that it showed that the way the
pivots are selected a�ects the search performance. In [Yianilos, 1993], the authors
concluded that, for VPT, the best pivots are the farthest objects from the rest of
objects in the collection. That is, they concluded that outliers are good pivots.

Multi-Vantage Point Trees (MVPT)

VPT tries to prune the search space in each subtree by discarding some of its
branches. When this is not possible both the branches have tobe explored and
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backtracking is necessary in order to �nish the search. In some cases, this problem
can degenerate in an almost sequential search, especially when the search radius
is not small. A variant called Multi-Vantage Point Tree (MVPT ) was proposed
by [Bozkaya and Ozsoyoglu, 1997] as an extension of VPT that tries to solve this
problem. MVPT is a vantage point tree in which each node hask children, with
k > 2. Instead of using the median of the distances from the objects to the pivot
for partitioning the space, MVPT uses the k − 1 percentilesdm 1 , . . . , dm k−1 .

Both the algorithms for index construction and search are very similar to the al-
gorithms of VPT. The experimental evaluation presented in
[Bozkaya and Ozsoyoglu, 1997] shows that MVPT does not alwaysperform better
than VPT. This is the case of high-dimensional spaces where the distances between
any pair of objects are very small. In this case it can be necessary to enter in all
the children of a node for answering a query.

Approximating Eliminating Search Algorithm (AESA)

Approximating and Eliminating Search Algorithm (AESA) [Vidal, 1 986]
[Vidal, 1994] and its variants are the most e�cient pivot-bas ed algorithms. Instead
of using a tree structure as the methods we have already presented in this section,
this method stores the distances from the pivots to rest of the objects in the database
in a table. The data structure built by AESA is a n × n matrix which stores the
distances between any two of objects in the database. The space needed for storing
the matrix of distances can be reduced ton(n−1)/2 due to the property of symmetry
of the distance function. Having all the distances in the index, any object of the
database can be used as a pivot.

Given a query (q, r), the algorithm selects an object p at random and uses
it as a pivot. The distance d(q, p) from the pivot to the query is computed and
is used to discard as many objects as possible, that is, all the objects for which
|d(q, p) − d(x, p)| > r. The algorithm selects then another object as a pivot, the
closest to the query in order to maximize the possibilities of discarding more objects.
This is repeated until the list of objects that could not be discarded is small enough.

Figure 2.16 shows an example of AESA after the �rst iteration of the search
process. In this example,x11 is the �rst object selected as a pivot. The two circles
with center x11 are de�ned by the policy for discarding objects|d(q, p)−d(u, p)| > r,
and enclose between them the objects that cannot be discarded using this �rst pivot.
In the next iteration this process will be repeated with another pivot, the closest
to the query, in order to discard as many objects as possible from the result. In
this way, the areas that contain the candidate list for each pivot intersect giving as
result a smaller candidate list.

Although AESA is very e�cient in what refers to distance comput ations, and
easy to implement, the huge space requirements for large databases can prevent it
to be used in some cases. If the database contains a high number of objects, the
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Figure 2.16: First step of the search with AESA on a set of points inR2.

space needed for storing the precomputed distances can be excessive. For example,
if we had to index a database with100, 000 objects, and the distances among any
two of them are stored as �oating point numbers of 8 bytes, we would need37 GB
for storing the index.

This does not mean that AESA is not applicable to real problems. It is an
adequate method for problems with very costly distance functions and not very
large databases. For example, it is a good option for indexing a database with
a few thousand DNA sequences that are compared using the edit distance. The
evaluation of a distance is very costly in this problem and the index would need
only 15 MB of space, which is a reasonable space requirement taking into account
the cost of a sequential search for this problem.

Linear AESA (LAESA)

Linear AESA (LAESA) [Micó et al., 1994] is a variation of AESA in wh ich the space
requirements are reduced at the cost of an increment of the number of distance
computations. In LAESA a subset of m objects of the database are selected as
pivots, and the distances from the rest of objects of the database to these pivots are
stored in a n×m matrix. Therefore, the index stores only n×m distances instead
of n(n− 1)/2 in the case of AESA. For example, for a database of100, 000 objects,
if 50 pivots were selected, the index would require just19 MB instead of the 37 GB
required by AESA. Of course, the less information we have for pruning the search
space, the higher the number of distance computations needed to solve a query.

The index construction process is basically the same of AESA. After the pivots
are selected, the distances from the objects in the databaseto the pivots are
computed and stored in a table. When given a query(q, r), the query object is
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compared with the k pivots, and these distances are used with the distances stored
in the index and the triangle inequality to discard as many objects as possible.
The objects that could not be discarded make up the candidatelist and have to be
directly compared with the query. An important issue in this a lgorithm is how the
pivots are selected from the database. The number of pivots,the speci�c objects
used as pivots, and their location with respect to each otherand to the rest of the
objects in the database a�ect the search performance.

A problem present in both AESA and LAESA is that they are static i ndexes.
This means that the index has to be built on the complete database, and that
further insertions or deletions of objects can degrade the index performance.

2.5.2 Clustering-based methods

As we have already explained in Section 2.3, clustering-based methods take a
di�erent approach to prune the search space. They decomposethe space into a
set of clusters, each of them represented by a cluster center. During the search,
the information of the partition of the space is used to directly discard complete
clusters from the result set without comparing any object in them with the query
object.

The existing clustering-based methods di�er in the criteria the use to discard
clusters from the result set, how they partition the space, and the information they
store in the index for each cluster.

Bisector Tree (BST)

Bisector Tree (BST) [Kalantari and McDonald, 1983] is probably one of the �rst
clustering-based methods for searching in metric spaces. It is a very simple tree
structure that is built by recursively partitioning the spa ce. For each node, two
objects c1 and c2 are selected and stored as cluster centers. The objects closer to c1
form the cluster that will be assigned to the left child of the node, and those closer
to c2 form the cluster that will be assigned to the right child of th e node. With these
two objects used as centers the space is partitioned in two clusters. This partitioning
procedure is recursively applied in each node of the tree until the clusters are small
enough and are not further partitioned. The nodes store the cluster center and the
covering radius (distance from the cluster center to its furthest object in the cluster)
for each cluster.

The center of a cluster and its covering radius de�ne aball (c, rc) in the space.
It is important to note the di�erence between the cluster (a set of objects), and
the ball de�ned by the cluster (a region in the space). The intersection of any two
clusters is empty, while the balls corresponding to di�erent clusters can intersect.

During the search, the tree is recursively processed from the root to the leaves.
In each node, the query object is compared with the cluster centers. These distances
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Figure 2.17: Space decomposition for the �rst level of a BST index.

and the covering radius (rc) permit to know if the intersection of the cluster and
the result set is non-empty. If d(c, q) ≤ rc + r, the balls de�ned by (c, rc) and
(q, r) intersect, so we have to further explore the cluster since itcan have objects
belonging to the result set. If the intersection is empty, that region of the space is
directly pruned.

The idea is to use the tree to directly discard complete regions of the space, as
soon as possible. Of course, in a given step of the search it can be necessary to
explore both the clusters because the result set intersectsthe balls de�ned by each
of them. When the search reaches a leaf of the tree, the query is directly compared
with each object stored in it.

Figure 2.17 shows an example of BST and how it is used for the search. In the
�rst level, the objects x10 and x4 are used as cluster centers for partitioning the
space. The line between them de�nes the limit of each region.Each cluster would
be further partitioned until reaching the leaves.

The recursive partition of the space ensures that clusters of the adequate size
will be available during the search to prune the search space. On the one hand, a
too large cluster has more chances to intersect with the query ball even if no of its
objects are in the result set. On the other hand, working with too small clusters
increases the internal complexity since the query has to be compared with more
cluster centers. A recursive partition re�nes the decomposition of the space in each
level of the tree, from larger clusters to smaller ones.

Generalized Hyperplane Tree (GHT)

Generalized Hyperplane Tree (GHT) [Uhlmann, 1991] uses the same data structure
as BST, but it does not use the same policy for discarding clusters during the search.
Instead of using the covering radius of each cluster to discard complete regions, it
uses the hyperplane placed between the two cluster centers.Given a query (q, r), in
a given level of the tree we have to process the left child ifd(q, c1)−r ≤ d(q, c2)+r,
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Figure 2.18: Space decomposition in the �rst level of GNAT (m = 4).

and the right child if d(q, c1) + r ≥ d(q, c2) + −r. As in BST, it can be necessary
to process both children to complete the search. An advantageof GHT is that it
does not need to compute the covering radius of each cluster,and this avoids a lot
of distance computations during the index construction.

Both in BST and GHT, the structure can be improved if one of the objects
used as a center in a node is the cluster center of its parent. This makes the
regions smaller, which improves the search performance, and reduces the internal
complexity of the structure (that is, the comparisons of the query with the centers
stored in the tree), since there are less cluster centers in the tree.

Geometric Near-neighbor Access Tree (GNAT)

Geometric Near-neighbor Access Tree (GNAT) [Brin, 1995] is a generalization of
GHT using a m-ary tree instead of a binary tree. In the �rst level of the tre e m
cluster centers c1, . . . , cm are selected, and the space is partitioned inm clusters
Ci = {x ∈ U, d(ci , x) < d(u, cj ),∀j 6= i}. The root of the tree stores these centers
and each cluster is recursively partitioned.

Figure 2.18 shows the decomposition of a two-dimensional space in the �rst level
of a GNAT index, with m = 4. As we can see in the �gure, the ball de�ned by
the query intersects with the clusters represented byx12 and x6, but not with the
clusters represented byx2 and x5, that can be directly discarded from the result.

The construction process is very similar to the construction of GHT, but the
search is quite di�erent. When the tree is built, each node stores also am×m matrix
de�ned as range(i, j) = [minu∈Uj (ci , u), minu∈Uj (ci , u)]. That is, each node stores
a matrix that contains the minimum and maximum distances from each cluster
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center to each one of the rest of clusters. Given a query(q, r), q is compared with a
center selected at randomci . This distance and the distances stored in the matrix
of the node permit to discard all those clusters for whichd(q, ci ) is not in the range
de�ned by range(i, j). This process is repeated with the rest of cluster centers until
no more clusters can be discarded. The search process will continue recursively
exploring the clusters that could not be discarded.

Partitioning the space in more clusters in each level of the tree gives as result
smaller regions. This decreases the chances of the result set to intersect with all of
them and thus the need to further explore them. In addition, GNAT combines the
cluster and pivot approaches, by storing precomputed distances in the nodes of the
tree that permit to discard some clusters from the result without comparing them
with the query, thus reducing the internal complexity.

Voronoi Tree (VT)

Voronoi Tree (VT) [Dehne and Noltemeier, 1987] was proposed asa set of modi�-
cations to the original BST that signi�cantly improve the se arch performance. In
this case, each node of the tree has two or three cluster centers. The main di�erence
with BST is that when a new node is created to insert a new object in the collection,
the closest object of its parent node will also be inserted inthe new node. In this
way, the clusters are more compact as we move down in the tree structure, which
permits to discard more objects during the search.

The experimental results provided by [Dehne and Noltemeier,1987] show that
VT obtains a better search performance than BST. Noltemeier et al.
[Noltemeier, 1989] show that the VT trees can be constructed following an insertion
criterion similar to that of the B-Trees.

M-Tree (MT)

The M-Tree [Ciaccia et al., 1997] is one of the most importantmethods for indexing
and searching in metric spaces. It was designed for e�ciently supporting insertions
and deletions on the database without degrading the search performance of the
structure. This means that M-Tree is a fully dynamic method: the database
can be initially empty and grow later as new objects are inserted or deleted. In
addition, it can be e�ciently stored in secondary memory and obtains a good search
performance.

M-Tree has a very similar structure to that of GNAT. As in GNAT, it uses a tree
with several cluster centers stored in each node. However, the search algorithm is
di�erent. In the case of M-Tree, the tree stores the coveringradius for each cluster.
When given a query (q, r), q is compared with all the cluster centers of the node
and this information is used to discard as many clusters as possible.
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Figure 2.19: Example of indexing and searching with SAT

The main di�erence with other structures is how the insertion of new objects is
managed. When a new object is added to the database, it will beinserted in the
best subtree possible, that is, in that for which the covering radius is less increased.
As we have seen in other algorithms, the smaller the radius of the clusters, the more
the possibilities of discarding more objects during the search. The insertion looks
for the leaf node of the tree in which the object should be inserted. If the node
has place for this new object, it is just inserted. If not, the node is splited as in
a B-Tree. This insertion procedure makes M-Tree a balanced structure, e�cient
in terms of the number of distance computations for answering a query and in the
number of I/O operations needed for loading and processing the index during the
search.

Spatial Approximation Tree (SAT)

Spatial Approximation Tree (SAT) [Navarro, 1999] follows a di�erent approach and
tries to take advantage of the relationships of proximity between the objects in
the space when building the index. The index created with SAT is a tree that
approximates a Delaunay graph of the space, de�ned as follows: if the space were
divided into a Voronoi partition, a Delaunay graph contains a node corresponding to
each cell of the partition, and edges connecting the nodes corresponding to directly
neighboring cells in the space. Since the construction of such a graph is a NP-
complete problem, SAT tries to obtain an approximation at a reasonable cost.

The construction of the index proceeds recursively as follows. The root of the
tree, p, is selected at random. For this root nodep, the method obtains the set
N(p), de�ned as the set of all the objects which are nearer top than to any other
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Figure 2.20: List of clusters on a set of two-dimensional points.

object in N(p) (the de�nition is self-referenced, and for a given objectp, many
valid N(p) sets are possible). In order to obtain this set,p is compared with the
rest of the objects of the database, which are sorted according to their proximity to
p and added to N(p) if they hold the condition that de�nes the set. Each object in
N(p) becomes a child node ofp, and the same construction procedure is recursively
applied to each of them. Each node stores the covering radius, this is, the maximum
distance from p to any object in N(p).

When given a query(q, r), the tree is recursively traversed, comparing the query
object with the nodes that can not be discarded from the result by applying the
ball partitioning principle.

List of Clusters (LC)

Most clustering-based methods organize the index as a tree-like structure that re-
�ects a recursive decomposition of the space. List of Clusters (LC)
[Chávez and Navarro, 2005] follows a di�erent approach by creating a Voronoi
partition of the space and organizing the resulting clusters in a list, without further
partitioning them.

This partition can be obtained by creating clusters of a �xed radius, or by
creating clusters with a �xed number of objects. For example, in the case of clusters
with a �xed number of elements s, the index algorithm proceeds as follows. A cluster
center is selected and a cluster is created from it with itss nearest objects. The
process is repeated with the objects that were not processedin this �rst step, until
all objects have been indexed.

Figure 2.20 shows an example of a list of clusters for a set of points in a two-
dimensional vector space. In this example all the clusters have the same covering
radius. The index is just a list that stores the cluster centers {x1, x10, x14} and the
list of objects in each cluster.

The search algorithm proceeds as usual. The query object is compared with all
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the clusters and the search space is pruned by discarded fromthe result as many of
them as possible.

Although it can work better than other clustering-based methods in its optimal
con�guration, either the optimal covering radius of the clu sters or the optimal
number of objects in each of them have to be obtained by trial and error on the
collection, a disadvantage with respect to previous methods.

2.6 Selection of reference objects

An important aspect in any method for searching in metric spaces is how the objects
used as references (either pivots or cluster centers) are actually selected. Although
most methods select them at random, it has been shown that thespeci�c set of
objects used as references and the way they are selected a�ects the overall search
performance and other characteristics of the index. The survey Searching in Metric
Spaces [Chávez et al., 2001b] deeply analyzed the existing methodsfor searching in
metric spaces and proposed a uni�ed taxonomy of methods. Theconclusions of this
survey already pointed out the selection of e�ective reference objects as a problem
worth of further research.

In this section we review the existing techniques for the selection of reference
objects for methods for searching in metric spaces, and the advantages and
drawbacks of each of them.

Issues related to the selection of reference objects

The selection of reference objects for methods for searching in metric spaces has
many implications in both the search performance and other characteristics of the
method. Several issues are associated to the selection of e�ective reference objects:

• Selecting the most effective pivots: The possibility of a pivot to discard an
object from the result set depends on its relative position with respect to the
query object and to the object we try to discard. If two pivots are more
or less in the same position, their e�ectiveness will also bemore or less the
same. The position of the pivots with respect to each other, and their position
with respect to the objects stored in the database a�ect the overall index
performance. A random pivot selection does not ensure the objects used as
pivots to be as best as possible.

• Determining the optimal number of pivots: The higher the number of pivots,
the more the possibilities the index has for discarding an object from the
result. However, since the total complexity is given by the sum of internal
and external complexities, there is a point in which the number of comparisons
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of the query with the pivots does not pay for the gain in the reduction of the
candidate list.

There is an optimal number of pivots that optimizes the trade-o� between the
internal and external complexities. A random pivot selection does not give
any insight about the optimal number of pivots.

• Space requirements: In general, the larger the number of objects the index
uses as pivots, the more space we need for storing the distances from objects
to pivots. Given two set of pivots that show the same performance in the
search, the smaller is the best one, since it requires less memory. The number
of pivots is an important issue since memory requirements isone of the main
drawbacks of pivot-based algorithms and can make impossible to apply them
in practical applications if the pivots are too many.

• Static indexing: Selecting pivots at random inevitably makes the index static.
Due to the trade-o� between internal and external complexit ies, the optimal
number of pivots has to be determined by trial and error on the whole
collection. This means that the database has to be complete before building
the index. Some indexes do not allow insertions or deletionsof objects after
the index is built. Other indexes allow these operations, but the search
performance can degrade if the number of insertions and deletions is not
small. With a fully dynamic index the database could be initially empty, and
the index is built as new objects are inserted or removed fromthe collection,
maintaining a stable search performance while the databaseevolves.

• Complexity of the selection: The cost of selecting pivots also a�ects the index
operation, since it translates in the cost of inserting an object in the collection.
If dynamism and interactivity are important for the operati on of the system,
the complexity of pivot selection is also important.

The problematic of the selection of reference objects was originally thought for
pivot-based methods, but the same issues arise for the selection of e�ective cluster
centers in clustering-based methods. The number of clustercenters, their position
with respect to each other, and their position with respect to the rest of objects
of the database determine the properties of the decomposition of the space, and
therefore a�ect directly the capacity of the index for pruni ng the search space. For
example, the set of cluster centers determines the compactness of each cluster and
the overlapping between them. As in the case of pivot-based methods, a random
selection of cluster centers has several drawbacks.

Although most techniques for the selection of reference objects have been
proposed for pivot-based indexes, in this thesis we consider this problem also for
the selection of e�ective cluster centers.
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Previous work on selection of reference objects

Random selection of pivots

Most pivot-based methods select the pivots at random. Obviously, a random
selection of reference objects do not give us any guarantee of the obtained set
of objects to be e�ective. Although the selection is not complex since it does not
involve any kind of extra computation in order to decide which objects become
references, it su�ers of all the issues we have described in the previous section.

Selecting far away pivots

The �rst techniques for pivot selection focused in using as pivots objects that are
far away between them, and also far away from the rest of objects of the database,
that is, outliers. This idea was �rst explored in LAESA [Micó et al., 1994], where
the objects selected as pivots were selected as far as possible between them.
[Yianilos, 1993] and [Brin, 1995] extended this idea to the selection of cluster
centers, trying to obtain objects maximizing the sum of distances between them
to minimize as possible the overlap between the clusters.

Although these works introduced the idea that far objects work well as pivots,
this was not the problem in what they focused, so the e�ect of pivot e�ectiveness
was not studied in much depth. Later contributions fully focused on the e�ect and
techniques for pivot selection. They are presented in the rest of this section in
chronological order.

MaxMin

MaxMin [Vleugels and Veltkamp, 2002] was proposed as a technique for pivot
selection following the idea of obtaining pivots that are far from each other. In
this technique, the �rst pivot is chosen at random. Then, each pivot pi , 2 ≤ i ≤ m
is chosen as the object maximizing the distance to the previously selected pivots.

The idea is very similar to the proposed in works as [Micó et al., 1994],
[Yianilos, 1993], and [Brin, 1995]. Note that this technique tries to obtain pivots
far away from each other, but it does not impose the conditionthat they have to
be far from the rest of objects of the database.

In addition, this technique does not provide any guidance onhow to obtain the
optimal number of pivots for a given space.

Stepwise Forward Leave-One-Out (SFLOO)

Stepwise Forward Leave-One-Out (SFLOO) [Hennig and Latecki, 2003] introduces
the concept of the loss of quality introduced by the pivots asa measure of the
di�erence between the real distance between two objects andthe distance between
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their representation in the vector space de�ned by the pivots. The selection
procedure obtains an e�ective set of pivots by minimizing the loss of quality it
introduces.

Let (X, d) be a metric space,U = {x1, . . . , xn }, U ⊆ X, the database of objects,
and P = {p1, . . . , pm } a set of m pivots. For any object x ∈ U , its representation
in the vector space de�ned by the pivots is given by:

~v(x) = (d(q, p1), . . . , d(q, pm ))

Given a query object q, the distance between the query objectq and an object
x ∈ U in the vector space de�ned by the pivots (dv ) is given by the Euclidean
distance between the vectors that represent them in that space:

dv (q, x) = ||~v(q)− ~v(x)||

From these de�nitions, the nearest object to the query q in the vector space
de�ned by the pivots (from now, the pivot space), s(q, U), is the object x ∈ U that
minimizes the value of the distancedv (q, x), that is:

s(q, U) = { x ∈ U / ∀y ∈ U − {x}, d(q, x) ≤ d(q, y)}

Hennig and Latecki [Hennig and Latecki, 2003] consider that the set of pivots
introduces a loss of information in the search if the query'snearest neighbor in the
pivot space and the query's nearest neighbor inU using the distance functiond are
not the same object. The loss of information introduced by the set of pivots for the
object q ∈ X is de�ned as the distance between the query and its nearest neighbor
in the pivot space, that is:

l(q, s(q, U)) = d(q, s(q, U))

Then, Hennig and Latecki de�ne the loss of quality introduced by the set
of pivots as the average loss of information for all the objects in the database
[Hennig and Latecki, 2003], that is:

L(s) =
1
n

X

x ∈U

l(x, s(x, U − {x}))

The selection of the pivots tries to optimize the value of theloss of information
introduced by this search procedure. The selection is incremental: the �rst object
selected as a pivot is the one that alone gives the smaller loss; then, the next pivot
is chosen as the object minimizing the value of the loss together with the �rst one;
and this is repeated until reaching the desired number of pivots.
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This selection involves a high computational cost. In [Hennig and Latecki, 2003],
the authors try to reduce this cost using a sample of objects to evaluate the loss
function, and by taking the pivots also from a sample of objects updated in each
iteration of the process.

Incremental and Local Optimum

Incremental and Local Optimum [Bustos et al., 2003] try to obtain an e�ective set
of pivots by iteratively re�ning an initial set of pivots sel ected at random, according
to a criteria for evaluating the e�ectiveness of a set of pivots. An important
contribution of [Bustos et al., 2003] is a criterion for estimating the e�ciency of
a set of pivots of a given size.

Let (X, d) be a metric space, andP = {p1, p2, . . . , pm }, with pi ∈ U , a set of
pivots. Given an object x ∈ U , Bustos et al. [Bustos et al., 2003] denote with
[x] the representation of x in the pivot space, that is, the tuple composed by the
distances fromx to each pivot in P :

[x] = (d(x, p1), d(x, p2), . . . , d(x, pm ))

Thus a new space of objects[P ] is de�ned as [P ] = {[x] / x ∈ X}, which is a
vector spaceRk . We can de�ne a distance function on this new space as:

DP ([x], [y]) = max1≤i ≤m |d(x, pi − d(y, pi )|

Since the distance functionDP is a metric de�ned on the objects of [P ], the pair
([P ] , DP ) is a metric space. That is, the set of the representations of all the objects
in the pivot space and the maximum distance forms a new metricspace.

Given a query (q, r), the policy for discarding an object from the result set
without comparing it with the query, |d(pi , u)− d(pi , q)| > r for some pivot pi , can
be translated to the new metric spaces as:

DP ([q], [u]) > r

Intuitively, the above expression means that we can discardthe object x from
the result if the best lower bound obtained with the set of pivots P is greater than
the search radiusr.

The more objects it can discard, the more e�ective a set of pivots is. Thus, a set
of pivots P1 is better than other set of pivots of the same sizeP2 if the probability
of DP1([q], [x]) > r is higher than the probability of DP1([q], [x]) > r, with x ∈ U .
If µD P is the mean of the distribution of the distance function DP , the larger the
value of µD , the better the set of pivots P is.
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Thus the criterion proposed by [Bustos et al., 2003] establishes that a set of
pivots P1 = {p1, p2, . . . , pm } is better than the set P2 = {p′

1, p′
2, . . . , p′

m } if:

µD P1
> µD P2

[Bustos et al., 2003] also proposes several strategies for pivot selection based on
this e�ectiveness estimator:

• Selection: This technique selectsN groups of pivots at random, and it �nally
uses the one that maximizes the e�ectiveness criterion, that is, the one that
obtains the higher value for µD . Although it is a very simple strategy, it
obtains better results than a simple random selection if thenumber of samples
N is high enough, usually around50. In order to estimate the value of µD

for the N samples of pivot sets, instead of computing the value on the whole
collection, it is used a set ofA pairs of objects selected at random form the
collection, where A can be a much smaller value than the total number of
possible pairs of objects. Since the value ofµD is estimated N times, the
pivot selection requires2mAN evaluations of the distance function.

• Incremental : the incremental pivot selection starts the process with a pivot
selected from a subset ofN objects from the collection. This �rst pivot is the
object maximizing alone the value ofµD . Then, a second object is selected
from another sample ofN objects, in such a way that {p1, p2} maximizes the
value of µD , consideringp1 is already selected. The process is repeated until
completing the set ofm pivots. Each time a new pivot is added to the set, it
is necessary to carry out2AN evaluations of the distance function (in order to
determine what is the object maximizing µD ), and thus this selection strategy
has the same computational cost than the previous one:2mAN . With the
same computational cost, the results of [Bustos et al., 2001] show that this
strategy selects better pivots than Selection.

• Local Optimum: the last technique proposed in [Bustos et al., 2001] follows
an iterative local optimum strategy. In this case the selection algorithm
starts with a set of m pivots selected at random. Then, in each iteration,
the algorithm removes from the set of pivots the object that less contributes
to the value of µD , and it is replaced by the best pivots among a sample ofX
objects selected at random from the collection. This process is repeatedN ′

times. To determine what is the pivot replace in each iteration, the algorithm
stores a multidimensional matrix M of A rows and m columns, beingA the
number of objects used to estimateµD and m the number of pivots. The initial
construction of the matrix requires 2Am evaluations of the distance function,.
In each iteration, determining the pivot to be replaced doesnot have additional
cost at all, since all the necessary information is inM . Obtaining the pivot
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that will replace it requires 2AX evaluations of the distance function. Thus,
the total cost is 2A(k + N ′k).
[Bustos et al., 2001] considers two versions of this selection strategy. The �rst
one usesN ′ = m and X = N − 1, that gives as result a complexity of2AmN .
The second one usesN ′ = N − 1 and X = m, with the same �nal complexity.
With the same complexity, the �rst variant uses more objects to obtain the
new pivot, while the second performs more iterations. [Bustos et al., 2001]
shows that the results obtained in each case do not need to be equal.

The results presented in [Bustos et al., 2001] proof the importance of a good
pivot selection for the index performance. It is the �rst wor k providing an analytical
criterion for comparing the e�ciency of two sets of pivots of the same size.

Spacing

The technique proposed by [van Leuken et al., 2006] is based on two criteria which
address the number of false positives in the retrieval results directly. The �rst
criterion, the spacing, concerns the relevance of a single pivot; the second criterion,
the correlation, deals with the redundancy of a pivot with respect to the other
pivots.

The spacing is achieved by avoiding clusters on the vantage axis belonging to the
pivot pj . The spacing between two consecutive objectsxi and xi +1 of the database
on the axis of the pivot pj is:

d(xi +1, pj )− d(xi , pj )

If µ is the average spacing, the variance of spacing is:

1
n− 1

n −1X

i =1

((d(xi +1, pj )− d(xi , pj ))− µ)2

To ensure that the database objects are evenly spread in the pivots space, the
variance of spacing has to be as small as possible. A pivot with a small variance of
spacing is said to be a relevant pivot.

However, a low variance of spacing does not guarantee that thedatabase is
well spread out in pivot space, since the pivot axes might be strongly correlated.
Therefore, they compute all linear correlation coe�cients for all pairs of pivots and
make sure these coe�cients do not exceed a certain threshold.

As can be noticed, the number of pivots and two thresholds (forthe variance
of spacing and for the correlation coe�cients) must be set beforehand. There is
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a clear new tradeo� there: the stricter these threshold values are, the better the
selected pivots will perform but also the higher the chance of a pivot needing to be
replaced, resulting in a longer running time to select the whole set of pivots.

Maximum Pruning

Maximum Pruning [Venkateswaran et al., 2008] is an iterative strategy for pivot
selection. After initializing the set of pivots, the algorit hm replaces in each iteration
some pivot by a most promising object taken from the database, an strategy similar
to Local Optimum [Bustos et al., 2003]. As in other techniques, the number of pivots
to select, m, is given as a parameter to the algorithm, and its optimal value has to
be determined by trial and error.

The set of pivots contains initially a set of m objects considered promising pivots,
which are selected as follows: given an objectx ∈ U , the mean and variance of its
distances to the rest of objects of the database give an idea of the amount of near
and far objects it has. If the variance is small, most objectsare more or less at
the same distance fromx; if the variance is high, x has near and far objects. The
set of pivots is initialized with the m objects that show the maximum variance in
their distances to the rest of objects in the database, assuming that, the higher the
variance, the more promising is the object as a pivot.

After the initialization of the set of pivots, the algorithm r eplaces a pivot by a
more promising object in each iteration. Let P be the set of pivots andQ a set
of sample queries taken from the database. In each iteration, all the objects in U
are candidates for replacing some pivot inP . Basically, the algorithm computes for
xi ∈ U and eachpj ∈ P , the gain obtained in the e�ectiveness of the set of pivots by
replacing pj by xi . In each iteration the algorithm does the replacementxi ←→ pj

that maximizes this gain. The replacement of pivots stops when the e�ectiveness
of the whole set can not be improved with any replacement.

Although the algorithm obtains good results in what refers to search perfor-
mance, we consider that this method presents two inconveniences. First, it needs
to know the search range during the indexing phase in order toselect the setQ
of sample queries used in each iteration, or at least a range of values bounding
this search range. This restricts the search range to that used during the indexing
phase, and gives the algorithm an advantage over the rest of methods, since no
other method assumes to know this information to index the dataset.

The second inconvenience of the algorithm is the high computational cost
involved in the indexing phase: during the initialization, each object has to
be compared with the rest of objects or with a signi�cant sample of them;
then, each replacement involves a high computational cost too. As noted by
the authors [Venkateswaran et al., 2008], the algorithm is impractical for large
databases without applying sampling-based optimizations.
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[Venkateswaran et al., 2008] proposes two sampling-based optimizations for
reducing the cost of index construction. The �rst one consists in reducing the
number of objects to be searched in for each query when estimating the gain in
the e�ectiveness of the set of pivots. The second optimization consists considering
a subset of objects in the database as candidates for replacing a pivot, instead of
considering the entire database.
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2.7 Summary

In this chapter we introduced the problem of similarity search, and how it can be
formalized using the concept of metric spaces. We have described the most typical
similarity queries, and typical distance functions that can be applied to a wide range
of problems.

We then introduced the basic concepts of methods for similarity search in metric
spaces, which try to make the operation more e�cient by avoiding the comparison
of the query object with all the objects in the database. Pivot-based methods
select a subset of objects from the database as references and compute and store
in the index the distances from those reference objects to the rest of objects in
the database. During the search, these distances are exploited with the triangle
inequality to obtain lower bounds on the distances from the query to each object
in the database and thus discard as many objects from the result.

Clustering-based methods take a di�erent approach by dividing the data space
into a set of clusters, storing in the index for each of them the cluster center and
the covering radius, which is the distance from the center toits furthest object in
the cluster. During the search, the objects in the clusters which enclosing ball have
an empty intersection with the query ball are directly discarded from the result set.

After reviewing the most important methods of the state of the art, we analyzed
the di�erent issues related to the selection of e�ective reference objects, and how
they can a�ect the search performance, as well as other parameters as the space
requirements of the index, the indexing cost and the possibility of dynamically
indexing the database. We have presented a detailed description of the previous
techniques proposed for the selection of e�ective pivots.



Chapter 3

Sparse Spatial Selection

3.1 Overview of the chapter

In this chapter we present Sparse Spatial Selection (SSS), anew pivot-based method
for searching in metric spaces. While previous methods tried to obtain pivots as far
as possible between them, our method ensures the set of pivots to be well distributed
in the space. This is the most outstanding property of our method and it has not
been considered before. As we will see in this chapter, the search performance we
obtain is better than, or at least as good as the obtained withprevious and more
complex and expensive techniques for pivot selection.

Sparse Spatial Selection has other important characteristics. It works with
continuous and discrete distances. Both the selection of pivots and the construction
of the index are dynamic and adaptive. That is, our method builds and adapts the
index as new objects are inserted into or removed from an initially empty database.
The construction of the index never �nishes, and the information it stores depends
on the content of the database in each moment. The number of pivots does not
have to be �xed beforehand, and the selection is more e�cient than in previous
techniques. The selection of pivots and the construction ofthe index are described
in Section 3.2, and Section 3.3 describes the changes to be done in the index when
an object is deleted from the database. Search is described in Section 3.4

The simplest structure for storing the index is a table that stores in each row the
distances from an object in the database to all the pivots. Section 3.5 discusses other
alternatives for e�ciently storing and retrieving the inde x in secondary memory,
suitable for its dynamic nature. Section 3.6 presents the results and conclusions
of the experimental evaluation of the method. Finally, Section 3.7 provides a
discussion of the advantages and drawbacks of the proposed method, and Section
3.8 summarizes the contributions presented in this chapter.

51
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3.2 Pivot selection and index construction

Sparse Spatial Selection (SSS) is a new pivot-based method for searching in metric
spaces. As methods like AESA [Vidal, 1986] and LAESA [Micó et al.,1994], it
selects a set of objects from the database to be used as pivots, and stores the
distances from all the objects in the database to the pivots. The main di�erence
with previous methods is its policy for pivot selection. While previous methods try
to select as pivots objects as far as possible from each other, our method selects a
set of pivots well distributed in the space. Our intuition was that well distributed
pivots will have more probability of discarding an object from the result.

In order to obtain a set of well distributed pivots, an object becomes a pivot if
it is far enough from the already selected pivots. We consider that the object x is
far enough from the current set of pivots, P = {p1, . . . , pm }, if its distance to any
pivot is equal or greater than Mα, where M is the maximum distance between any
two objects of the space, andα is a constant parameter that takes values between
0 and 1, typically around 0.4. That is, we consider that the object is far enough
from the already selected pivots if it is up to a fraction of the maximum distance
between any two objects in the database.

An important di�erence of SSS with previous techniques is that it is dynamic.
It assumes that the construction of the index starts from an empty database and
never �nishes. The pivots are selected and the index is builtadapting itself as new
objects are inserted into the database.

Let (X, d) be a metric space,U = {x1, . . . , xn }, U ⊆ X, the database, andP =
{p1, . . . , pm }, P ⊆ U , the set of pivots selected by SSS. To simplify the conceptual
approach let assume that the distances from the objects to the pivots are stored
in a table with as many rows as objects in the database and as many columns as
pivots. The construction of the index proceeds as follows:

• When an object xn +1 ∈ X is inserted into the database,U ← U ∪{xn +1}, it is
compared with the pivots already selected to obtain the distancesd(xn +1, pi ),
1 ≤ i ≤ m.

• If d(xn +1, pi ) ≥ Mα, 1 ≤ i ≤ m, xn +1 becomes a pivot,P ← P ∪ {xn +1}. A
column is added to the table of distances and the distancesd(xn +1, xj ), 1 ≤
j ≤ n, are computed and stored in that column.

• If the new object is too close to an already selected pivot, itdoes not become
a new pivot. In this case, a row is added to the table of distances and the
distancesd(xn +1, pi ), 1 ≤ i ≤ m, (already computed) are stored in it.

When the �rst object is inserted in the database, it becomes the �rst pivot since
there are no other pivots to compare it with. If the index is built on a complete
database, the �rst pivot can be chosen at random. As we will seein the experimental
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Figure 3.1: Example of indexing in a two-dimensional vector space.

evaluation of the method (Section 3.6), neither the selection of the �rst pivot nor the
order in which the rest of objects of the database are processed a�ects signi�cantly
the search performance of the method, ensuring its robustness.

Figure 3.1 shows an example of how the pivots are selected andhow the index
is built for a small database where the objects are distributed in a two-dimensional
space. In this example, the pointsx1, . . . , x14 are sequentially inserted into an
initially empty database. The objects selected as pivots are shown in bold.

The �rst object inserted in the database is x1. Since no pivot has been selected,
it is far enough from all pivots and it becomes the �rst one. The objects x2 and
x3 are then inserted in the database. Sinced(x2, x1) ≤ Mα, and d(x3, x1) ≤ Mα,
they are not selected as pivots, because they are not far enough from x1. When x4
is inserted, it becomes a new pivot, sinced(x4, x1) ≥ Mα. The objects x5, x6, x7,
x8, and x9 are then inserted, falling too close tox1 or x4, and, therefore, they do
not become pivots. The last pivot selected isx10. Finally x11, x12, x13, and x14 are
inserted and none of them becomes a pivot.

As we can see in this example, the index evolves as the databasechanges when
new objects are inserted. The pivots are selected and the index is adapted as needed.
In addition, it is not necessary to state beforehand the number of pivots to use. New
pivots are selected as the collection expands to new regionsof the space. If the space
is completely covered by the set of pivots, no more pivots will be selected despite of
the number of new objects inserted. That is, the number of pivots depends on the
complexity or dimensionality of the space, and not on the size of the collection.

It is important to take into account that the information use d for selecting pivots
is the same that is needed to insert an object in the database:the distances from
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the new object to the pivots already selected. When an objectbecomes a pivot, the
cost of computing the distances from the rest of objects to itis also the needed in
any method. Therefore, SSS does not impose an additional computational cost for
pivot selection. All previous methods need an extra processing for pivot selection,
very signi�cant in some cases.

Algorithm 3.1 : Insertion of a new object with Sparse Spatial Selection.
Input : u ∈ X, P , M , α
Output : P
selected← true;
i ← 1;
repeat

distance = d(x, pi );
if distance < Mα then

selected← false;
end
i ← i + 1;

until not selected or i > |P | ;
if selected then

return P ∪ {x};
end
return P ;

The pseudo-code shown in Algorithm 3.1 summarizes the algorithm for the
insertion of a new object in the database with Sparse SpatialSelection.

3.2.1 Pivot selection policy

In order to obtain a set of well distributed pivots, a new object becomes a pivot
if its distance to the rest of pivots is equal or greater than Mα. For instance, if
α = 0.5, an object becomes a pivot if it is up to a half of the maximum distance
from the already selected pivots.

The parameter α controls the density of pivots with which the space is covered,
it imposes a lower bound on the distance between any two pivots. The smaller the
value of α, the more the pivots selected, and the closer they will be. Sinceα controls
the number of pivots selected, it also controls the trade-o� between the internal
(comparisons of the query with the pivots) and external complexities (comparisons
of the query with the objects that could not be discarded). The experimental
evaluation reveals that the optimal values of this parameter are around 0.4 for
collections of di�erent nature.

Note that it is not necessary to state beforehand the number ofpivots to select.
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The method determines by itself the optimal number of pivots from the maximum
distance between two objectsM , the distribution of objects in the space and the
parameter α. SSS adapts both the number of pivots and the index structureto the
complexity and distribution of the space.

This is another advantage of this selection policy when compared with previous
techniques. In previous methods the number of pivots has to be stated beforehand
and its optimal value is obtained by trial and error on the complete collection, which
makes the index static. However, the construction of the index in SSS is dynamic
and pivots are selected as needed.

3.2.2 Estimating the maximum distance

Although it is not necessary to state beforehand the number ofpivots to select, this
number is determined by the parameterα and the maximum distance between any
two objects. In most cases, the value of the maximum distancecan be obtained
from the de�nition of the metric space, that is, from the de�n ition of the objects
and the distance function used to compare them. For instance, when comparing
words with the edit distance, the maximum distance will be around 21 for most
languages, and27 for German. If we are indexing a collection of images represented
by feature vectors, the maximum distance between two objects can be obtained
from the maximum and minimum values of each component of the feature vectors.

If it is not possible to obtain this value analytically, a good approximation of
the maximum distance can be obtained while conserving the dynamic nature of the
method. Instead of indexing every object from an initially empty database, the
method can postpone the construction of the index until the database contains a
sample of objects (although it does not have to be complete).Those �rst objects
inserted into the database can be used to obtain the estimation of the maximum
distance. The selection of pivots would start from that point.

Instead of comparing the objects in the database against each other to obtain
the value of the maximum distanceM , an approximation can be obtained with the
following algorithm, proposed in [Goel et al., 2001]. An object is picked at random
and compared with all the other objects, in order to �nd its fu rthest neighbor. This
furthest neighbor is them compared with the rest of objects to obtain its furthest
neighbor. The process is repeated for a given number of iterations. It has been
shown that a very good estimation of the maximum distance, ifnot the exact value
of that distance, can be obtained in about four iterations.

Therefore, even if it is not possible to analytically obtain the value of
the maximum distance, it can be approached without incurring into a high
computational cost. The value of the maximum distance can also be updated as
more objects are inserted into the database.
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3.3 Deleting an object

In order to delete an object x ∈ U from the database, the �rst problem is to �nd
it, to check if it is in the database or not. Unlike in classical data structures,
this can not be done by simulating the insertion of the object. In this case, the
object can be found by performing a range query with search radius zero, that is,
R(q, r) = R(x, 0). The cost of �nding the object will be reasonably small, since the
smaller the search radius is, the cheaper the range query. Once the object is located
in the database, there are two possibilities depending on whether the object to be
deleted is a pivot or not.

If the object x to be deleted is not a pivot, it can be deleted from the database
without cost. The row that stores the distances from this object to the pivots can be
removed, and no further changes are necessary in the index, since the set of pivots
remains the same and no other object is a�ected by the deletion of x. In this case,
the deletion of the objects does not imply any additional evaluation of the distance
function.
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Figure 3.2: Deletion of a pivot without physically removing it.

If the object is a pivot, we have two alternatives to delete it:

• The pivot x can be tagged as a deleted object, so it will not be included into
the result of any query. That is, the object no longer belongsto the database,
but we use it as an element that gives us information for maintaining the
index. Although it is easy, this choice has two drawbacks. First, in some
applications the objects are very large and would be convenient to physically
delete it. Second, we could reach a situation in which the deleted pivot covers
a region of the space that does not need to be covered, since there are no real
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objects in it. This may led to unnecessarily increasing the internal complexity
of the search (see Figure 3.2).

• If the object is physically deleted, another object of the database can become
a pivot after removing this one. If x = pi was the only pivot that prevented
other object to become a pivot, that object has now to be addedto the set
of pivots. In this case, to update the index is enough to checkin the index
for the objects y ∈ U such that d(x, y) ≤ Mα, if d(y, pj ) ≥ Mα, 1 ≤ j ≤ m.
If y becomes a pivot, the distancesd(y, xi ), for xi ∈ U , must be computed
The distances fromy to the rest of pivots are already stored in the index, so
the deletion of the pivot only implies the computation of distances if another
object becomes a pivot. In order to preserve the structure ofthe set of pivots
on the space, the �rst objects to be checked should be the nearest to the
deleted pivot.

Following the second option, the index also adapts its structure and information
when objects are removed from the database without increasing the internal
complexity with pivots that are no longer needed. This is another important
di�erence with previous techniques.

3.4 Searching

When given a query (q, r), the search proceeds as in general in most pivot-based
methods. The query object is compared with the pivots in order to obtain the
distancesd(q, pj ), 1 ≤ j ≤ m. These distances are used with the distances from
the objects to the pivots, stored in the index, d(x, pj ), x ∈ U, 1 ≤ j ≤ m, to obtain
lower bounds on the distance from each object to the query using the triangle
inequality, as explained in Section 2.3.1. That is, for eachobject x ∈ U , if d(q, x) ≥
|d(q, p)− d(x, p)| > r, for any pivot p ∈ P , the object is directly discarded from the
result set.

After processing the information stored in the index, the objects that could not
be discarded from the result set are directly compared with the query object to
make up the �nal result set.

3.5 Index structure and storage

The simplest way of storing the distances from objects to pivots is a table with as
many rows as objects in the database and as many columns as pivots. However,
due to the amount of information stored in the index by pivot-based methods, if the
information stored in the index is processed in that way, theextra CPU time for



58 Chapter 3. Sparse Spatial Selection

loading the index and processing it can be signi�cant. Several optimizations of this
processing are possible depending on how the index is storedin secondary memory.

A �rst improvement can be obtained if the index is processed column-wise
instead of row-wise [Chávez et al., 2001b]. The query objectcan be compared with
the �rst pivot p1 to discard as many objects as possible from the result with this �rst
comparison. If the rows corresponding to each object of the collection are ordered
by the distance of each object to the �rst pivot, the �rst list of discarded objects
can be obtained with two binary searches.

Methods that follow this alternative put in the �rst place th e pivot they evaluate
as the best one, sort the objects in the database by their distances to this pivot,
and they store in the table the distances to the rest of pivots. Thus, binary search
is only possible for the �rst pivot.

Storing the distances in a table has another disadvantage when the method is
dynamic. When an object is added to the database, a row is to beadded to the
table. When a new pivot is selected, a column has to be added tothe table. Either
if the table is stored by rows or columns, one of the two cases will be a problem for
the growth of the index.

The solution we propose for storing the distances from objects to pivots in
dynamic pivot-based methods consists in storing the distances from one pivot to
the objects in the collection in a B-tree, taking as keys the distances and as values
the identi�ers of the objects. That is, each pivot has its own B-tree in which the
distances from the pivot to the rest of objects are stored. The index can then be
seen as a list of B-trees. This structure has several advantages:

• The list of objects discarded by each pivot can be obtained with two accesses to
the B-tree it has associated. The �nal candidate list could then be obtained as
the intersection of the candidate lists of each pivot. Thus,instead of processing
the O(n × m) distances stored in the table, the �nal candidate list can be
obtained by checking onlyO(m× log n) distances.

• Using B-trees solves the problems of growth of the index, either when an
object is added to the database or when it becomes a new pivot.

• When working with very large databases the amount of information stored in
the index can be too high. This structure is also suitable forthe application
of a technique called scope coarsening [Chávez et al., 2001b], which consists
in storing the distances with less precision in order to reduce the space
requirements of the index. The experimental exploration ofthis possibility
remains as future work.

Some methods apply techniques of scope coarsening to reducethat amount of
information [Chávez et al., 2001b]. Scope coarsening consists in storing only
for each object the distances to its most promising pivots. This structure is
also suitable for this technique.
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These issues are important when working with very large databases and the
system has to deal with a signi�cant amount of queries in eachunit of time.

3.6 Experimental evaluation

In this Section we present the results and conclusions extracted from the
experimental evaluation of Sparse Spatial Selection.

First, we present our results about di�erent aspects of the behavior of the method
in terms of the complexity, size, and intrinsic dimensionality of the collection. Then,
we present the results obtained from the experiments carried out in order to evaluate
the e�ciency obtained with our method in comparison with a ra ndom pivot selection
and existing techniques.

Appendix C describes with detail the experimental environment in which the
experiments were carried out.

3.6.1 Our hypothesis

Pivot selection and growth of the collection

SSS selects a set of pivots well distributed in the space without being necessary to
state beforehand how many pivots the algorithm has to select: it selects as many
pivots as necessary for adequately covering the space. As we pointed out in Section
3.2, this number of pivots depends on the complexity of the collection, on its actual
content, but not on its size. That is, once the space is covered with a good set of
pivots, no more pivots will be selected despite how much the collection grows.

The growth of the size of the set of pivots in terms of the growth of the collection
is an important aspect. If the number of pivots selected doesnot stop in some point
as the collection grows, the internal complexity can unbalance the trade-o� between
the internal and external complexities, and the memory requirements for storing the
information of the index can become unacceptable too.

We tested SSS with collections of synthetic vectors of dimension8, 10, 12, and 14,
uniformly distributed in hypercubes of side 1: VECTOR8, VECTOR10, VECTOR12,
and VECTOR14 respectively (they are all described in Appendix C). For each
collection, we obtained the number of pivots selected by SSSfor di�erent sizes of
the collection. The results obtained are shown in Figure 3.3.

As we can see in Figure 3.3, the number of pivots grows quickly when the �rst
objects are inserted into the collection, and that the number of pivots moderates
its growth as the collection becomes larger, until it �nally converges to a stable
value when all the space is covered with pivots. Although the number of pivots
selected can seem to be high for these collections, we have totake into account the
dimensionality of each of them.
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Figure 3.3: Pivots in terms of the size and dimension of the collection.

The second aspect we can see in these results is that our method selects more
pivots for the collections of higher dimensionality. This result is coherent with our
analysis, since the higher the intrinsic dimensionality, the more di�cult the space
is to cover, and the more di�cult the search is.

Controlling the density of pivots

Although in our method it is not necessary to state beforehandthe number of pivots
to select, we have to set the value of the parameterα, and the number of pivots
selected by Sparse Spatial Selection depends on this parameter. The parameter α
controls the density of pivots used to cover the space. The higher the value ofα, the
less pivots selected, since the distance that must separateeach pivot from the rest
of them is larger. Therefore, di�erent values of α led to di�erent trade-o�s between
the internal and external complexities during the search.

We run Sparse Spatial Selection on collections of100, 000 vectors from VEC-
TOR8, VECTOR10, VECTOR12, and VECTOR14with values of α ranging from 0.30
to 0.50. Figure 3.4 shows the search performance we obtained for each con�guration
of the method in each collection.

As we can see in Figure 3.4, the optimal results are always obtained for values
of α between 0.35 and 0.40, and the search performance is virtually the same for
all the values of α included in this interval. We can also observe that whenα >
0.40, the number of evaluations of the distance function is higher in the spaces
with higher dimensionality. The reason for this result is that an increment in the
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Figure 3.4: Search cost in terms ofα and the dimension of the collection.

value of α means a reduction in the number of pivots, and the degradation of the
search performance due to having less pivots becomes more important in the most
complex spaces.

E�ect of the order of objects

As we pointed out in Section 3.2, if the construction of the index is dynamic, the
�rst object inserted in the database becomes the �rst pivot, and if the construction
is static, the �rst object can be chosen at random.

Immediately we can wonder if the choice of the �rst pivot, or t he order in which
the rest of objects inserted into the collection are processed, can a�ect the �nal
result in search performance or in the number of pivots selected, since SSS goes on
in each step with the information it has, and never goes back.

In order to analyze the dependency of the search performanceon the order in
which the objects of the database are processed, we performed several experiments
using the real data collections we callENGLISH, and NASA (a detailed description
of these test collections is provided in Appendix C). We run SSS indexing the 90%
of the collection with 10 di�erent orders for each value of α between0.30 and 0.50,
recording for each run the number of pivots and the number of distance evaluations
for solving the remaining 10% objects used as queries.

In these experiments we worked with real collections of data, since the objects
in them do not have a regular distribution that could hide the e�ects of the order
in which the objects are processed.
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α
ENGLISH NASA

Pivots Search cost Pivots Search cost
µ σ µ σ µ σ µ σ

0.30 1557.70 11.91 1590.25 11.76 372.40 4.92 436.22 4.18
0.32 1558.40 11.86 1591.25 11.76 270.90 3.78 339.28 3.63
0.34 813.10 5.57 855.71 5.19 201.80 4.92 276.95 4.92
0.36 813.10 5.57 855.71 5.19 156.20 4.37 235.51 2.90
0.38 813.10 5.57 855.71 5.19 119.50 5.58 205.37 4.72
0.40 404.30 8.10 474.38 6.54 95.50 4.81 187.39 3.57
0.42 404.30 8.10 474.38 6.54 79.10 3.73 178.08 3.52
0.44 204.70 5.36 354.43 5.15 64.70 3.06 171.16 4.12
0.46 204.70 5.36 354.43 5.15 55.50 2.64 168.07 5.44
0.48 107.60 4.48 506.73 36.60 48.50 3.10 171.19 4.58
0.50 107.60 4.48 506.73 36.60 38.40 2.55 173.57 7.65

Table 3.1: E�ect of the order of objects in pivot selection.

For the collections ENGLISHand NASA, Table 3.1 shows the mean and typical
deviation of the number of pivots selected and the number of distance computations
needed for solving a query, for values ofα between 0.30 and 0.50. For both
parameters, the mean and typical deviation were obtained when running SSS10
times on each collection, processing the objects in a di�erent random order each
time. In this table we can see how the number of pivots selected decreases when
the value of α becomes larger. As we can see observing the typical deviations of
each parameter, the e�ect of the order in which the objects are processed does not
introduce a signi�cant deviation in the �nal results.

E�ect of the intrinsic dimensionality of the space

In the description of the method (see Section 3.2) we pointedout an important
hypothesis: the set of pivots selected by SSS depends on the topology and
characteristics of the space, and not on its size. That is, the set of pivots is adapted
to the complexity and distribution of the space. In order to validate this hypothesis,
we carried out experiments to study the behavior of the method in terms of the
intrinsic dimensionality of the space.

Particularly, we tested SSS with two di�erent collections of words, ENGLISHand
SPANISH. Both are collections of words taken from natural language but, according
to the estimator of the intrinsic dimensionality ρ = µ2/2σ2 [Chávez et al., 2001b],
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Figure 3.5: Pivots in terms of α in ENGLISHand SPANISH.

they have di�erent intrinsic dimensionality. That is, one o f them is more complex
than the other. They also di�er in the number of objects they contain. For each
collection, we obtained the number of pivots selected by SSSand the number of
object comparisons needed to solve a query, for di�erent values ofα.

Figures 3.5 and 3.6 show the number of pivots selected and thenumber of
evaluations of the distance function for both collections respectively. SinceSPANISH
contains more objects thanENGLISH, we could expect to need more pivots in order
to index the �rst collection. However, the intrinsic dimensi onality of ENGLISHis
higher and is therefore the collection is more complex.

In Figures 3.5 and 3.6 we can see that, for the same values ofα, the algorithm
selects a higher number of pivots in the case ofENGLISH, necessary to cover all the
space. However, the results obtained about the search performance are virtually
the same for both collections, independently of their size and the number of pivots
used to index each of them.

The results of this experiment show that SSS indexes the space not depending
on the size of the collection, but on the complexity of the search space.

3.6.2 E�ciency

Comparison with random selection

A �rst evaluation of the search performance of Sparse Spatial Selection was obtained
by comparing it with a random pivot selection, in several synthetic and real
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collections of data: VECTOR8, VECTOR10, VECTOR12, VECTOR14, ENGLISH,
SPANISH, and NASA.

For each collection, the 90% of the objects were used as the database to be
indexed, and the 10% of the objects were used as queries. In each experiment, we
obtained the average number of distance computations needed to solve a query. In
collections of vectors, the search ranger was adjusted to retrieve an average of the
0.01% of the objects of the database in each query, and in collections of words, the
search range used wasr = 2 (as usual in most works dealing with distances among
words).

Figures 3.7, 3.8, 3.9, and 3.10 show the results obtained forthe collections of
uniformly distributed vectors of dimensionality 8, 10, 12, and 14, respectively. As we
can see in the results, the number of comparisons is higher for collections of higher
dimensionality, but SSS always performs better than a random pivot selection,
independently of the dimensionality of the space.

Table 3.2 shows the mean and typical deviation of the number of distance
computations needed for solving a query, for each collection of vectors. As we
can see in these results, the typical deviation is smaller with our method, which
is coherent with our hypothesis. That is, not only SSS is always better, but its
behavior is also more stable (smallerσ) than when pivots are selected at random.
This parameter can be important in systems that receive a large number of queries
in each unit of time.
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Figure 3.7: Search cost with Random and SSS, collectionVECTOR8.
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Method
VECTOR8 VECTOR10 VECTOR12 VECTOR14
µ σ µ σ µ σ µ σ

Random 224 53 581 166 1046 316 2087 622
SSS 151 33 390 101 689 193 1452 399

Table 3.2: Variation of the search cost in uniformly distributed vectors.

Comparison with other techniques for pivot selection

We compared SSS with previous techniques to evaluate its competitiveness in what
refers to distance computations. We selected the followingtechniques to compare
our method with: Incremental [Bustos et al., 2001], MaxMin
[Vleugels and Veltkamp, 2002], SFLOO [Hennig and Latecki, 2003], and Spacing
[van Leuken et al., 2006]. We do not considered Maximum Pruning nor Maximum
Variance [Venkateswaran et al., 2008, Venkateswaran et al., 2006] since they use the
search range in the indexing phase, and the comparison wouldnot be fair. For
the comparison we used two real data collections of di�erentnature: ENGLISH, a
collection of words, andNASA, a collection of images.

As usual, for each collection, the90% of the objects of the collection were used
as the database to be indexed, and the remaining10% objects were used as queries.
We obtained the average number of distance computations needed for solving a
query, using di�erent numbers of pivots. The results are shown in �gures 3.11, and
3.12 respectively, as the number of distance computations in terms of the number
of pivots used by each algorithm. Tables 3.3 and 3.4 list the relevant subset of the
results shown in each �gure. The �rst �ve columns show the results obtained with
previous techniques for �xed numbers of pivots. The last three columns show the
results obtained with di�erent values of the parameter α with SSS.

In the collections ENGLISH and NASA, SSS and MaxMin
[Vleugels and Veltkamp, 2002] obtain the best search performance. SSS obtains
a better result in ENGLISHand MaxMin obtains a better result in NASA, although
the di�erence between them is not very signi�cant.

Although the di�erences in search performance between Sparse Spatial Selection
and previously proposed methods are not very signi�cant, our method is clearly
better than the previous ones in other operations and features, important for the
operation of a real database system. As we pointed out in previous sections, SSS
is the only dynamic pivot-based method, it adapts its structure as the database
grows. It obtains the smaller cost for the insertion of an object and the selection of
pivots, since the only information it needs is the needed forinserting an object into
the database.
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Figure 3.11: Comparison with other techniques, collectionENGLISH.

Piv. Increm. Maxmin SFLOO Spacing � Piv. SSS

20 6957.48 8214.77 7432.28 11608.43 0.8 3 30060.68
40 3025.13 2659.12 3182.53 4421.69 0.76 5 30060.68
60 1726.65 1231.56 1661.63 1950.95 0.72 5 24377.49
80 1098.74 754.86 1047.32 1190.86 0.68 11 13622.29

100 838.88 561.47 762.26 816.83 0.64 18 8257.96
120 675.00 440.23 612.01 725.13 0.62 18 8257.96
140 562.00 392.53 519.21 534.74 0.58 31 3600.80
160 497.77 366.14 461.88 559.31 0.54 55 1332.30
180 463.51 353.36 438.23 406.70 0.50 107 506.73
200 443.35 350.62 419.57 424.51 0.46 204 349.43
220 429.84 353.77 410.68 477.21 0.42 404 474.38
240 428.86 361.43 407.67 396.68 0.38 813 855.71
250 429.37 365.17 410.00 397.64 0.34 813 855.71

Table 3.3: Comparison with other techniques,ENGLISH.
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Figure 3.12: Comparison with other techniques, collectionNASA.

Piv. Increm. Maxmin SFLOO Spacing α Piv. SSS

30 243.21 193.24 207.91 408.57 0.64 10 284.97
40 210.78 165.87 189.73 398.72 0.62 12 263.31
50 203.06 160.55 189.05 395.58 0.60 14 270.34
60 199.23 158.52 185.64 288.47 0.58 18 230.49
70 202.27 163.42 188.03 315.19 0.56 20 240.11
80 205.75 171.17 189.76 319.61 0.54 25 199.58
90 202.49 173.65 196.59 294.44 0.52 26 213.27

100 209.79 181.77 200.29 298.83 0.50 36 178.40
110 212.72 188.60 205.72 303.10 0.48 48 171.19
120 220.18 195.11 211.85 326.30 0.46 55 168.07
130 228.03 204.00 217.33 326.33 0.44 64 171.16

Table 3.4: Comparison with other techniques,NASA.
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3.7 Discussion

In this Section we summarize the main advantages and drawbacks of the method
we have proposed in this chapter, in comparison with the characteristics of existing
methods for the selection of e�ective pivots.

Cost of indexing

An advantage of SSS when compared with previous methods is thecost of the
selection of reference objects. In other techniques, the selection involves a very high
number of distance computations that makes the construction of the index very
costly. SSS does not need any extra information for the selection of pivots. When
an object is inserted into the database, it has to be comparedwith all the pivots,
and that is the only information that our method needs to determine if a new object
becomes a pivot or not.

If an object becomes a pivot, the distances from all the objects in the database
to the new pivot it have to be computed and stored, but that distances would need
to be computed in any case for inserting the object into the database.

Optimal number of pivots

An important characteristic of SSS is that it is not necessaryto state the number
of pivots beforehand. The method determines by itself how many pivots it needs
for indexing the collection of data. New pivots are selected as needed because the
database of objects has grown. The method determines by itself how many pivots
are necessary in each moment.

In all previous techniques this number has to be stated before the indexing, and
the optimal value for the trade-o� between internal and external complexities has
to be obtained by trial and error on the complete collection,which inevitably makes
the index static.

Dynamic and adaptive

Being dynamic and adaptive are another two important advantages of SSS over
previous methods. All previous techniques for pivot selection are static, thus forcing
the users to have a complete database before the indexing phase, and limiting the
insertions or removals of objects after the index has been built, since they can
degrade the performance of the structure.

SSS starts the construction of the index from an empty database. As new objects
are inserted, SSS adapts the structure of the index and the information it stores
as needed when new objects are inserted into the database andnew regions of the
space appear. The index is also adapted when an object is removed, removing a



3.7. Discussion 71

pivot if necessary and therefore conserving the trade-o� between the internal and
external complexities in the search performance.

Search performance

In the experimental evaluation provided in Section 3.6, we showed that SSS is
always more e�cient than a random pivot selection, and that i t is a competitive
technique when compared with previous proposals in data collections taken from
real problems.

Particularly, we have compared Sparse Spatial Selection with the previous tech-
niques described in Section 2.6: random selection, MaxMin,SFLOO, Incremental,
and Spacing. In the experimental comparison we used both synthetic collections
of data with which speci�c parameters of the method were evaluated, and also
collections of data extracted from real applications.

Parameter tuning

A possible drawback of our method is the parameter tuning. Although in most
scenarios is possible to analytically obtain the value of the maximum distance, or
that it can be approximated on a �rst sample of objects, it can be seen as a problem
in some domains. The use of the parameterα can be seen also as a disadvantage,
although our experimental results show that it also gives the best results, or results
very near to the best for values ofα in values from 0.30 to 0.40.
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3.8 Summary

In this chapter, we have presented Sparse Spatial Selection(SSS), a new pivot-based
method for similarity search in metric spaces. While previous methods select pivots
based on the hypothesis that they have to be as far as possiblefrom each other,
Sparse Spatial Selection selects a set of pivots well distributed in the space.

An important characteristic of SSS when compared with other methods is that
it is dynamic. That is, the method starts with an initially em pty database and
pivots are selected or removed and the index is adapted as necessary when objects
are inserted or removed from the database. Another advantageof Sparse Spatial
Selection when compared with previous techniques is the cost of the construction
of the index. When an object is inserted in the database, it has to be compared
with the already selected pivots to index it. Our method doesnot need any further
information in order to decide if this new objects becomes a new pivot or not.
Therefore, the overhead introduced by the pivot selection is 0, the cost for the
selection of pivots is minimum.

In this chapter we presented the algorithms for inserting and removing objects
in the database, and discussed possible data structures forthe construction of the
index, suitable for its dynamic nature.

The chapter also presents the results and conclusions takenfrom the
experimental evaluation. It has been shown that the number of pivots selected by
the algorithm does not grow in�nitely, it stops growing when the set of pivots fully
covers the space. It also has been shown that the optimal values of the parameter
α are in the range [0.35, 0.45], and that the search cost is virtually the same for
all values in that range. The results also show that the orderin which the objects
are processed does not a�ect signi�cantly the �nal search performance. Finally, the
experimental evaluation shows that SSS is as e�cient as or better in most cases
than previous techniques.
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Sparse Spatial Selection Tree

4.1 Overview of the chapter

In clustering-based methods, the speci�c set of objects used as cluster centers
directly determines the structure of the index and its capacity for pruning the
search space. Although most methods select the cluster centers at random, the
speci�c set of objects used as cluster centers directly determines the e�ectiveness of
the index during the search. Other important aspect of clustering-based methods
is the structure of the index. In most cases it is a completelybalanced structure
that may not adequately �t the irregular distribution of the data in the space.

In this chapter we provide an analysis of the issues related to the selection of
e�ective cluster centers and the use of unbalanced index structures as a way to
improve the search performance obtained with clustering-based methods.

We present Sparse Spatial Selection Tree (SSSTree), a new clustering-based
method for similarity search. In each level of the tree, it selects as many cluster
centers as necessary to cover the space and obtain clusters as compact as possible.
In addition, the index structure is completely unbalanced. That is, each node of
the tree will have as many children as necessary, and some branches can grow while
others have already stopped depending on if a region of the space is worth of further
partitioning or not.

Section 4.2 presents our analysis of the e�ect of cluster center selection and
the use of unbalanced index structures for clustering basedmethods respectively.
Section 4.3 presents Sparse Spatial Selection Tree, the algorithms for index
construction and searching, and other issues related to howthe cluster centers are
selected and possible criteria for stopping the partitioning of the space. Section 4.4
presents the experimental evaluation of the method.

73
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4.2 Issues related to the selection of cluster centers

Before introducing our analysis of the issues related to theselection of cluster centers
in clustering-based methods, it is worth to remind some important aspects about
how these methods proceed to prune the search space and thus reduce the number
of comparisons needed for solving a query.

Clustering-based methods select a subset of objects from the database as cluster
centers, c1, . . . , cm . Then, each object in the database is assigned to the cluster
corresponding to its nearest cluster center, dividing the space into a set of disjoint
clusters, C1, . . . , Cm :

Ci = {x ∈ U, d(x, ci ) ≤ d(x, cj ), 1 ≤ j ≤ m}

The clusters are disjoint, and the result of the union of them is the complete
database. This division of the space is called a Voronoi partition. The information
stored in the index for each cluster usually consists in the cluster center ci and
the covering radius of the clusterrci , which is the distance from the center to its
furthest object in the cluster.

The center of the cluster and the covering radius de�ne aball that encloses the
cluster. It is important to note the di�erence between the cl uster (a set), and its
enclosing ball de�ned by the center and the covering radius. A query (q, r) also
de�nes a ball in the space, with center q and radius r. Therefore, the result set
must contain all the objects in the database that fall inside the ball.

A cluster is directly discarded without comparing the query with any of the
objects it contains if the intersection of the ball enclosing the cluster and the ball
de�ned by the query is empty. When given a query(q, r), the cluster Ci is discarded
from the result if:

d(q, ci ) > rc + r

The probability of discarding a cluster from the result depends on its size (that
is, on its covering radius). The larger a given cluster is, the more the chances that
its enclosing ball intersects the query ball. Therefore, ifthe partition creates small
clusters, the probability of discarding them increases. However, the query object
would have to be compared with too many cluster centers, which increases the
internal complexity. Most clustering-based methods (see Section 2.5.2) address this
problem by recursively partitioning the space. That is, the space is �rst partitioned
in large clusters that are then recursively partitioned in smaller clusters and so
on. If a cluster is not discarded from the result, it is further processed instead of
comparing the query with all the objects it contains.
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Figure 4.1: Example of compact (a) and non-compact (b) clusters.

Even in methods that recursively partition the space, the e�ectiveness of the
partition for pruning the search space depends mainly on thecompactness of each
cluster, and on the overlapping between the balls de�ned by each cluster:

• A cluster is said to becompact if its associated ball does not have wide regions
without any object. Figure 4.1 shows examples of compact andnon-compact
cluster. As we can see in the �gure, the compact cluster has more chances to
be discarded from the result if it does not contain any objectin the result,
since it is less probable that its ball intersects the ball de�ned by the query.

• The overlapping between the balls of clusters also a�ects the capacity of the
index for pruning the search space. If the balls of two clusters intersect, it
is more di�cult to discard one of them from the result. Figure 4.2 shows an
example. In the step of the search shown in the �gure, only thecluster C1
can be discarded from the result. If the intersection between C2 and C3 were
empty, one of them could be pruned from the search space.

Problems of randomly selected cluster centers

Most clustering-based methods select the cluster centers at random. As happens
with the selection of pivots in the case of pivot-based methods, this approach
presents several inconveniences:

• First, in order to avoid the non-empty intersection between the enclosing ball
of each cluster and the query balls, the cluster centers should be selected in
such a way that the clusters are as compact as possible. Clearly, random
selected cluster centers do not guarantee the resulting clusters to be compact.
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If an object is not really near of its nearest center, this will cause the enclosing
ball of the cluster to be much larger than it should. This increases the
possibilities of the enclosing ball of the cluster to have anintersection with
the ball de�ned by the query.

• Second, with a random selection of the cluster centers, there are no guidelines
for determining the optimal number of centers. Too much centers led to more
compact clusters, but also to too much comparisons of the query with cluster
centers (increment of the internal complexity). Few cluster centers can cause
the enclosing balls of each cluster to be larger than they should. Thus, the
optimal number of cluster centers should be determined by trial and error.
Again, this inevitably makes the index static.

c2

c1 c3

rc1

r
q

rc2

rc3

Figure 4.2: Search pruning and overlap between clusters.

Recursive tree-like indexes try to address this problem by recursively partitioning
the space. For instance, in the root of the tree the space is partitioned in four
clusters, and each of them is further partitioned in four new clusters in the next
level of the tree and so on. This strategy obviously helps to obtain compact clusters,
but it could be improved by following some strategy to improve the quality of the
clusters in each level.

Another aspect of all clustering-based methods is that the number of clusters
created in each node is always the same. Again, this can cause the partition on
each level to be far from the optimal.
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4.3 SSSTree: Sparse Spatial Selection Tree

Most clustering-based methods, as BST [Kalantari and McDonald, 1983], GHT
[Uhlmann, 1991], GNAT [Brin, 1995], VT [Dehne and Noltemeier, 1987], or M-Tree
[Ciaccia et al., 1997] (all of them described in Setion 2.5.2), create tree-like indexes
in order to recursively partition the space. They di�er main ly in the structure of
the tree and the information about the partition they store i n each level of the
tree. Something that most of them have in common is that the trees are balanced
structures. That is, all the nodes of the tree have the same number of children
nodes, and usually all the leaf nodes are all at the same level.

In our opinion, since real collections of data present biases and irregular
distributions, this approach trying to index an irregular s pace with a balanced
(regular) data structure is not a good alternative. By contrast, an index structure
which does not impose a rigid structure can adapt better to the irregular distribution
of the objects in the data space, and obtain therefore more compact and e�ective
clusters.

SSSTree is a clustering-based method for similarity searchbased on a tree
structure where the cluster centers of each internal node ofthe tree are selected
applying Sparse Spatial Selection (SSS) (presented in the previous chapter). The
structure we propose is unbalanced in order to explicitly adapt to the structure of
the space, and tries to select in each level the best possiblecluster centers in order
to improve the search cost.

Our hypothesis is that, using SSS to select the cluster centers, the partition of the
space will be better and the performance of the search operation will be improved.
Each node stores the covering radius of its corresponding cluster. Then, that cluster
is recursively divided in several clusters, again selecting the cluster centers with SSS.
An important di�erence with methods like GNAT is that SSSTree i s not a balanced
tree and not all the nodes have the same number of branches. The tree structure
is determined by the number of clusters selected by SSS and therefore it depends
on the internal complexity of the subspace de�ned in each node by the objects it
contains.

4.3.1 Construction

The construction process starts with all the objects in the database. In the root of
the tree, a set of cluster centers is selected applying SSS (the maximum distance can
be estimated as in the previous chapter). That is, the numberof clusters created
in the root of the tree is not stated beforehand. The algorithm selects as many
reference objects as necessary to cover the space. All the cluster centers will be at
a distance greater thanMα from the rest of centers in the �rst level.

Figures 4.3 and 4.4 show an example of tree construction after the selection of
the cluster centers at the root of the tree. As usual, each object is assigned to the
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(a) Selected centers in the first level

(b) Decomposition of the space in the first level of the tree.

Figure 4.3: Partition of the space in the root of the tree.

cluster corresponding to its nearest center. For each cluster, the tree stores the
cluster center and the covering radius of the cluster.

The process is recursively repeated. That is, each cluster of the �rst level
is partitioned following the same approach, selecting as many cluster centers as
necessary applying SSS. The recursive process stops when a cluster has a small
number of objects. The minimum number of objects must be established previously
(threshold δ). The process stops when a cluster has a number of objects less than
or equal to a threshold δ or, alternatively, when the covering radius of the cluster
is smaller than a given threshold.

This is the main di�erence of SSSTree with previous methods.While existing
techniques create a balanced tree with the same arity in all the nodes, SSSTree
creates a tree structure where the number of children of eachnode depends on the
SSS selection of cluster centers. Each cluster of the �rst level can be subdivided in
a di�erent number of clusters, depending on the number of objects they have, and
the distribution of the objects in the subspace.
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Figure 4.4: SSSTree tree after the �rst space partition.

In each internal node we have to estimate again the maximum distance in
the cluster associated to it (since the maximum distance of the metric space is
not valid for each new cluster). The maximum distance can vary even between
di�erent clusters in the same level. In the next subsection we explain di�erent ways
to e�ciently estimate the maximum distance into a cluster. O nce the maximum
distance inside a cluster is estimated, the new cluster centers are created.

Applying this strategy for the selection of cluster centers,not all the nodes of
the tree will have the same number of child nodes. Each cluster is divided in a
number of regions which depends on the distribution and complexity of the data of
that cluster. This is a very important di�erence with other s tructures like GNAT.
The index construction adapts the index to the complexity and distribution of the
objects of the metric space, and in each level of the tree onlythose needed clusters
will be created. This property is derived from the fact that SSS is able to adapt
the set of reference objects to the complexity of each space or subspace.

Estimation of the maximum distance M

One of the problems of the construction process is the need ofcomputing the
maximum distance M in each cluster. The naive way to compute this distance
is to compare each object in the cluster with all the other objects in the cluster,
but this approach is too expensive.

Let M be the maximum distance between any pair of objects of the cluster Ci ,
and rci the covering radius ofCi , the distance from the cluster center to the furthest
object in the cluster. Then, we know that M ≤ 2×rci . As we can observe in Figure
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4.5, if we use2× rci as the cluster diameter, we can cover the same objects as using
M as diameter. Therefore,2×rci can be used as a good estimation of the maximum
distance during the construction process.

Center

Furthest object

Figure 4.5: Estimation of the maximum distance in each cluster.

Note that with this solution, neither the computation of the c overing radius
or the estimation of the maximum distance between two objects of the cluster
introduce any additional cost. In any level of the tree, oncethe cluster centers have
been selected, each object has to be compared with all the centers in order to assign
it to a cluster. The covering radius can be obtained from these distances without
additional computation, and therefore, so does the estimation of the maximum
distance between two objects in each subcluster.

4.3.2 Searching

When given a query (q, r), the search works as usual. The tree is traversed from
the root to the leaves, pruning the search space when possible. In a given node of
the tree, the query object is compared with all the cluster centers ci stored in that
node. Using these distances and the covering radius of the cluster corresponding to
each center, the algorithm discards from the result all clusters for which:

d(q, ci ) > r + rci

When a branch of the tree is pruned, its corresponding regionin the space is
discarded from the result. The search algorithm traverses the tree by following the
branches that could not be discarded, until reaching the leaves of the tree.



4.4. Experimental results 81

4.4 Experimental results

The performance of SSSTree was tested with several collections of data: a collection
of synthetic vectors with uniform distribution in an hyperc ube of side 1, and the
real collections SPANISH(words) and NASA (images). All of them are described
with detail in Appendix C.

SSSTree was compared with other well-known clustering-based indexing meth-
ods: M-Tree [Ciaccia et al., 1997], and GNAT [Brin, 1995] (described in Chapter
2.5), and EGNAT [Uribe et al., 2006], a modi�cation of GNAT.

Figure 4.6 shows the results obtained when comparing SSSTree with existing
methods, with the collection of uniformly distributed vect ors. As usual,90% of the
collection was used as the database of objects to be indexed,and the remaining
10% of the objects were used as queries. The �gure shows the average number of
distance computations needed for solving a query, for di�erent search radius.

We used three di�erent search radius that retrieve for each query the 0.01%,
0.10%, and 1.00% objects of the database respectively. The reason for using di�erent
search radius is that, for clustering-based methods, this parameter can a�ect the
results obtained and the comparison of a method with others.

As we can see in these results, SSSTree is signi�cantly more e�cient than M-
Tree and GNAT in all cases, and also more e�cient than EGNAT, for all the search
radius. In these results we can see the variation in the search cost in terms of the
search radius. Obviously, the larger the search radius, themore di�cult to discard
objects is for the method.

Figures 4.7 and 4.8 show the results obtained from the comparison of SSSTree
with M-Tree, GNAT, and EGNAT, in the collections SPANISH(words) and NASA
(images). In the case of the collectionSPANISH, we used search radius from1 to
4, for the same reason as in the previous case. In the case of thecollection NASA,
we used again three di�erent search radius, that retrieve anaverage of the0.01%,
0.10%, and 1.00% of the objects in the database.

The results we obtained are very similar to the obtained for uniformly distributed
vectors. SSSTree is systematically more e�cient than previous techniques in both
collections. In the case of the collection of words, SSSTreeis signi�cantly more
e�cient than all the other methods for all search radius.
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Figure 4.6: Comparison with other methods, collectionVECTOR10.
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Figure 4.7: Comparison with other methods, collectionSPANISH.
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4.5 Summary

In this chapter we addressed the problem of selecting e�ective indexing objects for
clustering-based methods. In Section 4.2 we provided a description of the issues
related to this aspect. The main conclusion of that analysisis that, with a random
selection and a number of cluster centers �xed beforehand, there is no guarantee of
obtaining compact clusters and of their associated balls inthe space to have a small
overlap. We also analyzed the consequences of the use of balanced or unbalanced
tree-like structures in clustering-based methods. In linewith the results of our
previous analysis, our hypothesis was that the use of balanced structures does not
adapt the structure and information stored in the index to th e irregular distribution
of the data space, present in real applications. That is, a balanced index structure
and decomposition of the space is not the optimal con�guration for real datasets.

Based on the results of our analysis of the issues related to selecting e�ective
cluster centers and the use of balanced or unbalanced index structures, we proposed
a new clustering-based method,Sparse Spatial Selection Tree (SSSTree). It is an
unbalanced tree-like index that uses in each level the number of cluster centers it
considers necessary in terms of the amount of objects in the region of the space
it covers and on their distribution in the search space. Thus, the index adapts its
structure and its resources to the actual distribution of the data. In Section 4.3 we
presented the algorithms of construction and searching.

In Section 4.4 we present the experimental evaluation of themethod, in which we
compared our method with state-of-art methods. Our experimental results con�rm
our hypothesis. SSSTree is signi�cantly more e�cient than previous methods in
both synthetic and real collections, for di�erent search radius in each of them.



Chapter 5

Non-Redundant Sparse Spatial
Selection

5.1 Overview of the chapter

In this chapter we present Non-Redundant Sparse Spatial Selection (NR-SSS), an
improved version of SSS for the selection of indexing objects. Although an e�ective
set of pivots can be obtained with SSS, it is a greedy algorithm and some of the
decisions taken during the selection could be improved as the database evolves.
NR-SSS re�nes the criterion for selecting pivots of SSS at theexpense of a higher
computational cost of the selection.

When a new object is inserted into the database, it becomes a candidate pivot
if it satis�es the selection criterion of SSS. Then, its individual contribution to the
overall set of pivots is computed. Based on the contributionof the candidate, it
may be discarded, it may be added to the set of pivots, or it maybe added to the
set of pivots replacing another pivot that is considered worse. The resulting set of
pivots is smaller, which reduces the internal complexity ofthe search, but maintains
the capacity for directly discarding objects from the result. As in the case of SSS,
the selection is dynamic, that is, the pivots are selected asnew objects are inserted
an initially empty database.

The rest of the chapter is organized as follows: Section 5.2 presents the details
of the motivation for this new method. Section 5.3 presents Non-Redundant Sparse
Spatial Selection (NR-SSS): the algorithm for the estimation of the contribution
of each candidate pivot and the policies for deciding what todo with each new
candidate pivot. Section 5.4 explains how the cost of the selection can be reduced
at the expense of a loss in search performance. Finally, Section 5.5 presents the
results obtained in the experimental evaluation of the method.

85



86 Chapter 5. Non-Redundant Sparse Spatial Selection

5.2 Motivation

In Chapter 3 we presented Sparse Spatial Selection (SSS) as anew method for pivot
selection. As we have seen in our analysis, it is competitive with previous techniques
in what refers to search cost (comparisons needed for solving a query), but in
addition it is clearly better in other characteristics: it i s dynamic, it adapts the
index structure to the distribution of the objects in the space, and it has minimum
cost for the selection of pivots and the construction of the index.

However, SSS is a greedy algorithm for selecting reference objects. That is, each
time an object is inserted into the database, the method decides if it becomes a
pivot or not with the information it has up to that moment. Onc e an object is
selected as a pivot, the method does not go back on that decision. In some moment
as the database evolves, some of that decisions can become �erroneous� in some way.
Two situations are likely to arise:

• An object could be selected as a pivot without being necessary, that is, the
set of pivots could achieve the same search performance without that pivot
because other pivots do the same work it does, because the objects that are
discarded by that pivot can also be discarded by other pivotsof the set. In
this case, comparing the query with that pivot is useless, and it increases the
internal complexity.

• It is possible that an object was selected as a pivot when another object
inserted later could be more e�ective to cover a given regionof the space. That
is, an object selected as a pivot can prevent another better object to become
a pivot. In this case the problem is not only that the internal complexity is
increased. The selection of the �rst pivot prevents to reduce even more the
external complexity.

Therefore, by analyzing the set of pivots obtained with SSS when the database
has a signi�cant number of objects, it is possible to �nd pivots that are in some
way redundant, that is, pivots such that the set of pivots would obtain the search
performance without them.

Figure 5.1 shows an example of this situation in a two-dimensional scenario. Lets
suppose that the set of points within the rectangle shown in the �gure is the universal
set, that they are compared using the Euclidean distance, and that the database
contains the points shown in the �gure, that is, {x1, x2, x3, x4, x5, x6, x7, x8, x9}.
The maximum distance between two points is given by the diagonal of the rectangle.
With α = 0.4, the set of pivots selected by SSS could contain the objects
{x1, x2, x3, x4}, shown in bold in the �gure (we do not shown the regions covered
by each pivot in the �gure for the sake of clarity in the example). Therefore, the
index stores the distances from each objectxi to each of these four pivots.
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Figure 5.1: Example of redundant pivots with Sparse Spatial Selection.

When given the query (q, r), the query object is compared with all the pivots
in order to directly discard as many objects as possible fromthe result. If only
the objects x1 and x2 were used as pivots, the objectx5 would not be discarded
from the result, since its distance to any of those pivots is the same as the distance
from the query object q to them (the lower value of the distance from x5 to q
would take a value close to0). Similarly, if only the objects x1 and x3 were used as
pivots, the object x6 would not be discarded from the result for the same reason:
its distance to a pivot is more or less the same as the distancefrom the query to
that pivot. However, if the set of pivots contains any subset of three objects from
{x1, x2, x3, x4}, those pivots would be enough for perfectly locating the position of
any point in the space, and thus discard from the result set the objects that are not
contained in it.

This is an example in which SSS has selected more pivots than the really needed.
Some of the four pivots selected by SSS is redundant in some way, that is, one of
the four pivots could be removed from the set of pivots used inthe index, and the
capacity of the set of pivots for discarding objects from theresult would remain the
same. This situation unnecessarily increases the internalcomplexity of the method.

This is a consequence the greedy approach followed by SSS. The method obtains
a good set of pivots adapted to the distribution of the space,and in addition the
selection is dynamic and with minimum cost. However, if the application admits a
higher cost for the selection, the set of pivots obtained by SSS could be re�ned with
further processing of the collection. That is, it is possible to remove some pivots
from the set and still conserve its capacity for discarding objects from the result.
This gives as a result a smaller set of pivots, which means a reduction of the internal
complexity and the space requirements of the index.
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If the system can deal with more costly insertions of objectsand reasonably small
reorganizations of the index, it would be possible to modifythe selection criteria
in order to identify and remove the redundant pivots, that is , pivots that do not
contribute to the overall set of pivots. In this Chapter we present Non-Redundant
Sparse Spatial Selection (NR-SSS), a new dynamic technique for the selection of
indexing objects that follows this approach.

5.3 Pivot selection and index construction

This section describes Non-Redundant Sparse Spatial Selection (NR-SSS): the
criterion and algorithms for evaluating the individual contribution of a pivot, the
policies for adding it to the set of pivots in terms of its contribution, and the
procedures for pivot selection and index construction.

5.3.1 Estimation of the contribution of a pivot

Let (X, d) be a metric space,U ⊆ X a database of sizen, and P = {p1, . . . , pm }
a set of m = |P | pivots. When a candidate pivot pm +1 is selected, the method
evaluates the contribution of each pivot in P ∪ {pm +1} as follows. A set ofA pairs
of objects from the collectionP airs = {(x, y), x, y ∈ U}, A = |P airs|, is selected as
a sample of pairs object-query. The set ofA pairs is a good sample of queries and
objects to be discarded, assuming that the distribution of the queries in the space
is similar to the distribution of the objects of the database in the space.

For each pivot pi and pair (xj , yj ), the lower bound on the distanced(xj , yj ) is
computed as:

d(xj , yj ) ≥ |d(pi , xj )− d(pi , yj )|

We consider that the best pivot pmax for each pair (xj , yj ), the one that obtains
the higher lower bound on the real distance, since it is the one with more chances
for discarding the object xj when the yj object is used as a query or vice versa.
The algorithm obtains also the second best pivot for each pair, pmax 2, as the pivot
maximizing the lower bound on the real distance ifpmax where removed from the
set of pivots. The contribution of pmax for the pair (xj , yj ) is de�ned as:

|d(xj , pmax )− d(yj , pmax )| − |d(xj , pmax 2)− d(yj , pmax 2)|

We consider that the contribution of the other pivots in P ∪ {pm +1} for this pair is
0. That is, for each pair of objects, all the pivots compete to be the best, and only
the one that obtains the best lower bound is given a score thatis added to compute
its overall contribution for the set of A pairs of objects. Note that by computing
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the contribution of the best pivot as the di�erence of its lower bound and the lower
bound of the second best pivot, the contribution does not depend on the real value
of distance d(xj , yj ).

The total contribution of a pivot pi ∈ P ∪{pm +1} is the sum of its contributions
for the A pairs of objects. Note that a pivot that has contribution equal to 0 does
not maximize the distance in the pivot space for any pair of objects. In that case,
we consider that the pivot is redundant (at least for those A pairs), since other
elements in the set of pivots can discard the objects it discards.

For each pair (x, y), we consider that the best pivot is the one maximizing the
lower bound on the real distanced(x, y), and this is the only pivot that gets a
positive score for this pair of objects. However, it is important to note that this
does not mean that it is the only pivot able of discarding the object x against the
object y. The second, third, or even all the pivots may be able to discard it from the
result. Therefore, removing a pivot with a contribution di� erent than 0 does not
necessarily mean that the objects for which it is the best pivot can not be discarded
by any other pivot. It is also important to note that, since th e contribution of the
pivots is computed on a sample of queries, the results obtained are an approximation
of their real contribution when solving real queries.

5.3.2 Pivot selection

Both the database and the set of pivots are initially empty, and the index is built
as new objects are inserted in the database. When an objectx ∈ X is inserted
in the database, the algorithm checks if it becomes a candidate pivot applying the
criterion of SSS. If the distance fromx to the pivots already selected is greater or
equal than Mα (where M is the maximum distance between any two objects andα
a constant parameter that takes values between0 and 1, usually between0.35 and
0.45), the object x becomes a candidate pivot.

If the number of pivots is smaller than some small constantc, x is directly added
as a pivot. Therefore, the �rst candidates are directly added to the set of pivots
since a number of them is necessary for the computation of thecontribution of each
pivot. If some of them are redundant, they will be removed in further steps of the
algorithm.

If the set of pivots has already more than c objects, the algorithm selectsA
pairs of objects at random and computes the contribution of each pivot, including
the new candidate pivot. The already selected pivot with thelowest contribution is
taken as thevictim, and it can be replaced if the contribution of the new candidate
pivot is better than its contribution to the set of pivots.
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Based on the values of these contributions, the algorithm applies the second
criteria for deciding what to do with the new candidate. Three cases are possible:

• The contribution of the candidate is 0: it means that it has never won the
competition for discarding an object. Since the candidate can not discard any
pair of objects that is not discarded by the already selectedpivots, it does
not make sense to add it to the set of pivots since it would be redundant.
Therefore, the candidate pivot is discarded.

• The contribution of the candidate is greater than 0, but lower than the
contribution of the victim: in this case, there are some pairs of objects that
can only be discarded by this new candidate pivot. Since it isnot redundant,
it is added to the set of pivots. Since the victim pivot discards more objects
than the new candidate, it is not removed from the set.

• The contribution of the candidate is greater than 0, and greater than the
contribution of the victim: in this case, the new candidate pivot is not
redundant, so it is added to the set of pivots. In addition, the algorithm
decides to remove the victim pivot because its contribution is smaller than
that of the new pivot.

The pseudocode shown in Algorithm 5.1 summarizes the selection of pivots in
Non-Redundant Sparse Spatial Selection. Algorithms 5.2 and 5.3 summarize the
computation of the contribution of each pivot and the selection of the victim from
the current set of pivots respectively.

The selection algorithm computes the contribution of the pivot candidate p,
using the rule de�ned in Section 5.3.1. For each pair of objects (x, y), the algorithm
computes the lower bound on the distanced(x, y), using p as pivot. If this distance
is greater than the distance obtained with the best pivot for that pair (stored in the
array MaxD), the algorithm adds the corresponding contribution of p for pair (x, y),
otherwise it adds nothing. In this case, the algorithm removes the contribution of
the former best pivot for that pair of objects (x, y). The total contribution of p is
the sum of its contribution for all pairs of objects. If the contribution of p is 0, it is
directly discarded as pivot.

Finally, the algorithm decides if the new pivot p should be added toP ivots or the
victim should be replaced. If the contribution of p is greater than the contribution
of the victim, the victim is replaced with p. Otherwise, p is added to the P ivots,
thus incrementing its size in one.

Note that this dynamic algorithm for selecting pivots ensures that it will select
only pivots that are at distance at least Mα to the other pivots. Thus, the set
of selected pivots holds the same property of those selectedusing Sparse Spatial
Selection (SSS).
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Algorithm 5.1 : Pivot selection in Non-Redundant Sparse Spatial Selection.
Input : u ∈ X, U, P ivots, M, α, A, c
Output : P ivots
// Initially, P ivots← ∅
if ∀p ∈ P ivots, d(u, p) ≥Mα then

if |P ivots| < c then
// The algorithm selects the first c pivots.
P ivots← P ivots ∪ {u};

else
// Compute the victim from P ivots
(victim, contributionV ictim, MaxD, P airs)←
computeV ictim(U, P ivots, A);
// Compute the contribution of u (the pivot candidate)
contributionNew ← computeContribution(u, A, MaxD, P airs);
// If the contribution is positive, decide between adding

the pivot or replacing an old one
if contributionNew > 0 then

if contributionNew > contributionV ictim then
// Replace victim with new pivot
P ivots← (P ivots− victim) ∪ {u};

else
// Add pivot to P ivots
P ivots← P ivots ∪ {u};

end
end

end
end
return P ivots

The space and time complexities of the proposed method are mainly given by
the function computeV ictim, which computes the contribution of each pivot and
pivot candidate, and decides if the candidate becomes a pivot or not, and whether
it replaces the victim or not in case of becoming a new pivot.

Regarding the space complexity, the algorithm needs space for storing the A pairs
of objects (x, y) ∈ P airs, that is, 2A. It is also necessary to store the contribution
of each pivot (|P ivots|), and the array MaxD (A), that stores the best lower bound
on the real distance d(x, y) for each pair (x, y) ∈ P airs. Thus, the total space
complexity is O(A + |P ivots|).

Regarding the time complexity, the Algorithm 5.1 for the selection of pivots
computes �rst the distances of the new object inserted in thedatabase to the already
selected pivots (P ivots). Then it needs to initialize the arrays P airs (that stores
the sample of A pairs of objects), contribution (used to store the contribution of
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Algorithm 5.2 : Function computeContribution
Input : p ∈ X, A, MaxD, P airs
Output : contributionNew
contributionNew ← 0;
for i from 1 to A do

(x, y)← ith pair of objects in P airs;
diff ← |d(x, p)− d(y, p)|;
if diff > MaxD[i] then

contributionNew ← contributionNew + diff −MaxD[i];
end

end
return contributionNew

each pivot, and MaxD (used to store the best lower bound for each pair of objects
in P airs), (A + |P ivots| + A). The algorithm computes then the contribution of
each pivot for each pair of objects (A · |P ivots|), and �nally it computes the victim
pivot ( A).

The function computeContribution performs only O(A) extra instructions, thus
the time complexity of Algorithm 5.1 is O(A · |P ivots|). If one considers a �xed
set U that must be indexed, a loose upper bound of the total time complexity for
selecting the pivots isO(A · |P ivots| · |U |), because theO(A · |P ivots|) operations are
performed only when an object from|U | is su�ciently far away from the previously
selected pivots.

Therefore, Non-Redundant Sparse Spatial Selection (NR-SSS)involves both
space and time overhead in the selection of pivots if compared with Sparse Spatial
Selection (SSS).

5.4 Reduction of the construction cost

An inconvenient of the method as it has been described in the previous section, is
that when an object is inserted in the database, the algorithm has to select a set
of A pairs of objects from the database and compute the distancesfrom each pivot
to the two components of each pair, in order to evaluate the contribution of each
pivot. This adds a signi�cant overhead on the insertion of each object. Although
this is the optimal process in what respects to the quality ofthe pivots selected, the
cost it introduces in the insertion can be too high for some applications.

The time complexity of the algorithm for computing the victi m (Algorithm
5.3) can be improved by reusing most of the pair of distances and by storing the
corresponding computed distances (e.g., by changing only one pair of objects on each
call of this algorithm). With this approach, the new time com plexity of Algorithm
5.3 (and therefore of Algorithm 5.1) isO(|P ivots|), instead ofO(A · |P ivots|), which
is the minimum cost possible for inserting an object, as in Sparse Spatial Selection
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Algorithm 5.3 : Function computeV ictim
Input : U, P ivots, A
Output : victim, contributionV ictim, MaxD, P airs
P airs← ∅;
// Select randomly A pairs of objects from U
for i from 1 to A do P airs← P airs∪ random pair of objects (x, y) ∈ U ×U ;
// Initialize array with contribution of each pivot
for i from 1 to |P ivots| do contribution[i]← 0;
// Initialize array with distances in pivot space
for i from 1 to A do MaxD[i]← 0;
// Compute contributions
for i from 1 to A do

(x, y)← ith pair of objects in P airs;
// Compute best pivot for row of (x, y)
MaxD[i]← max|P ivots |

j =1 |d(x, pj )− d(y, pj )|;
indexMax← arg max|P ivots |

j =1 |d(x, pj )− d(y, pj )|;
// Compute second best pivot for row of (x, y)
max2← max|P ivots |

j =1; j 6=indexMax |d(x, pj )− d(y, pj )|;
// Add contribution for best pivot of row
contribution[indexMax]← contribution[indexMax] + MaxD[i]−max2;

end
// Compute victim and its contribution

victim← arg min|P ivots |
i =1 contribution[i];

contributionV ictim← min|P ivots |
i =1 contribution[i];

return (victim, contributionV ictim, MaxD, P airs)

(it is the minimum cost because in any method the new object has to be compared
with all the pivots in order to store the distances from the objects to the pivots).

However, as the A pairs of objects are now not randomly selected on each
iteration of Algorithm 5.3, it is possible that the quality of the estimation of the
contribution of each pivot decreases. That is why, instead of keeping a �xed sample
of pairs of objects for the whole algorithm, we change at least one pair in each
iteration, in an attempt of updating that information witho ut incurring in a high
computational cost.

As we will see in the experimental evaluation of the method (Section 5.5), the
experimental results reveal that the loss of e�ciency in the search when the pairs
of objects for evaluating the contribution of each pivot are reused, is not signi�cant
when compared with the gain in the construction cost. However, the resources
devoted to the construction in each step depend on the speci�c application and
users of the method can choose to replace a given number of pairs in each iteration
if they can a�ord it.
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5.5 Experimental evaluation

In the experimental evaluation of our proposal we used several collections that
represent real similarity search problems. More speci�cally, we used the collections
NASA, and ENGLISH(described in the Appendix C).

In each experiment, the 90% of the collection was used as the database to be
indexed, and the remaining10% objects were used as sample queries, averaging the
results obtained in each of them. For collections of images,the search range was
adjusted to retrieve an average of0.01% objects from the database in each query.
For the collection of words, the search radius used was2. As parameters, we used
c = 5 (minimum size of the set of pivots), and A = 5.000 (maximum number of
sample pairs of objects), for all the experiments.

5.5.1 Size of the set of pivots

One of the important characteristics of NR-SSS is that its policy for detecting and
replacing redundant pivots gives as a result a set of pivots smaller than the obtained
with SSS but that conserves its capacity for discarding objects from the result. We
carried out several experiments in which forNASA, and ENGLISH, we obtained the
number of pivots selected by Sparse Spatial Selection, and Non-Redundant Sparse
Spatial Selection, for di�erent values of the parameter α.

Figures 5.2, and 5.3 show the results obtained forNASA, and ENGLISH
respectively. As we can see in the results, NR-SSS selects lesspivots than SSS,
and the size of the set of pivots is signi�cantly smaller.

In these results we can also observe that the number of pivotsreplaced by NR-
SSS is higher for smaller values ofα. When the value of the parameterα is small,
SSS introduces more objects as pivots, and it is more probable to have redundant
pivots that are replaced by NR-SSS. As we can see in Figures 5.2,and 5.3, the
number of pivots selected by NR-SSS is very stable when the value of α varies.
That is, the number of pivots selected by NR-SSS is more or lessthe same for all
the values of α we considered. This is another advantage of this improvement of
SSS. Although the insertion of objects is more costly, the behavior of the method
is not so sensible to the value of theα.
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Figure 5.2: Number of pivots with SSS and NR-SSS inNASA.
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Figure 5.3: Number of pivots with SSS and NR-SSS inENGLISH.

5.5.2 Search performance

Our hypothesis is that by detecting and removing or replacing pivots that are
considered redundant under the criterion we de�ned in Section 5.3, the set of pivots
would be smaller but conserving its capacity for discardingobjects. In the previous
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Figure 5.4: Search cost with SSS and NR-SSS inNASA.

subsection we have already seen that the set of pivots obtained by NR-SSS is smaller
than the obtained with SSS. Since the total search complexity is given by the sum
of the internal and external complexities, if the hypothesis is true, NR-SSS should
show a better search performance than SSS for di�erent values of α.

Figures 5.4, and 5.5 show the search performance obtained with SSS and NR-SSS
for the collections NASA, and ENGLISH, for values di�erent values of the parameter
α.

As we can see in the results, NR-SSS systematically shows a better search
performance than Sparse Spatial Selection in the collection NASA. In the case of
ENGLISH, the di�erence in search performance depends on the value ofα, although
NR-SSS is more e�cient for the values of α between 0.30 and 0.40, identi�ed as
the optimal range of values for this parameter in the previous chapter. For higher
values of α, SSS selects a smaller number of pivots. In this case, the NR-SSS can
replace some pivots that contributed to the capacity of the index for discarding
objects, obtaining thus a worse result than SSS. This situation could be avoided
by re�ning the criterion for removing pivots, or by establis hing a condition for the
starting the replacement of pivots, which remains as futurework.

5.5.3 Cost of index construction

As we pointed out in the description of the method, selectingA pairs of objects
and comparing each component of them with all the pivots can be a computational
cost too high for an insertion in systems with dynamic requirements, where objects
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Figure 5.5: Search cost with SSS and NR-SSS inENGLISH.

are constantly inserted and removed. Section 5.4 describedhow to reduce the
construction cost of the index by keeping the set of pairs of objects during the
construction of the index and replacing a minimum number of them in each step as
the database evolves.

We compared the cost of construction of the original Non-Redundant Sparse
Spatial Selection (NR-SSS) and the lower construction cost (NR-SSS-LCC). Figure
5.6 shows the di�erence in the cost of construction of the index for a collection
of images. The left vertical axis represents the average number of comparisons
needed for solving a query with both versions of the method. The right vertical
axis represents the number of distance computations neededfor indexing the whole
collection. As we can see in these results, the loss of e�ciency in the search
performance is not very signi�cant and the reduction of the cost of building the
index can pay for it if this parameter is a problem for the application.

5.5.4 Comparison with previous techniques

Finally, we compared NR-SSS with previous techniques for pivot selection. As
in the case of SSS (see Chapter 3), we compared our method withIncremental
[Bustos et al., 2001], MaxMin [Vleugels and Veltkamp, 2002], SFLOO
[Hennig and Latecki, 2003], and Spacing [van Leuken et al., 2006]. As in Chapter 3,
we did not consider Maximum Pruning nor Maximum Variance
[Venkateswaran et al., 2008, Venkateswaran et al., 2006] since they use the search
range in the indexing phase, and the comparison would not be fair. In this
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Figure 5.6: Reduction of the construction cost by reusing distances.

comparison we used the collectionNASA, in which SSS obtained a worse result
than previous methods.

The results are shown in Figure 5.7 and Table 5.1, which listsa relevant subset
of the results shown in the �gures. The table shows for each method the number
of distance computations needed for solving a query, for di�erent numbers of pivots
(P ). In the results we can see that NR-SSS improves the results obtained with
SSS in this collection, in which SSS is not the best method. Inaddition, it needs
less distance computations for solving the query than any previous method. An
interesting result is that NR-SSS obtains better results with fewer pivots than any
other method. While SSS needs168 computations of the distance function for
solving a query with 55 pivots, NR-SSS needs only150 comparisons with 51 pivots.
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SSS NR-SSS

P Increm. Maxmin SFLOO Spacing � P Dist. P Dist.

30 243.21 193.24 207.91 408.57 0.50 38 173.57 31 167.65

40 210.78 165.87 189.73 398.72 0.48 48 171.19 32 163.01

50 203.06 160.55 189.05 395.58 0.46 55 168.07 34 165.27

60 199.23 158.52 185.64 288.47 0.44 64 171.16 43 172.45

70 202.27 163.42 188.03 315.19 0.42 79 178.08 51 150.24

80 205.75 171.17 189.76 319.61 0.40 95 187.39 60 164.26

90 202.49 173.65 196.59 294.44 0.38 119 205.37 70 164.78

100 209.79 181.77 200.29 298.83 0.36 156 235.51 84 170.22

110 212.72 188.60 205.72 303.10 0.34 201 276.95 88 168.98

120 220.18 195.11 211.85 326.30 0.32 270 339.28 101 186.81

130 228.03 204.00 217.33 326.33 0.30 372 436.22 110 188.95

Table 5.1: Comparison with previous techniques, collectionNASA.
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5.6 Summary

In this chapter we have presented Non-Redundant Sparse Spatial Selection (NR-
SSS), a new method that improves Sparse Spatial Selection (SSS) for the selection
of e�ective reference objects.

As we have seen in Chapter 3, SSS obtains a good set of pivots well-distributed
in the space and it is competitive with previous methods in what refers to search
cost. However, as we have explained in Section 5.2, SSS is a greedy algorithm: each
time an object is inserted into the database, SSS decides if it becomes a pivot or
not with the information up to that moment, and never goes back.

NR-SSS re�nes the set of pivots selected with SSS by identifying and removing
pivots that are redundant, that is, pivots that do not contri bute to increase the
capacity of the whole set of pivots for discarding objects from the result.

In Section 5.3 we presented the algorithms for selecting pivots and building the
index. When a new object is inserted into the database, it becomes a candidate
pivot if it satis�es the selection criteria of SSS. Then, we compute its individual
contribution to the capacity of the set of pivots for discarding objects from the
result. The computation of the individual contribution of e ach pivot is based in a
sample of objects taken at random from the database and used as object-query pairs.
Once the contribution of the candidate pivot has been computed, three situations
are possible. It that contribution is 0, the candidate is directly discarded and it
does not become a new pivot. If the contribution of the pivot is not 0, it is added
to the set of pivots. In addition, if its better than the worst current pivot, called
victim, it replaces it.

In this way, the set of pivots obtained with NR-SSS is smaller than the set of
pivots obtained with SSS, but the capacity for discarding objects is more or less the
same. Thus, the search cost is reduced since the internal complexity is smaller.

In Section 5.3 we presented an alternative construction algorithm that reduces
the construction cost at the expense of a loss in search e�ciency.

The results of the experimental evaluation of the method were presented in
Section 5.5, in which we show that the set of pivots of NR-SSS isactually smaller
than the set of pivots selected with SSS for di�erent values of α. We have also
shown that the number of pivots replaced is greater for smaller values of α, and
that the variations of the value of α a�ect less to NR-SSS. We compared NR-SSS
with previous methods with real metric spaces, showing its competitiveness.



Chapter 6

Nested Metric Spaces

6.1 Overview of the chapter

The distribution of the objects in the data space is one of thefactors that a�ects the
capacity of methods for searching in metric spaces for pruning the search space. In
general, the distribution of the objects in the space is not regular, and methods for
searching in metric spaces try to be robust even in the case that irregularities are
present in the data space. However, those irregularities areextreme in some cases.
In this chapter we continue with the idea of taking the distri bution of the objects
into account for indexing. However, in this case we focus on the identi�cation and
treatment of a particular type of irregularity, which we cal l nested metric spaces.

In some collections of data, the objects are grouped into dense subspaces that
contain a large amount of objects in a small region of the space. But, in addition, we
have observed that the dimensions or features that explain the dissimilarity between
two objects inside those dense clusters are di�erent than the dimensions or features
that explain the dissimilarity between any two objects in th e rest of the space. We
refer to these irregularities as nested metric spaces, since each dense subspace is like
an independent metric space nested into a more general one. We have also observed
that the presence of nested metric spaces can degrade the search performance of
some methods for searching in metric spaces.

In this chapter we introduce the concept of nested metric spaces and why they
can appear in real collections of data. We also explain why the presence of this
particular type of irregularity of the space can degrade the search performance
of methods for searching in metric spaces. We provide experimental results that
con�rm our hypothesis on the presence of nested metric spaces in real collections
of data and their e�ect on the search performance. Finally, we present an approach
for dealing with nested metric spaces.

101
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6.2 Introduction

The search performance obtained by methods for searching inmetric spaces is given
by the number of distance computations needed for solving a query. The capacity
of methods for directly discarding objects from the result,that is, their capacity for
pruning the search space, depends on many factors. The distribution of the objects
in the data space is one of them. Existing methods assume thatthe distribution of
the objects in real metric spaces is not uniform and that it can present irregularities.
For example, the number of objects in a region of the space canbe higher than in
others, or some objects can be outliers far from the rest of objects in the database.
In addition, the type of irregularities that appear in a give n space do not necessarily
have to appear in another.

Therefore, methods for searching in metric spaces try to be robust in what refers
to the dependence of the search performance they achieve with the presence of the
many irregularities that can appear in real applications. In previous chapters we
have already seen how some methods try to explicitly adapt the structure of the
index and the information they store to the distribution of t he objects in the space
and thus obtain a better search performance.

For pivot-based methods, many pivot selection techniques have been proposed
(MaxMin [Vleugels and Veltkamp, 2002], SFLOO [Hennig and Latecki, 2003], In-
cremental [Bustos et al., 2003], Spacing [van Leuken et al.,2006], Maximum Prun-
ing [Venkateswaran et al., 2008], SSS and NR-SSS) that try to obtain an e�ective
set of pivots for each particular space, instead of choosingthem at random. For
example, SSS selects an e�ective set of pivots well-distributed in the space, in order
to cover the space in such a way that the dissimilarity between two objects can be
detected in spite of the possible irregularities present inthe space.

Clustering-based methods usually build tree-like indexesthat recursively parti-
tion the space. In Chapter 4 we presented Sparse Spatial Selection Tree (SSSTree)
and we show how the search performance can be improved by adapting the structure
of the index to the distribution of the objects in the data space. Particularly, in the
case of SSSTree, the index is adapted to the topology of the space by partitioning
each cluster in as many clusters as needed for each region of the space, and not in
a �xed number of clusters. With this approach, the index devotes more resources
of the index to speci�c regions of the space.

In this chapter, we continue with the idea of exploring the distribution of the
objects in the data space and taking it into account for indexing. But in this
case, we focus on the detection and treatment of a speci�c type of irregularity of
the space which we callnested metric spaces. We introduce the concept of nested
metric spaces and why they can appear in datasets of real applications. We show
how the presence of nested metric spaces a�ects the search performance of some
methods for searching in metric spaces, and we show that adapting the resources of
the index to these irregularities can improve the search cost.
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6.3 The concept of nested metric spaces

6.3.1 Discovering nested metric spaces

During the experimental evaluations of the methods SSS (Chapter 3) and SSSTree
(Chapter 4) that we carried out as part of this work, we discovered that there are
metric spaces in which the irregularities of the distribution of the objects in the
space are extreme.

We found that there are metric spaces in which a signi�cantly large number of
objects are grouped in dense subspaces that cover a small region of the space. That
is, in some metric spaces there are large groups of objects that are very similar
between them. But not only the objects are grouped in very dense subspaces. In
addition, the dissimilarity between any two objects in the subspace is explained by
dimensions di�erent to the dimensions that explain the dissimilarity between other
objects in the general metric space. We refer to this irregularity as nested metric
spaces. We use this term since each subspace is like an independent metric space
nested into a more general metric space.

Figure 6.1 shows an example of the presence of nested metric spaces in a three-
dimensional vector space. As we can see in the �gure, the database contains a set
of points. The space has three explicit dimensions: the maincorresponds to the
x axis, and the other two correspond to they and z axis. In this example, there
are two subspaces with a large number of objects along the axes y and z. The
objects inside a subspace are almost equal according to the main dimension but
di�erent according to the speci�c dimensions of the subspace they belong to. The
dimensions that explain the di�erence between the objects in each nested metric
space are di�erent from the dimensions that explain the di�erence between two
objects in the general metric space.

The presence of nested spaces can be caused by several reasons. Typically, the
objects in some groups will be closer between them than to therest of the objects
in the space due to their similarity in a relevant feature.

Nested metric spaces can easily appear in real databases of objects. Perhaps the
most evident example is a collection of images represented by vectors of features. In
content-based image retrieval systems, images are usuallyanalyzed with computer
vision algorithms in order to detect and extract certain features of interest. Then,
each image is represented by a vector that contains numerical values that represent
those features. Typical features of interest for images include points of the histogram
of each color of the image, features about the texture of the image, and about
the presence of certain shapes. Nested metric spaces are likely to appear in such
a database. For example, if a large group of images share the same main color
(something easy in a collection of nature photographs, for example), their feature
vectors will be grouped in the space, very close between them. In addition, the
distance between any two of those images will be small, and the dissimilarity
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Figure 6.1: Dense subspaces nested into a general metric space.

between them is explained by di�erent features than in the case of other images
of the database.

The same situation could happen in a collection of strings. For example, in a
database of words, all the words sharing the same root will bevery close between
them but further from the rest of words in the database. In that case, the groups of
words would not be very large. But the same could happen with all the words that
share the same word su�xes (as �-ment�, � -tion�, or � -able�, for example). Nested
metric spaces could also appear in a database of DNA sequencesin which certain
patterns repeatedly appear in large groups of sequences.

6.3.2 E�ect on the search performance

We have already shown that the distribution of the objects in the data space could
be taken into account for improving the structure and performance of the index.
Moreover, in some cases, the presence of irregularities as nested metric spaces can
degrade the performance obtained with some methods.

During our experiments we found such a situation when testing Sparse Spatial
Selection (SSS) with a collection of color images.COLORis a collection of112, 544
color images represented by feature vectors of dimension112. That is, 112 features
of interest were extracted from each image. However, if we analyze the contents of
the database, most of the coordinates take the value0 or a value very close to0 for
a large fraction of the images. As a result, all images are concentrated around the
origin of coordinates and distributed in groups de�ned by certain features.
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Figure 6.2: Average search cost with Random, Incremental and SSS.

This collection is an example of the presence of nested metric spaces. The
collection COLORis also an example in which the presence of nested metric spaces
degrades the performance of some methods. Figure 6.2 shows asummary of the
average search cost for solving a query in the collectionsENGLISH, NASA, and
COLOR(the details of each collection are described in Appendix C) with a random
pivot selection, an Incremental pivot selection [Bustos etal., 2003], and SSS. As
usual, the 90% of the objects of each collection were used as the database tobe
indexed, and the remaining 10% of the objects were used as queries in order to
obtain the average search cost. As we can see in the results, SSS gets the best
result in ENGLISH and NASA, followed by the method for we call Incremental
[Bustos et al., 2003]. However, in the case of the collectionCOLOR, the results
are di�erent. The advantage of both Incremental and SSS overa random pivot
selection is substantially reduced. Actually, in this collection, a random pivot
selection performs very well.

In a collection like COLOR, SSS, or Incremental, or any other method trying to
distribute the pivots in the space, is only able to put a pivot in each dense subspace.
The maximum distance between two objects is given by the maindimensions of the
space, and therefore, few pivots �t inside each subspace if they are selected with a
method that distributes the pivots in the space (since the distance between objects
inside them is much smaller). However, a random pivot selection has more chances
to place more pivots inside each subspace. This explains thedi�erence in search
performance between a random pivot selection and other approach in this collection
of images.
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This is the same situation we draw on Figure 6.1, which shows an example of the
presence of nested metric spaces in a three-dimensional space. As we can see in the
�gure, the maximum distance between any two objects is givenby the dimension x
of the general metric space. Therefore, SSS is only able to place �ve pivots in the
space. Only one pivot is placed near to each nested metric space. In contrast, a
random pivot selection has more chances of placing more pivots in each subspace,
thus devoting more resources of the index to them.

6.3.3 Validating our hypothesis

In the previous section we introduced the concept of nested metric spaces as a
particular type of irregularity of the distribution of the o bjects in metric spaces.
We also argued that their presence in a database can a�ect thebehavior of methods
for searching in metric spaces, as it happens in the case of the collection COLOR,
with methods as Incremental and SSS.

In this section we present experimental results that con�rm the validity of our
hypothesis. That is, we show experimentally that nested metric spaces can appear
in real collections of data and that they a�ect the search performance of methods
for searching in metric spaces. Particularly:

• We studied the distribution of the objects in the collection COLOR and
compared it with the distribution of the objects in the data s pace of other
collections in which we did not observe the presence of nested metric spaces.

• We created an arti�cial collection of vectors that contains nested metric spaces
to con�rm that they a�ect the search performance of methods for searching
in metric spaces.

Test environment

For the validation of our hypothesis we used three collections of real data: ENGLISH,
NASA, and COLOR(described in Appendix C). As usual, the 90% of the objects
of each collection was used as the database to be indexed, andthe remaining 10%
of the objects were used as queries. The search radius was adjusted in each case
to retrieve the 0.01% of the objects of the collection in average. In the case of the
collection of words, the search radius was set tor = 2, as usual.

Additionally, we generated two synthetic collections of vectors with known
distribution. We refer to the �rst one as REGULAR, a collection of 100, 000 vectors
of dimension 12, uniformly distributed in an hypercube of side 1. We refer to
the second collection asIRREGULAR. It is again a collection of 100, 000 vectors
of dimension 12, but, as the name of the collection suggests, their distribution is
completely biased. Three nested metric spaces are present in the collection. Each
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Collection # O # C # O/# C
ENGLISH 69,069 69 1001.0000

NASA 40,150 40 1003.7500
COLOR 112,544 112 1004.8571

Table 6.1: Experimental setup for each collection.

of them contains a 30% of the objects in the database. The objects of the �rst
nested metric space are very similar according to the �rst three dimensions. The
objects in the second nested metric space are very similar according to another
three di�erent dimensions, and the objects in the third nested metric space are very
similar according to another three di�erent dimensions. The remaining10% objects
in the collection are uniformly distributed in the space. The covering radius of each
nested metric space is twice the typical search radius for such a collection.

Nested metric spaces in real collections of objects

Our initial hypothesis was that, when working with real coll ections of data, we can
not assume the objects to have a regular distribution in the space. We argued that
in real collections, the objects can be grouped in clusters that contain a signi�cant
amount of objects of the database in small regions of the space.

To validate this hypothesis, we used the three real collections described above:
ENGLISH, NASA, and COLOR. For each of them we partitioned the data space into a
set of clusters. Table 6.1 shows for each collection: the number of objects it contains
(#O), the number of clusters in which the collection was partitioned (#C), and the
relation between the number of objects in the collection andthe number of clusters
in which the collection was partitioned (#O/#C). In each collection, we chose a
number of clusters (#C) such that the number of objects in each cluster is more
or less the same in all collections, that is, we partitioned each collection in such a
way that #O/#C takes more or less the same value in all collections (see the last
column in Table 6.1). In this way, the results obtained in a given collection are
comparable with the results obtained in the other collections.

For each collection, the cluster centers used to partition the space were obtained
with SSS. After partitioning each collection, we obtained for each cluster the number
of objects it contains. Figures 6.3, 6.4, and 6.5 show the histogram of the number of
objects into the clusters in the collectionsENGLISH, NASA, and COLORrespectively.
The x axis represents the number of objects into the clusters, expressed as the
percentage of objects of the database they contain. They axis represents the
relative frequency.

As we can see in the results, the number of objects contained into each cluster
follows the same distribution in the collections ENGLISHand NASA. Most clusters
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Histogram of cluster sizes, ENGLISH

Figure 6.3: Histogram of clusters density forENGLISH.

Figure 6.4: Histogram of clusters density forNASA.
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Figure 6.5: Histogram of clusters density forCOLOR.

contain between the 1% and the 2% of the objects in the database, and some of
them contain a larger number of objects, between the8% and 14% of the objects in
the database respectively. There are no nested metric spaces in these collections.

However, the number of objects into each cluster follows a completely di�erent
distribution in the case of the collection COLOR. As we can see in Figure 6.5, there
is a cluster that contains half the objects in the database, clearly representing a
nested metric space, while the rest of clusters contain veryfew objects. This is a
clear case in which nested metric spaces are present in the collection.

Figure 6.6 shows together the histogram of cluster densities of the collections
ENGLISH, NASA, and COLOR. Although in all of them there are clusters signi�cantly
larger than the mean, in the �gure we can see that the collection COLOR is an
extreme case.

Table 6.2 shows a summary of the results obtained in the experiments we have
described. For each collection, the table shows the minimum, maximum, mean,
and standard deviation of the number of objects in each cluster, expressed as a
percentage of the objects in the database.
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Figure 6.6: Histogram of clusters size in real collections.

Collection % min % max µ σ
ENGLISH 0.079631 8.009382 1.447828 1.672078

NASA 0.01925 13.21544 2.497509 3.284655

COLOR 0.000889 50.64775 0.8919686 4.927192

Table 6.2: Distribution of the percentage of objects in each cluster.

E�ect on the search performance

Our second hypothesis was that the presence of nested metricspaces can signi�-
cantly a�ect the search performance of the methods for searching in metric spaces.
A random pivot selection obtains a better result than other methods that, like SSS,
distribute the pivots in the space when there are nested metric spaces.

In order to validate this hypothesis we used the collectionsREGULAR, and
IRREGULAR, which was synthetically created with three nested metric spaces. We
obtained the average search performance obtained with a random pivot selection
and SSS for di�erent values of the parameterα in each collection. As usual, the90%
of the objects of the collection were used as the database to be indexed, and the
remaining 10% were used as query objects (of course, the objects in the collection
IRREGULARwere randomly unsorted, in other case only the objects in thenested
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Figure 6.7: Average search cost with random and SSS inREGULAR.

metric spaces would be indexed). Figures 6.7 and 6.8 shows the results we obtained.
In the case of the collectionREGULAR, SSS obtains always a better result than

a random pivot selection. However, as we can see in Figure 6.8,the results in the
collection IRREGULARare very similar to the results obtained with the collection
COLOR. The random pivot selection sistematically obtains a better result than SSS
for all values of the parameterα. This result is due to the presence of nested metric
spaces, since the distribution of the objects is controlledand there are no other
features of the collection that could cause this result.

6.4 Indexing nested metric spaces

In this section we present an approach for detecting and indexing nested metric
spaces. Our method uses Sparse Spatial Selection (SSS) to detect the presence
of highly dense subspaces in the database, in order to further adapt the structure
and information stored in the index to the distribution of th e objects. With this
method we will show that the search cost can be improved if thepresence of nested
metric spaces is detected and the resources and structure ofthe index are adapted
to them. We refer to this method as Sparse Spatial Selection for Nested Metric
Spaces (SSS-NMS).

SSS-NMS works in two levels. In the �rst level, the method creates a Voronoi
partition of the space. The cluster centers used to create such a partition are
selected with SSS, which guarantees the cluster centers to be well distributed in the
space. Then, the density of each of these clusters is computed in order to detect
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the presence of nested metric spaces. In the second level, the method indexes only
those clusters considered dense by applying a pivot-based schema inside each of
them. The objects used as pivots in each cluster are again selected with SSS inside
each nested metric space.

With this approach, SSS-NMS is able to detect complex groups of objects in the
database in order to then devote more resources of the index to them, according to
their complexity.

6.4.1 Construction

As we have already explained, the construction of the index iscarried out in two
levels, and SSS is applied in both of them: in the �rst level SSS is used to obtain
e�ective cluster centers adapted to the data space in order to create a Voronoi
partition of the space; in the second level, SSS is applied toselect the set of objects
used as pivots inside each subspace that was considered to have a high density in
the �rst level of the index.

Since SSS is used in each of them, we will refer to the constants that control the
density of objects selected by SSS asα and β for the �rst and second level of the
method respectively.

First level: Voronoi partition of the space with SSS

In the �rst level of the index, the space is decomposed into a Voronoi partition.
The objects used as cluster centers are selected with SSS, sothey will be well
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distributed in the space. This is important in order to parti tion the space according
to the distribution of the objects in the space. Once the cluster centers{c1, . . . , cm }
are selected (m is not a �xed value, it depends on the value ofα), each object is
compared with them to create the Voronoi partition. The space is decomposed in
a set of clustersCi . The objects in each cluster are:

Ci = {x ∈ U, d(x, ci ) ≤ d(x, cj ), 1 ≤ j ≤ m}

With this procedure for partitioning the space, an object becomes a cluster
center if its distance to the already selected centers is equal or greater than Mα,
whereM is the maximum distance between two objects andα a constant parameter
that takes values between0 and 1. The value of α should be small in this �rst phase
because a largerα would produce fewer clusters and having few clusters could result
in dense clusters that contain also objects that do not belong to the real dense cluster
of objects. This situation would increase the covering radius of the cluster, giving
as a result a non-compact cluster.

This gives as a result a set of disjoint clusters which union gives as result the
complete space. Since the cluster centers are not close to each other, because they
have been selected with SSs, and they are well distributed inthe space, the resulting
clusters are more compact and less overlapping than if they were selected with a
random pivot selection.

Second level: Indexing dense clusters with SSS

After partitioning the space into a set of clusters accordingto the main dimensions
of the space, the second level of the index tries to identify nested metric spaces and
further index them. In order to detect the presence of nestedmetric spaces we need
some way of measuring how dense a cluster is, that is, if the number of elements it
contains is too large for the region of the space it covers.

We de�ne the density of a cluster as the relation between the number of elements
assigned to the cluster and the covering radius of the cluster, a measure of the region
covered by the clsuter:

density(Ci ) =
|Ci |
rci

Computing the density of all clusters could be very costly if the maximum
distance of each of them is obtained by comparing all the objects in the cluster
with each other.

Although we have de�ned a way of measuring the density of objects in each
cluster, we still do not have any kind of criteria for deciding which clusters are worth
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of further indexing and which not. We could think on establishing a threshold as
a criterion, but its value should be di�erent for each collection, so it is not a valid
choice. Instead of using a threshold, we decide if a cluster is too dense or not by
analyzing how dense it is if compared with the rest of clusters. If µ and σ are the
mean and typical deviation of the density of a cluster, we consider that a cluster is
dense enough to be further indexed if:

density(Ci ) > µ + 2σ

If the distribution of the objects in the space is more or lessregular, the densities
of the clusters will be around the mean, and few clusters willbe dense enough to
be further indexed. If nested metric spaces are present in the space, their density
will be for sure far from the mean, so they will be easily detected.

For each cluster considered dense enough to be further indexed, a set of objects
is obtained with SSS to be used as pivots, and the table of distances from all the
objects of the cluster to the pivots is computed and stored. In this second level the
index stores more information for the dense complex subspaces. In this case, the
value of β should be around0.4.

The clusters that are not considered dense are no further indexed. During the
search, they are pruned from the result if possible with the information of the
partition of the space. If they are not discarded, the query object is compared with
all the objects they contain.

6.4.2 Search

Given a query (q, r), the query object is compared with all the cluster centers ofthe
�rst level in order to discard as many objects as possible from the result without
comparing them with the query object. Those clustersCi for which:

d(q, ci ) > r + rc

are directly discarded from the result set, since the intersection of the cluster and
the result set is empty. For the clusters that could not be discarded there are
two possibilities. If the cluster is not a dense cluster and therefore does not have
associated a table of distances from its objects to pivots, the query has to be
directly compared with all the objects of the cluster (as happens, for example,
in list of clusters [Chávez and Navarro, 2005]). If the cluster has associated a table
of distances, the query is compared with the pivots and the table is processed to
discard as many objects as possible. The objects that can notbe discarded are
directly compared with the query.
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6.4.3 Preliminary comparison

It is di�cult to carry out a fair comparison of SSS-NMS with pre vious methods, as
Incremental or SSS. While pivot-based methods work with a large table of distances,
SSS-NMS stores precomputed distances for only some regions of the space. In
order to obtain a fair comparison, all methods should be given the same amount of
memory, that is, the same amount of information. A similar problem arises if we
think in comparing SSS-NMS with clustering-based methods, since they use linear
space, while SSS-NMS uses more information than them.

However, a preliminary comparison with previous methods, using the same
amount of memory, can be enough for evaluating if the negative e�ect of nested
metric spaces in the search performance can be overcome by detecting them and
devoting more resources of the index to them. We compared SSS-NMS with SSS,
Incremental [Bustos et al., 2003] and a random pivot selection [Micó et al., 1994].

Again, 90% of the objects of each collection were indexed and10% were used as
queries, retrieving an average of0.01% of objects of the database for each query in
the case ofNasaand Color, and using a search radiusr = 2 for English.

Figure 6.9 shows the results we obtained. For each collection and method
we show the average distance computations needed for solving a query. These
results show that SSS-NMS is more e�cient in terms of distance computations
than the other methods when using the same amount of space. As we can see in the
results, SSS-NMS obtains better results than SSS and Incremental in all collections,
including COLOR, in which a random pivot selection performs very well.

Although the comparison in the search result is di�cult due to the di�erence
in the amount of information used by each method, the resultsshow that devoting
more resources of the index to the more complex regions of thespace the search
performance can be improved.
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6.5 Summary

Many factors determine the capacity of a method for searching in metric spaces
for pruning the search space, that is, for discarding objects from the result set
without comparing them with the query. The distribution of t he objects in the
data space is one of those factors. In this chapter we continued with the idea of
taking advantage of the distribution of the objects in the space in order to improve
the search performance of methods for searching in metric spaces. However, in this
case we focused in the detection and treatment of a particular type of irregularity
that can appear in real metric spaces, which we call nested metric spaces.

We introduced the concept of nested metric spaces as subspaces that contain a
large amount of objects in a small region of the space, and in which the di�erence
between two objects is explained by dimensions di�erent to the dimensions that
explain the di�erence between two objects in the general metric space. We use the
term nested metric spaces because each subspace is in some way like an independent
metric space nested into a more general one. As we have seen in this chapter, this
is an extreme irregularity of the space that can appear in real collections of data.

We have also explained how the presence of nested metric spaces can negatively
a�ect the search performance obtained with pivot-based methods as SSS and
Incremental. We carried out an experimental evaluation with both synthetic and
real collections of data that con�rms our hypothesis on the e�ect of nested metric
spaces in the search performance of methods for searching inmetric spaces.

Finally, we presented Sparse Spatial Selection for Nested Metric Spaces (SSS-
NMS), an approach for the detection and indexing of nested metric spaces. This
method works in two levels: in the �rst one the space is decomposed into a
Voronoi partition and the density of each cluster is computed; in the second level,
those clusters considered dense are further indexed with a pivot-based approach.
Although the comparison of this approach with previous methods is di�cult due to
the di�erences in memory requirements, the preliminary results we presented show
that the e�ect of nested metric spaces can be overcome if moreresources of the
index are devoted to these complex regions of the space.
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Chapter 7

Conclusions

7.1 Summary of contributions

The number of applications of similarity search has signi�cantly grown in the last
years. Most of these applications appeared in systems as multimedia databases,
search engines, or social networks, characterized for managing very large collections
of objects of complex data types, in constant interaction with the user. Therefore,
reducing the comparisons needed for solving a query as much as possible is
mandatory in order to provide e�cient search capabilities.

In this thesis, we have presented several methods for similarity search in metric
spaces that aim not only to improve the search performance, but also other aspects
important for real applications, as the construction cost, the space requirements
of the index, the possibility of working with both discrete and continuous metrics,
and the possibility of dynamically adapting the informatio n in the index as the
collection of objects evolves from an initially empty database.

This section summarizes the main contributions of this thesis:

• We have presentedSparse Spatial Selection (SSS), a new method for the
selection of e�ective indexing objects for searching in metric spaces. While
previous techniques based the selection on the idea that good pivots have to be
far away from each other and far away from the rest of objects of the database,
our proposal selects a set of pivots well distributed in the space. That is, pivots
are not near to each other, but they are not necessarily very far away from
each other. The experimental evaluation shows that the performance obtained
with this approach is better or at least equal than the obtained with previous
techniques. Therefore, we proved that good pivots do not need to be far from
the rest of objects in the database.

119
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Sparse Spatial Selection has other important characteristics that make it
suitable for real-life applications. The most important is perhaps that it
is dynamic. The method starts with an empty database and the pivots
are selected as needed for building the index as objects are inserted into or
removed from the database. Since each pivot covers a region of the space, the
index adapts its structure and the information it stores to t he content of the
database in each moment.

An important di�erence of Sparse Spatial Selection with previous methods
is that it is not necessary to state the number of pivots to usebefore the
indexing. While in previous methods the optimal number of pivots had to be
obtained by trial and error on the whole collection, our method determines
by itself how many pivots it needs in each moment depending onthe content
and complexity of the collection.

Other important characteristic of this method is that it doe s not impose
any additional cost for the selection of pivots. The only information it
needs is the same information needed for inserting an objectin the database
(the comparisons of the object with the pivots). This is an important
di�erence with previous methods, that require a signi�cant amount of distance
computations during the preprocessing of the collection.

• In this thesis we analyzed the selection of indexing objectsfor clustering-based
methods. As in the case of pivot-based methods, the number of cluster centers,
their position in the space with respect to each other, and their position with
the rest of the objects of the database, determine the pruning capacity of the
method. Most existing clustering-based methods select thecluster centers at
random. As in the case of pivots, this approach has several inconveniences.
A random selection does not ensure the best search performance, and the
number of cluster centers has to be stated beforehand.

We have presented Sparse Spatial Selection Tree (SSSTree), a tree-like
clustering-based method that selects in each node the cluster centers by
applying Sparse Spatial Selection. Thus, the number of cluster centers in
each node is adjusted as necessary depending on its size and the objects
it contains. This approach gives as a result an unbalanced tree structure
adapted to the topology of the space. The experimental results con�rm that
this unbalanced structure obtains a better search performance than existing,
balanced, methods.

• We have proposed Non-Redundant Sparse Spatial Selection (NR-SSS), a
method to detect redundant pivots and remove or replace themfrom the set
of pivots. We introduced the concept of redundant pivot as follows: a pivot
is considered to be redundant if it does not improve the e�ectiveness of the
set of pivots as a whole, that is, if the set of pivots has the same capacity for
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pruning the search space with or without that pivot. We have also de�ned a
criterion for estimating the contribution of each pivot to t he whole set.

By detecting and removing the redundant pivots, Non-Redundant Sparse
Spatial Selection obtains sets of pivots smaller than thoseobtained with
Sparse Spatial Selection, while conserving the capacity for pruning the search
space. Having less pivots reduces the internal complexity without increasing
the external complexity. It also reduces the space requirements of the index,
something important for pivot-based methods.

Non-Redundant Sparse Spatial Selection is also dynamic and adaptive, and it
is not necessary to state beforehand the number of pivots themethod has to
select.

• Finally, we have introduced the concept of nested metric spaces. A nested
metric space is subspace that contains a large number of objects in a small
region of the space, and in which the dimensions that explainthe dissimilarity
between any two objects are di�erent from the dimensions that explain the
dissimilarity between other two objects in the general metric space. We use
the term nested metric space, since they are as independent metric spaces
nested into a more general metric space. Nested metric spacesare an extreme
irregularity of the distribution of the objects in the space. Their presence
can cause bad results in the search performance of some methods. We have
experimentally shown the existence of these subspaces.

We have proposed an hybrid method that tries to detect these subspaces and
take advantage of them during the indexing. This method indexes the space
in a �rst level, and then devotes further resources to that special subspaces.

7.2 Future work

This section summarizes the next steps considered for future work after this thesis.
First, with respect to the methods proposed in this work:

• The experimental evaluations carried out in this work used aset of common
test collections used by most researchers working in similarity search in metric
spaces. Although these collections represent a good sample of the problems in
which methods for searching in metric spaces are applied, weplan to extend
the experimental evaluation of the methods we have proposedusing large
collections of data taken from real applications, in order to reinforce the
robustness of our proposals when working with real, very large collections
of data.

• We plan to extend our work in methods for searching in metric spaces that take
advantage of the distribution of the objects in the space. Wehave proposed
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a method for detecting the presence of nested metric spaces in the database,
and we have shown that devoting more resources of the index tothem can
improve the search performance. However, the method we have presented is
still not competitive when compared with pivot-based methods that use as
much memory as they need.

• We plan to design and build a product that solves a real application using the
methods we have proposed in this thesis.

In addition, we are already working in other aspects of methods for searching in
metric spaces that were not mentioned in this thesis. Particularly, the optimization
of the space requirements of pivot-based methods.

As we introduced in the revision of the state of the art, pivot-based and
clustering-based methods have two important di�erences. On the one hand,
pivot-based methods can solve a query with much less distance computations than
clustering-based methods. For instance, the number of distance computations of a
pivot-based method can be in the order of hundreds, and the number of distance
computations of a clustering-based method can be in the order of thousands. On
the other hand, the space requirements of clustering-basedmethods are linear with
the number of objects in the collection, while pivot-based methods may require high
amounts of space for storing the information of the index. The space requirements
make pivot-based methods impractical for some problems.

Up to now, the decision of which type of method to use depended on how costly
the comparison of two objects is and the size of the database.If the comparison of
two objects involves a very high computational cost, as happens with the comparison
of DNA sequences using the edit distance, the space needed by apivot-based method
can be compensated by the optimization in the search cost. Ifthat is not the case
and the database is expected to be very large, clustering-based methods are a good
option because the index needs a very small amount of space and will surely �t in
memory.

A promising line of research for similarity search in metricspaces is the reduction
of the space requirements of pivot-based methods, ideally making them linear with
the size of the database, while conserving their capacity for pruning the search
space. We are currently working on methods for achieving this goal by storing for
each object in the database only the distance to the most promising pivot for it.
Preliminary results of our work on this research line have been already published
in [Ares et al., 2009a] and [Ares et al., 2009b].
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Summary of notation

The following table summarizes the notation used throughout the text:

Symbol Meaning

X Universe of valid objects (universal set)

(X, d) Metric space

d Metric or distance function

U Database or collection of objects

n Size of the database

(q, r) Range query

q Query object

r Search radius

kNN(q) k-nearest neighbor query

k Dimension of the vector spaceRk

Lp Minkowski distances

ρ = µ2/2σ2 Estimation of the intrinsic dimensionality [Chávez et al., 2001b]

P Set of pivots

m Size of the set of pivots

M Maximum distance between any two objects of the space

C Cluster

ci Center of the cluster Ci

rci Covering radius of Ci , rci = max{d(x, y)x, y ∈ Ci }
(ci , rci) Enclosing ball of the cluster Ci , (ci , rci)

133



134 Appendix B. Summary of notation



Appendix C

Experimental Environment

In the experimental evaluations carried out during this thesis, we used the materials
available at the Metric Spaces Library1, a library developed as part of theSimilarity
Search and Applications Conference (SISAP). It provides implementations of the
most relevant methods for searching in metric spaces, and a set of collections of
di�erent nature. It is, therefore, a common test framework used by most researchers
in this �eld. In particular, we used the following collectio ns:

• VECTOR8, VECTOR10, VECTOR12and VECTOR14: Collections of synthetic
vectors of dimension 8, 10, 12, and 14, uniformly distributed in an hypercube
of size 1. Vectors are compared using the Euclidean distance.

Since these collections are synthetic and all of them have the same distribution
of distances, they permit us to test the behavior of methods with collections
of known dimensionality. The higher the dimensionality, the more di�cult
the search.

We also worked with collections of images. Although the images are represented
by feature vectors, their distribution is not uniform, and t hey are useful in order to
test how the methods perform in data distributions taken from real applications:

• NASA: A collection of 40,150 images extracted from the archives of image
and video of the NASA. Each image is represented by a feature vector of
dimension 20. The distance between two images is the Euclidean distance
between their feature vectors. This collection was used in the 1999's of the
DIMACS Implementation Challenge.

The similarity of two images is based in terms of their color histograms, using
the Munsell space color (Hue,Saturation,Intensity). Each image is divided

1The Metric Spaces Library can be accessed at http://sisap.org (November, 2009)

135



136 Appendix C. Experimental Environment

in four regions of the same size, and the color histogram of each region is
obtained. Each histogram is further divided in nine subspaces corresponding
to black, white, and other six colors. By concatenating the result obtained
for the four histograms, a vector of36 components is obtained. This vector is
then reduced to a vector of dimension20 by an analysis of main features.

• COLOR: A collection of 112,120 color images, each of them represented by
a feature vector of dimension 102. The distance between two images is the
Euclidean distance between their feature vectors.

The procedure to obtain the feature vector for each image is also based on the
color histogram, and it is very similar to the used in the previous collection.

When working with collections of vectors, the 90% of the collection was used
as the database to be indexed, and the remaining10% objects were used as query
objects. The search cost was computed as the average search cost for each object
belonging to that 10%. For each collection, the search radius was adjusted to
retrieve an average of the0.01% of the objects of the database in each query.

We also worked with collections of words. Finding words similar to another one
for spelling correction is another common example of similarity search:

• ENGLISH: A collection of 69,069 words taken from the English dictionary, and
compared using the edit distance.

• SPANISH: A collection of 86,056 words taken from the Spanish dictionary, and
compared using the edit distance.

We used two di�erent collections because, although the objects in both
collections are words, the distribution of the distances isnot the same in each
collection. In the case of the collections of words, the90% of the collection was
used as the database to be indexed, and the remaining10% objects were used as
queries. The search radius used was alwaysr = 2.

Chapter 6 addresses the problem of nested metric spaces in real collections of
objects, and how it can a�ect the performance obtained with methods for searching
in metric spaces. In order to validate the hypothesis established in that chapter, we
worked two synthetic collections of vectors:

• REGULAR: it is exactly equal to VECTOR12, that is, it contains 100, 000
vectors of dimension12 uniformly distributed in an hypercube of side 1. In
Chapter 6 we refer with this name to this collection for the sake of clarity,
to remark that the objects in the collection have a regular distribution in the
data space.

• IRREGULAR: is another collection of 100, 000 of dimension 12. However, the
distribution of the objects in the space is not uniform, it is completely biased.



137

We generated this collection in order to show that the presence of nested
metric spaces a�ects the search performance of methods for searching in metric
spaces. The collection contains three nested metric spaceswith the 30% of
the objects of the collection in each one. The objects of the �rst nested metric
space are very similar according to the �rst three coordinates. The objects
in the second nested metric space are very similar accordingto another three
di�erent dimensions, and the objects in the third nested metric space are very
similar according another three di�erent dimensions. The remaining 10% of
the objects are uniformly distributed in the space.

Table C.1 shows some statistics about the data distributionof each collection.
For each collection, the table shows the size of the collection (the number of objects
in the collection), and the following parameters that characterize the histogram of
distances of the collection: mean, typical deviation, variance, minimum value, and
maximum value of the distance between any two objects in the collection.

Collection Size µ σ σ2 min max
UV14 100,000 1.5086 0.2452 0.0601 0.4187 2.5317
UV12 100,000 1.4032 0.2456 0.0603 0.3173 2.5090
UV10 100,000 1.2652 0.2450 0.0600 0.2600 2.3067
UV08 100,000 1.1244 0.2469 0.0610 0.1463 2.1891
NASA 40,150 1.2342 0.3424 0.1172 0.0012 2.5079
COLOR 112,544 0.4005 0.1704 0.0290 0.0000 1.1517
ENGLISH 69,069 8.3176 2.0260 4.1048 1.0000 18.0000
SPANISH 86,061 7.4311 2.0168 4.0676 1.0000 19.0000
IRREGULAR 100,000 0.3830 0.1447 0.0209 0.0069 0.8977

Table C.1: Statistics on the distance distribution of each test collection.






