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Abstract

Nowadays, there are many applications that manage very largelatabases of objects
in which the searches do not rely on comparisons of the equ&fiinequality of
two objects, but on how similar the objects are. This is the cae of problems
such as searching for similar ngerprints to one given as a gery, content-based
image retrieval in multimedia databases, sequence searcaid in genome databases,
duplicate document detection in web search engines, and spadetection, just to
name a few of them.Metric spaces provide a generic and useful framework for those
problems where the exact comparison of two objects is not pagble or does not make
sense since it is useless. Inside this framework di erent ntkods for indexing and
search have been proposed. In this work we provide an extena description of the
state of the art.

In all these domains where a similarity search is needed, distance function to
compute the value of the similarity or proximity between any two objects in the
database is available. The naive implementation of similaity search would consist in
sequentially scanning the entire database. However, that imot a feasible solution in
practice, since the computation of the distance between twmbjects, that is, the use
of the distance function, is in general very costly. Methodsfor searching in metric
spaces make similarity search e cient by indexing the database and reducing as
much as possible the number of distance computations needddr solving a query.
That is, methods for searching in metric spaces avoid to comgre (using the distance
function) all the objects in the database with the query.

In order to index the database, all methods using the metric pace approach
select a set ofreference objects from the database and store in the index the distances
between those reference objects and the rest of objects in ¢hdatabase. The way
these distances are stored and used allows us to classify stihg methods in pivot-
based methods, which store the distances from the reference objects to theest of
objects in the database, andclustering-based methods, which partition the space
into a set of clusters around the reference objects. In both &ses, the selection
of good reference objects determines the e ectiveness of ¢hindex for pruning the
search space and thus reduce the cost of the search.
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The main contribution of this thesis is a new method for the sdection of
e ective reference objects. An important di erence with previous methods is that
the reference objects selected with our method are well digbuted in the space.
Our method for selecting reference objects has also otherteresting properties: it
automatically determines the optimal number of reference bjects, it works with
both discrete and continuous distances, it adapts the set ofeference objects to
the characteristics of the space, and the references are seted dynamically as new
objects are inserted into an initially empty database with no extra cost.

Other contributions of this thesis are:

A pivot-based method that uses our method for the selection breference
objects. This method is competitive when compared with prevous methods in
search cost, and is clearly better in other aspects: it is dyamic and adaptive,
it determines by itself the optimal number of pivots, and it d oes not impose
an additional cost for the selection of pivots.

< A clustering-based method that uses our method for the selaion of reference
objects to create an unbalanced index structure adapted tolie characteristics
of the space. By using an unbalanced structure to index the sgce, it clearly
outperforms previous clustering-based methods.

< A criteria for re ning the set of references by removing thos that do not
contribute to increase the capability of the set of referenes for discarding
objects. The result is a smaller set of references that consees its capacity
for pruning the search space.

< Finally, we introduce the concept of nested metric spaces to explain certain
irregularities that appear in real problems. We show how these irregularities
can aect the search performance of some methods, and we shothat by
detecting and treating them is it possible to improve the seach performance.

Therefore, this thesis contributes to the state of the art in this eld with
methods that combine an improvement of the search cost with ther practical
aspects important for their application to real problems.



Resumo

Hoxe en dia existen moitas aplicaciéns que xestionan granddmses de datos nas
que as buscas non se basean en comparaciéns de igualdade osigi@aldade entre
dous obxectos, senén no similares que son. E o caso de probsttomo a busca de
pegadas dixitais semellantes a unha dada como consulta, aagperacién de imaxes
por contido en bases de datos multimedia, a busca de secueasien bases de datos
xenéticas, a deteccién de documentos duplicados en buscads Web, ou a deteccion
de spam, entre outros. Osespazos métricos proporcionan un marco de traballo
xenérico para os problemas nos que a comparacion exacta deusoobxectos non é
posible ou non ten sentido porque é indtil. Dentro deste maro de traballo podemos
atopar diferentes métodos de indexacioén e busca. Neste tralb@ proporcionamos
unha descricion extensiva do estado da arte.

En todos estes dominios nos que se necesita facer buscas pwniltude, hai
unha funcién de distancia para calcular o valor dasimilitude ou proximidade entre
dous obxectos. A implementacién trivial da busca por similiude consistiria na
comparacion do obxecto de consulta con todos os obxectos daade de datos.
Porén, esta non é unha solucion factible na practica, xa que eomparacion de dous
obxectos, isto €, 0 uso da funcién de distancia, € moi custogm xeral. Os métodos
de busca en espazos métricos fan a busca por similitude maiciente mediante a
indexacion da base de datos, reducindo asi o nUmero de compaiéns necesarias
para resolver unha consulta. Isto €, os métodos de busca erpegos métricos evitan
a comparacion (utilizando a funcién de distancia) de todos s obxectos da base de
datos coa consulta.

Para indexar a base de datos, todos os métodos de busca en empmameétricos
seleccionan un conxunto deobxectos de referencia da base de datos, e almacenan
no indice as distancias entre estes obxectos de referencia eesto dos obxectos da
base de datos. Pola forma en que se almacenan estas distarssipodemos clasi car
0s métodos existentes erbaseados en pivotes, que almacenan as distancias entre
0s obxectos de referencia e o resto dos obxectos da base deodate baseados en
clusters, que particionan o espazo nun conxunto de clusters arredora$ obxectos de
referencia. En ambos os casos, a seleccién de bos obxectosaferencia determina
a efectividade do indice pargpodar o espazo de busca e reducir asi o custo da busca.
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A principal contribucién desta tese é un novo método para a deccion
de obxectos de referencia efectivos. Unha diferenza impomte con métodos
previos é que os obxectos de referencia seleccionados eskim distribuidos no
espazo. O noso método para a seleccidon de obxectos de refeianten outras
propiedades interesantes: determina automaticamente o maero éptimo de obxectos
de referencia, traballa tanto con funciéns de distancia disretas como continuas,
adapta o conxunto de obxectos de referencia &s caracteristis do espazo, e permite
gue o conxunto de obxectos de referencia se seleccione dineamente a medida que
se insiren novos obxectos nunha base de datos inicialmentaleira.

Outras contribuciéns desta tese son:

< Un método baseado en pivotes que utiliza 0 noso método para alsecion de
obxectos de referencia. E un método competitivo con propoas anteriores
en custo de busca, e é claramente mellor noutros aspectos: éd@mico e
adaptativo, determina por si mesmo o nimero 6ptimo de pivots, e non impén
un custo adicional para a seleccion de pivotes.

< Un método baseado en clusters que utiliza 0 noso método de sate@n de
obxectos de referencia para crear unha estrutura de indiceom balanceada e
adaptada as caracteristicas do espazo. Usando unha estrumnon balanceada
para indexar o espazo, este método supera claramente a ougranétodos
baseados en clusters.

e Un criterio para re nar o conxunto de obxectos de referencia mediante a
eliminacién daqueles que non contriblen a mellorar a capagade do conxunto
para descartar obxectos do espazo de busca. O resultado é uangunto de
referencias mais pequeno que conserva a capacidade para po@ espazo de
busca.

< Finalmente, introducimos o concepto deespazos métricos anidados para ex-
plicar certas irregularidades que aparecen en bases de datoeais. Mostramos
como estas irregularidades poden afectar ao rendemento dertos métodos,
e mostramos como se pode mellorar o rendemento na busca ao eghlas e
tratalas.

Por tanto, esta tese contrible ao estado do arte neste campan novos métodos
que combinan a mellora no custo da busca con outros aspectosagticos importantes
de cara & sua utilizacidon en aplicacions reais.
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Chapter 1

Introduction

1.1 Motivation

Data-centric systems have substantially evolved during tle last years and no longer
manage only numeric or alphanumeric data organized into tupes and relations in a
relational database. Nowadays, data-centric systems facehe problem of managing
very large collections of objects of semistructured and urtsuctured complex data

types, that is, data types which could not have a well-de ned and semantically

clear structure [Manning et al., 2008]. In these contexts, he classical exact-match
search model is not applicable, and more general search mddeare needed in order
to manage and exploit the data.

When working with structured data, searches usually involve comparisons of
equality or inequality. For example, in a relational database, we could be interested
in retrieving the records of the customers whose city is exaty equal to a city given
as a query. But when working with semistructured or unstructured data, this type
of search is no longer useful, or even possible. For examplié,we were interested
in searching for images with a similar content to another image given as a query, it
would not make sense to compare pixel by pixel the contents ofhe images, since
only the images exactly equal to the query would be in the resli. The same problem
arises when working with databases that contain objects as ngerprints, videos, or
text documents, for example.

Similarity search can be de ned as searching for objects that are similar under
some criterion to another object given as a query. For any aplication like the ones
we have already mentioned, if we can de ne a distance functio that determines the
value of the similarity between any two objects of the database, similarity search
turns into a very useful search model. Similarity search is he underlying search
model in applications like content-based image retrieval m multimedia databases,

1



2 Chapter 1. Introduction

sequence searching in genome databases, or duplicate docemhdetection in search
engines. E ciency is an implicit requirement in order to ful Il the search needs of
a wide range of applications.

Speci ¢ solutions for e cient similarity search have been developed for particular
problems. Most research on information retrieval has focusd on the retrieval of
similar textual documents, and di erent models have been deeloped, as the Boolean
model, the vector space model [Salton and Lesk, 1968], and ¢h probabilistic
model [Robertson and Jones, 1976] (see [Baeza-Yates and Rilo-Neto, 1999] for a
complete survey). Other research lines have addressed thesdelopment of methods
for similarity search in databases of images, sound, or vide However, there
are other problem domains in which similar search capabilies are needed for
di erent data types. It is the case of computational biology, pattern recognition, or
recommendation systems, and, surely, more cases will appein the future.

The naive way of implementing similarity search would consst in sequentially
comparing the query object with all the objects in the database, adding to the
result those objects satisfying the similarity criterion with the query. However, in
most cases the comparison of two objects using the distanceuriction involves a
high computational cost. Thus, a sequential scan of the ente database is not a
feasible solution in practice, since its computational coswould be prohibitive for
real applications.

Therefore, the main goal of methods for similarity search ismake similarity
search e cient by avoiding the sequential scan of the databae, that is obtained by
reducing as much as possible the number of distance computains needed to solve
a query. To achieve this goal, these methods preprocess theathbase and build
an index with useful information that will be used during the search to discard as
many objects as possible without comparing them with the quey.

Metric spaces

Although it would be possible to develop speci ¢ solutions fa each problem domain,
it is also possible to address all of them with the same, uni € approach. That is,

instead of developing a speci c method for each particular poblem, it is possible
to develop application-independent methods for e cient similarity search that are

not tied to a specic data type or problem. Since these method must work for

di erent data types, a formalization of the problem of simil arity search is necessary,
abstracting the basic properties of the data space, and makig no assumptions either
on the internal representation of the objects or on the de nition of the distance

function.

The mathematical abstraction of metric spaces provides a generic framework for
searching in large collections of any data type for which a ditance function that
measures the dissimilarity or distance between two objectgxists. The computation
of the distance between two objects using the distance fun@in is assumed to be
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expensive, since, in most real applications, comparing twabjects involves a high
computational cost. A metric space is a pair (X, d) composed of a universal set of
objects X, and a metric de ned on it, that is, a distance function d: X x X - R
that holds the following properties:

e (Strictly positiveness) d(x,y) =0 and d(X,y) =0 =« x=y
* (Symmetry) d(x,y) = d(y, x)
e (Triangle inequality) d(x,y) < d(x,z) +d(z,y)

These properties ensure the consistency of the values of thsice returned by
the distance function. Methods for similarity search can ory use the information
provided by the de nition of the metric space, that is, the existence of a distance
function that holds the properties of strictly positiveness, symmetry, and the
triangle inequality. Methods for similarity search do not use any other information
about the objects or about how the distance function is de ned.

Several methods for similarity search in metric spaces havéeen proposed.
A uni ed taxonomy of methods for searching in metric spaces an be found in
[Chavez et al., 2001b]. At a rst glance, they can be classi @ in pivot-based or
clustering-based methods:

< Pivot-based methods select a subset of objects from the collection to be used
as reference objects, called pivots. During the preprocesgy of the collection,
the distances from these pivots to the rest of the objects in he database are
computed and stored in the index.

During the search, the query object is compared with the pivas. The distances
from the query object to the pivots, the precomputed distances stored in the
index and the property of triangle inequality of the distance function are used
to discard as many objects as possible from the result withoucomparing
them with the query.

« Clustering-based methods select a set of objects from the database as reference
objects, in this case, called cluster centers. The clusterenters are used to
divide the space into a set of partitions or clusters. The indgx stores useful
information about each cluster, as the covering radius, tha is, the distance
from the cluster center to its furthest object in the cluster.

During the search, the query object is compared with the centrs of each
cluster. These distances and the information stored in thendex are used to
discard complete clusters from the result, so none of the olects contained in
the discarded clusters has to be compared with the query obj.

Pivot-based methods are signi cantly more e cient than clu stering-based
methods in what refers to the number of distance computatiors needed for solving a
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query. However, the amount of memory they require to store thedistances from the
pivots to the rest of objects is signi cantly higher than that needed by clustering-
based methods. While clustering-based algorithms requirausually linear space,
pivot-based algorithms store a large matrix of distances.

In both cases, reducing the number of distance computationseeded for solving
a query is the main measure of search e ciency, since it is themain component
in the overall search cost. Thecomplexity of the search is given by the sum of the
internal complexity, which is the number of comparisons of the query object with he
reference objects, and theexternal complexity, which is the number of comparisons
of the query object with the objects that could not be directly discarded.

Although the main goal of methods for searching in metric spaes is to reduce
as much as possible the number of distance computations folok/ing a query, there
are other aspects involved on the index performance that haw also to be taken
into account. First, the overall search performance depens also on the extra I/O
time for loading the index from secondary memory, and the exta CPU time for
processing the information it stores during the search. Thememory requirements
of the index are important since they can be signi cant, depending on the number
of objects in the database.

Some methods can only work with discrete distances, while ders can work
with both, continuous and discrete distances. The edit disance between two
strings (computed as the number of symbols to be added, remed, or replaced
to transform a string into another) is an example of discrete distance function.
The Euclidean distance between two vectors is an example of eontinuous distance
function. Methods designed for working with discrete distances can not be applied
in problems where the distances between objects are contilows.

Another important aspect is whether the indexing of the collection is static
or dynamic. Static methods build an index on a complete colletion, and further
insertions of objects are either not possible, or possibletahe cost of degrading
the index performance. A dynamic method should start from aninitially empty
database, and build the index and transform it as new objectsare inserted into,
or removed from the database. All these aspects are importanand determine the
applicability of a method to certain problem domains.

Selection of e ective indexing objects

A key issue for all methods is how the reference objects, pit® or clusters, are
selected. Although most existing methods select them at randm, it has been shown
that the specic set of objects used as references and the wathey are selected,
signi cantly a ect the search performance. Although this pr oblem is present in
both pivot-based and clustering-based methods, most exigtg proposals refer to
the selection of e ective pivots.
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Several techniques have been proposed for the selection oketive pivots (a
detailed description of them is provided in Chapter 2). They are based on the ideas
of selecting as pivots objects that are far away from each otbr and from the rest
of objects of the database, and/or optimizing some given cterion of e ectiveness.

Although these techniques signi cantly improve the search performance against
a random pivot selection, they present some drawbacks. The ost important is
perhaps that they all are static: the user has to specify the mmber of pivots to
select, and the algorithm obtains them from a complete datalase through a usually
costly process. Therefore, the database can not be initiaJl empty and grow later
(which is its natural behavior). The user has to obtain the optimal number of pivots
by trial and error from the complete collection. Further insertions of objects may
be possible at the cost of degrading the search performancédtined by the index.
Other important drawback is the computational cost of the sdection of pivots in
most of these techniques, which can be very high in some cases

Less attention has been paid to the selection of e ective clater centers in
clustering-based methods. However, it seems obvious that # number of cluster
centers, their position in the space with respect to each othr and their position
with respect the rest of objects in the database determine tk partition of the space
and thus the search performance of the method during the seah.

1.2 Contributions of this thesis

The main contribution of this thesis is Sparse Spatial Selection (SSS), a new method
for the selection of e ective reference objects adapted to lie characteristics and
distribution of the objects in the space. This method is fully dynamic, that is, the
reference objects are selected as new objects are insertedoi an initially empty
database, and it works with continuous and with discrete digance functions. In
addition, it is not necessary to specify how many referencelgjects are needed, since
our method selects new references as they are needed when tti@tabase grows.
An important di erence with previous proposals is that the cost of selecting new
reference objects in our method is the minimum possible.

Other contributions of this thesis are:

« We present a new pivot-based method that uses Sparse Spati8election (SSS)
for obtaining the set of pivots of the index. Our experimentd evaluation
shows that the search performance it obtains is better or at ¢ast equal than
the obtained by previous techniques. In addition, it is comgetely dynamic:
the database is initially empty, and the index is built as objects are inserted
in the database, adapting the structure and information of the index to the
content of the database in each moment.
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1.3

We address the problem of the selection of e ective cluster enters, and
propose a new recursive tree-like clustering-based methodSparse Spatial
Selection Tree (SSSTree). The cluster centers are selected with Sparse Sy
Selection. This gives as result a tree structure in which theinformation and
resources of the index are adapted to the characteristics ahcomplexity of
the space. An important di erence with previous proposals isthat the tree is
not necessarily balanced, since its structure is adapted tehe characteristics
and complexity of the space.

We introduce Non-Redundant Sparse Spatial Selection (NR-SSS), a new
criterion for detecting and replacing redundant reference objects, that is,
references that do not contribute to improve the e ectiveness of the overall
set of reference objects as a whole. This method obtains a sther set of
pivots than the original SSS, but maintains the e ectiveness of SSS, therefore
reducing the search complexity and the space requirementsfahe index.

We introduce the concept of nested metric spaces as an explation of certain
irregularities of the space that can appear in real problems We analyze
how those nested spaces can a ect the performance of some tetques, and
propose a method for detecting these situations and adapt th indexing to
those complex spaces.

Structure of this work

The rest of the thesis is organized as follows:

Chapter 2 introduces the basic concepts of indexing and seahing in metric
spaces and sets thus the basis for this work. It also presenthe more relevant
proposals of the state of art to the date, with a special focusn the previous
work on algorithms for pivot selection.

Chapter 3 presentsSparse Spatial Selection (SSS), our main contribution, and
a new pivot-based method that uses this method for the selean of the pivots
used in the index.

In Chapter 4 we address the problem of the selection of e ectie reference
objects to clustering-based methods, and propose Sparse &gl Selection
Tree (SSSTree), a new recursive and unbalanced tree-like structure that
improves the results of previous techniques by taking advatage of the good
distribution of the reference objects provided by SSS.

Chapter 5 presentsNon-Redundant Sparse Spatial Selection (NR-SSS). It is
a modi cation of the original SSS method. The idea is to detet and remove
reference objects that do not contribute to increasing the apacity of the index
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for discarding objects. In this chapter we describe the crieria for evaluating
the contribution of each reference object and the policy fortheir removal or
replacement.

Chapter 6 introduces the concept ofnested metric spaces, showing how this
kind of space a ects the search performance of some methodand presents a
new method for detecting and dealing with these irregularifes of the space.

Chapter 7 presents the conclusions of this work, and lines diuture work.

Appendix A lists the publications and other research resultsderived from this
thesis, and the works published by other researchers that tiee our proposals
into consideration and quote our work.

Appendix B summarizes the notation used throughout the thess.

Appendix C describes with detail the common test environmentused for all
the experiments described in this work.
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Chapter 2

Indexing and searching in
metric spaces

2.1 Overview of the chapter

In this chapter we introduce the background and basic concefs related with
searching in metric spaces. We start by presenting the basiconcepts and notation
of metric spaces and how they are used to formalize the probe of similarity search.
We also present the most important similarity queries, and typical metrics that can
be used in a wide range of problems.

Searching in metric spaces could be trivially implemented a a sequential scan
of the entire database. However, this is not feasible in praéte, due to the high
computational cost of computing the distance between two olpects. Therefore, the
main goal of methods for searching in metric spaces is to awbithe comparison of
the query object with the whole content of the database. In this chapter we provide
a description of the most important state-of-art methods, and we study the policies
they apply in order to avoid a sequential scan of the databaseWe also review the
concept of intrinsic dimensionality and how it can a ect the performance of search
methods in certain metric spaces.

All methods for searching in metric spaces try to improve the eciency of the
search by building an index on the collection, based on somebgects selected as
indexing objects, also called reference objects. We end thehapter with an analysis
of the how the selection of indexing objects a ects the seatt performance and other
parameters of the indexes. We provide a detailed descriptio of the previous work
on this issue, since our proposals are compared to them in neghapters.

9
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2.2 Basic concepts on metric spaces

Metric spaces are one of the mathematical tools that can be i to formalize the
problem of similarity search. A metric space is a pair (X, d) composed of a universe
of objects X and a metric d. The universe is the universal set of objects of a
speci ¢ type, and a metric is a distance functiond : X x X — R™ that satis es
the following properties:

e (Strictly positiveness) d(x,y) =0, and d(X,y) =0 = x =y
* (Symmetry) d(x,y) = d(y, x)
e (Triangle inequality) d(x,y) < d(x,z) +d(z,y)

These properties ensure the consistency of the metric. Forvery x,y [A, the
number d(X,y) is called the distance between the objectsx and y with respect to
the metric d. The distance d(X,y) is a measure of the di erence or dissimilarity
between x and y with respect to the metric d. The more similar the objects are,
the smaller the distance between them. The de nition and meaning of the distance
function depend on the application domain and on the goals ofthe application.
Note that although we use the term distance, it is not necessaly a spatial distance
(actually, it is not in most cases). For example, considerig that X is a set of words
in natural language, and that d is the edit distance (computed as the minimum
number of characters to be inserted, replaced, or removed ia word to transform
it into the other), the distance between the words tip and trip is 1, because the
di erence between them is given by one character. In this exeple, it is clear that
the distance is not spatial.

The database or collection of objects is represented by a nite subsetU [XI of
sizen = |U|. A query is expressed as a query objeat [[Ul, and a constraint about
its similarity to the objects in the database. The result set is the subset of objects
in U that, using the distance function, satisfy the constraint of similarity to the
query object. A query could consist, for example, in obtainng all the objects up to
a certain distance to the query objectq.

A set of all the words of a given language and the edit distancdorm a metric
space. Dictionaries are possible databases of objects. Ihis example, we could
be interested into retrieving all the words up to a given distance of a speci ¢ word
given as a query for spelling correction.

The internal details of the objects and the distance used to ompare them are
abstracted by the formalization of the problem. No matter if we are searching in
a database of biological sequences, or comparing words fopedling correction in a
text editor, any method for e ciently search in metric space s could be applied.

There are other alternatives to formalize similarity seard. Vector spaces are
one of them. In some cases, complex objects can be represehtas vectors of
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features, where each component of the vector is a numeric regsentation of a
feature of interest of the object. The distance between two bjects is computed
as the Euclidean distance between their feature vectors. Foexample, images can
be represented by feature vectors obtained with computer \gion algorithms.

When similarity search is formalized using vector spaces, ethods for similarity
search can take advantage of the properties of the Euclideageometry. But there
are many data types that can not be represented by feature veors. Since metric
spaces are much more general than vector spaces (actuallyestor spaces are a
particular case of metric spaces), they can be applied to a wler range of problems.
As we have already explained, methods for searching in metrispaces only know
the existence of a distance function that holds the propertes of strictly positiveness,
symmetry, and the triangle inequality.

2.2.1 Metrics

Several metrics could be de ned for objects of the same dataype. A metric that
is useful for a certain domain can be useless in another. In s cases it is di cult
to nd distance functions that hold the three necessary properties to be a metric.
When the distance function does not hold the symmetry propety it is called a
quasi-metric. In the case that the function does not hold the property of stictly
positiveness it is called apseudo-metric. In both cases the distance function can be
transformed in other function that holds the metric propert ies.

This section describes typical metrics that can be appliedn many application
domains. As we will see, some of them are discrete and other dimuous. This
distinction is important since some algorithms can only wok with discrete metrics,
which restricts the problems in which they can be applied.

Metrics for vectors

In some applications the objects are represented by featur@ectors, where each
component represents a certain feature of interest of the gject. It is the case of
applications for content-based image retrieval, where edtimage is represented by
features as the colors, textures, or the presence of shapekioterest. In this section

we describe several metrics that can be used when working witvector spaces.

The family of Minkowski distances is a parametric set of distance functions for
vector spaces. They are de ned as:

ol

X
Ly(X )= 1=i=k X —yil°

where k is the dimensionality of the vector space, andx; and y; are the
components of the vectorsk T RK and Y T RKrespectively.
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Each value of the parameterp between 0 and co gives as a result a di erent
distance function, and all of them satisfy the conditions fa being metrics. L; is the
Manhattan distance. For instance, whenk = 2, L; measures the distance between
two points as the number of vertical and horizontal movemens from one point to
another. L, is the Euclidean distance, the usual choice.

An interesting metric is Loo = maXi<j<x|X —Vil, called the maximum distance,
since it measures the maximum pairwise di erence between th coordinates of two
vectors.

Minkowski distances assume that the components of vectorsra independent,
that is, that each component of a vector is only compared withits corresponding
component of the other vector. However, in some cases there arcorrelations
between di erent coordinates, and the comparison of the obg¢cts should take them
into account. Quadratic form distances are de ned as [Hafner et al., 1995]:

q
dv (K= (T -M - (&

where X R¥ and Yy T R are two vectors of dimensionk, and M is a k x k
matrix which components take values betweerD and 1. The matrix M represents
the correlations between the components of each vector. Theomponent M (i, j)
represents the weight of the correlation between the compaoent x; of X“and the
componenty; of y. 1

Quadratic form distances are used, for example, for the comgrison of images
represented by feature vectors in which a certain feature hsia relation with another.
If some features correspond to colors, there will be relatioships between similar
colors and, therefore, di erent components of the feature ector. The weight of the
relations between colors (or any other feature) can be re eted in the matrix.

All the metrics of the Minkowski and quadratic form families are continuous.

Metrics for strings

The edit distance or Levenshtein distance [Levenshtein, 1965] between two strings
of symbols from a given alphabet, is de ned as the minimum nunber of symbols
to insert, replace, or remove to transform one string into the other. Therefore, it

is a discrete metric. The edit distance can be used when workg with dictionaries

of words for spelling correction (as it is the case of many texeditors and search
engines). Sequences of proteins or DNA are also strings of shwis that can be

compared using the edit distance.

There are several variations on this de nition. A direct generalization consists in
assigning di erent weights to each edit operation (addition, removal, or replacement
of a symbol), depending on the cost of each of them in a partidar application.
In some cases not all the edit operations make sense. Thidamming distance
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allows only replacements of symbols. In the same way, th&pisode distance allows

removals of symbols. In these cases the distance between tvatrings can be oo.

The contextual normalized edit distance [de la Higuera and Mico, 2008] takes into
account the length of the strings to normalize the nal result.

Metrics for trees

The tree edit distance between two labeled trees is the minimum number of edit
operations necessary for transforming a tree into the other In this case the edit
operations consist in adding, removing, or relabeling node [Bille, 2005]. This
de nition can be generalized as in the case of the edit distaoe for strings, allowing
only some operations or assigning di erent costs to them. Fo example, the cost
assigned to the insertion of a node can be higher for deependels of the tree, since
it involves a high computational cost that may be signi cant for the application.

The edit distance for trees has been used for comparing XML dagnents
[Guha et al., 2002], represented as trees. As in the case of thegit distance for
strings, the edit distance for trees is a discrete metric.

Metrics for sets

Some applications need to compare objects that are represtd as sets that contain
or not certain features or elements of interest. For examplethe description of a
user prole in a virtual shop could be represented as the set ball the products
the user has viewed or bought. The user pro les could be compad with sets of
products for obtaining the most promising users for a directmail campaign. User
pro les in social networks can be also viewed as sets.

Given two arbitrary sets A and B, the Jaccard coe [cieht is de ned as:

|An B

Jaccard(A,B) =1 —
( ) |A B

That is, the Jaccard coe cient measures the dissimilarity b etween two sets as the
ratio between the cardinalities of the intersection and the union of the compared
sets. The higher the number of objects common to both sets isthe smaller the
distance between them. The distance between two sets accdmd) to the Jaccard
coe cient is measured as the percentage of objects they havan common.

However, in some applications it is not possible to know if twoelements of the
setsA and B are exactly equal, so it is not always applicable. For exam, if we
compare two sets of images, it does not make sense to compafetwo images of
those sets are exactly equal.

The Hausdor distance considers the distances from objectsn a set to objects
in the other set, and therefore obtains a more re ned distane than the Jaccard
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coe cient, that considers only the exact equality between the elements of the two
sets compared.

Given a metric space (X, d) and two sets A,B [A, the Hausdor [distance
between the setsA and B is de ned as:

Hausdor (A, B) = max{supy a#(x, B), supy rgfl(A,y)}

where d(x, B) is the distance from the objectx to the set B (that is, the minimum
distance from x to any element of B), and d(A,y) is the distance from the objecty
to the set A (that is, the minimum distance from y to any element of A).

Complexity

Table 2.1 shows the computational complexity of the metricswe have described in
this section, in terms of the size of he objects compared. As wean see in the table,
most of them have a high computational cost. This is speciall important when
they are used to compare very large objects. For example, coparing two words
in natural language with the edit distance may not be very cosly, but the edit
distance is also used with sequences of proteins or DNA with mdreds of thousands
of symbols. In this case, the comparison of two objects inveks a signi cant cost.

Distance function Complexity
Minkowski distances o(n)
Quadratic form distances o(n? +n)
Edit distance O(n =< m)
Tree edit distance o(n%
Hausdor distance O(n =< m)

Table 2.1: Complexity of metrics for vectors, strings, trees and sets.

Note that the most costly operation when processing a similaty query is the
evaluation of the distance between two objects. That is the eason why the main
goal of methods for indexing and searching in metric spacesito reduce as much
as possible the number of distance computations.

2.2.2 Similarity queries

Several interesting types of query have been proposed forrsilarity search. In this
section we describe the most important types of query.
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Figure 2.1: Example of range search inR2.

Range search

The most important type of query is range search, since it is the more general and
the implementation of other types of queries relies on it. Gven a query object
g X and a search radiusr [CR* (also called range), a range search retrieves all
the objects in the database up to a distancer from q:

Range(q,r) = {x [ d(x,q) <r}

Note that q is an object in X, but not necessarily an object in the databaseU.
Retrieving the words up to a certain distance of another ones an example of range
search. As we will see later, methods for searching in metricpgices discard objects
by estimating if they are out of the region in the space de nedby the query object
and the search radius, avoiding the direct comparison with he query. Therefore,
the higher the search radius is, the more di cult the search.

Figure 2.1 shows an example of range query in a two dimensiohacenario. In
this example, the query objectq and the radius r de ne a two-dimensional query
ball. The result set is the subset of objects in the databasehat are contained in this
ball, that is, the region of the space aroundq encircling those objects that answer
the query. In this case,Xs, Xg and X;; are in the result set.

Nearest neighbors search

In some domains range search is not adequate since it can be dlilt to set an
appropriate value of the search radius. In a collection of wads we know the meaning
of retrieving the words at distance two of another one: the wads with at most two
spelling errors. But in the case of a collection of images copared with the Euclidean
distance, the radius does not have a clear meaning. In some s@s the problem is
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Figure 2.2: Example of nearest neighbors search ifR?.

that the size of the result set can be very variable for a giverradius depending on the
query object. This is very common when working with discretedistance functions.
Some applications just need a xed number of results and seahing for them can
be even more e cient than a range search.k-nearest neighbor search (kNN-search)
retrieves the k closest objects to the query object:

KNN(@) ={A [T |A| =k, XILA, y CU—A, d(x,q) <d(y,q)}

A particular case of kNN-search is1INN-search, usually callednearest neighbor
search, that retrieves just the closest object to the query. kNN-search can
be implemented upon range search by using dynamic search rag. That is,
the kNN-search is answered by carrying out as many range searches aseded,
starting with a small search radius and increasing it until the result of the
range search contains thek closest objects forq [Chavez et al., 2001b]. However,
there are also specic algorithms for this operation that can achieve better
performance, as [Clarkson, 1999].

Figure 2.2 shows an example ofiNN-search, the four nearest neighbors search
in a two dimensional scenario. In this case the result set cdains the objects Xg,
X11, X5 and Xg, the four most similar objects to the query, despite of the vdues of
the distances from them to the query.

In some problems the search must proceed in the opposite dicton. That is,
given a query objectq, nd the objects for which g is among their nearest neighbors.
This operation is called reverse nearest neighbor search. Decision support systems
can use this operation to detect in uence sets around an objet of interest. Several
variations of these types of query exist.
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Similarity join

Another interesting type of query in metric spaces is similaity join. In relational
databases, a join query returns the objects in two or more reltions that are linked
through common values in equal domain attributes. This ideacan be extrapolated
to the case of metric spaces. Given a metric spadgX, d) and two databasesU [XI
and V [Xi, similarity join retrieves all the pairs (u,v) U=V for which u and v
are up to a distancer:

SimJoin(U,V,r) = {(u,v) COI %<V, d(u,v) <r}

In [Bayardo et al., 2007] the search of all similar pairs is ued to nd all the
similar user proles in a social network. Similarity join could also be used in
databases of objects from di erent universes if a metric to ompare them is available.

The join operation in relational databases is a particular @se of similarity join.
Given two relations R and S, with attributes U and V respectively, such that
dom(U) = dom(V ), the similarity join Sim(U, V, 0) searches all the pairs of objects
(x,y) xV whered(x,y) =0, that is, where x and y are equals.

2.3 Search in metric spaces

The naive implementation of similarity search consists in prforming a sequential
comparison of the query object with all the objects in the database. However, this
implementation is not feasible in practice. Due to the high mmputational cost of
evaluating the distance between two objects using the distace function, and the
typically very large size of the databases, a sequential soaof the database would
result in a prohibitive cost for real applications.

The goal of methods for searching in metric spaces is to sol\tbe queries without
comparing the query object with all the objects in the database. That is, the goal
is to solve the queries by comparing the query object only wih a small fraction of
the objects in the database. To achieve this goal, methods fosearching in metric
spaces build indexes on the database to avoid the comparisoof the query object
with all the objects in the database.

An index is a data structure that maintains useful information about the
collection that will be used during the search to discard as many objects as possible
from the result without comparing them with the query object. It is important to
note that when we use the termmethod for searching in metric spaces, we refer to
the set made up by the index data structure and the algorithmsto build the index,
to modify the index when an object is inserted into or removedfrom the database,
and to process the index during the search to prune the searchpace.
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Although reducing the number of comparisons of objects needkto solve a query
is the main goal of methods for searching in metric spaces, #re are other aspects
that a ect the overall search e ciency obtained with a metho d:

e Processing the information stored in the index to prune the garch space
during the search involves an extra CPU time. Although it is usually supposed
to be less costly than the comparison of two objects, it a ecs the overall search
performance.

e The space requirements of the index have also to be taken intaccount. If
the index does not t in main memory, the possibility of e cie ntly store the
index into secondary memory and the number of I/O operationsneeded to
load it are also important.

< Some methods can only work with discrete distance functionswhile others
can work with continuous distances too. This constraint can restrict the
applicability of the method in some problems.

« Some methods are static, that is, the index is built on the conplete collection
of objects and the index does not admit further insertions ordeletions of
objects in the database. Others admit insertions or deletios of objects
although the search performance can degrade if the number athanges is not
small. Dynamic methods build and adapt the index as objects e inserted
into or removed from an initially empty database.

Many methods for searching in metric spaces have been proped to the date.
Some of these methods were developed as solutions for specproblems in di erent
areas, as data engineering, statistics, pattern recognitin or computational biology,
for example. This situation led to some ideas and concepts lig reinvented. Some
authors [Chavez et al., 2001b] proposed a uni ed taxonomy ofmethods for searching
in metric spaces. That taxonomy groups all these proposals nder a common,
application-independent framework. At a rst level, the ta xonomy distinguishes
between pivot-based and clustering-based methods, also known as\Voronoi-type
methods.

In this section we describe in general terms how methods of eh group work.
In section 2.5 we review the most important methods of the stée of the art.

2.3.1 Pivot-based methods

Pivot-based methods select a small subset of objects from the database to be used a
reference objects, callegivots, P = {p1,...,pm}, pi [W. The distancesd(x, p;),
1 < i =< m, from the objects in the databasex; [0 to the pivots p; [CH are
computed and stored in the index. The distancesd(x;,p;) are used during the
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search to prune the search space by discarding as many objacas possible from the
result without comparing them with the query.

When given a range query(q, r), the query object is compared with the pivots to
obtain the distancesd(q,p;), 1 <j = m. Let x; be an object in the database,
and p; [Pl be a pivot. Applying the triangle inequality, we know that:

d(xi,p;) = d(xi,q) +d(q,p;)

Note that we know the value of the distance d(x;,p;), that is stored in the
index, and the value of the distanced(q, p; ), that is obtained when the query object
is compared with the pivots. By rearranging the triangle inequality, we obtain a
lower bound on the distance from the objectx; to the query object q as:

d(xi, q) = |d(xi, p;) — d(a, p;)I

If the lower bound is greater than the search range, that is, fi

d(xi, p;) —d(q,p)| > r

then d(x;,q) > r, and the object x; is discarded from the result without comparing
it with the query.

Note that for each object in the database we can obtain as manydwer bounds
on its distance to the query objects as pivots used in the inde. If an object is not
discarded by a particular pivot, it may be discarded by another one.

Figure 2.3 shows how pivot-based methods proceed to prune ¢hsearch space.
In this example, the database contains ten points in a two-dinensional space. Four
of them are selected as pivotsP = {pi1,...,ps}. The algorithm for building the
index computes and stores in a table (for example) the distanes from the pivots
to the rest of objects in the databaseU — P = {xy,...,Xs}. When given a range
query (g, r), the query object is compared with the four pivots. The distances from
the pivots to the rest of objects and the distances from the gery to the pivots are
used during the search to discard as many objects as possibiem the result.

Figures 2.4 and Figure 2.5 show how the triangle inequality ad the distances
stored in the index are used to discard objects from the restilwithout comparing
them with the query. The value of the distance d(x;, p; ) has been computed during
the indexing of the collection and it is available in the index. The value of the
distance d(q, p; ) has been obtained when the query object was compared with the
pivots. In the example shown in the gure, the lower bound obtained asd(q, x;) =
[d(xi, p; )—d(a, p; )| = r is greater than the search radiusr, and therefore, the object
X; can be directly discarded from the result without being commared with the query
object g.
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Figure 2.3: Indexing and searching with pivot-based indexes.

Since we are working with values of positive distances, it des not matter which
of them is greater than the other. That is the reason for introducing the absolute
value of the di erence between the distances in the equatiorof the lower bound. In
Figure 2.4 the distanced(q, p; ) is greater than the distanced(x;, p;). In Figure 2.5
the situation is the opposite. However, the value of the lowerbound is the same in
both cases.

Obviously, if the object is in the result set, it is not possible to discard it applying
this criterion, that is, there are no false negatives. But, rote that even if the object
X is not in the result set, it may not be possible to discard it without comparing it
with the query. Figure 2.6 shows two examples. In the rst ca® the lower bound
is greater than the search radius andx can be discarded. In the second case, the
lower bound is not greater than r and the object can not be discarded. In this
second case, although the objeck is not in the result set, we can not discard it
since the lower bound we obtain for it does not guarantee us tht this object is not
in the result set. Therefore, it is necessary to compare the lgjects that could not
be discarded with the query in order to avoid false positives

The condition for discarding an object can be expressed in der form. Given
an object x [U, a pivot p [, and a query (q,r), X can be discarded from the
result set if d(x, p) £Id(p,q) —r,d(p,q) + r]. Figure 2.7 shows graphically this idea.
The dashed circles delimit the area of the objects that can nbbe discarded.
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Figure 2.4: Triangle inequality in pivot-based indexes d(p, q) > d(p, X)).
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Figure 2.5: Triangle inequality in pivot-based indexes d(p, q) < d(p, X)).

In these examples we showed how to obtain a lower bound af(x, q) using only
one pivot. However, the indexes use a set of several pivots vhitwhich they obtain
di erent lower bounds for d(x,q). If a pivot is not able to discard the object,
perhaps it can be discarded by another pivot. As we can see in gre 2.7, the list
of candidate objects is given by the intersection of the lis¢ of candidates of each
pivot. The search space is signi cantly pruned with each newpivot. The more the
pivots, the smaller the candidate list will be.

Existing pivot-based methods dier on how pivots are seleced, the infor-
mation they store, and the data structures they use to store f. Some meth-
ods store the distances from objects to pivots in tree-like tsuctures, as FQT
[Baeza-Yates et al., 1994], FHQT  [Baeza-Yates, 1997], and FMPT
[Chavez et al., 2001b]. Other methods store the distances irtables or other
array structures, as AESA [Vidal, 1986], LAESA [Mico et al., 199%], FMVPA
[Chavez et al., 2001b], and FHQA [Chéavez et al., 2001a]. Some ethods follow
an approach know as scope coarsening, and do not store all the distances
from objects to pivots (thus reducing the scope of action of ach pivot), as
BKT [Burkhard and Keller, 1973], VPT [Uhlmann, 1991], and MVPT [ Brin, 1995,
Bozkaya and Ozsoyoglu, 1997].
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lower bound
d(p.q)-d(p.x)| > r
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| d(p.q)
/
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Figure 2.6: Avoiding distance computations with pivot Itering.

Figure 2.7: Example of pivot Itering with two pivots.

2.3.2 Clustering-based methods

Clustering-based methods follow a di erent approach. In this case, the space is
decomposed in a Voronoi partition. That is, the space ig diviled in a set of m
clusters C; such that C; nC; = L1 <i,j = m, and C; = U. To create
such partition, a set of objects arecy,...,cy taken from the database as reference
objects, in this case, cluster centers. Each cluster is de ed as the subset of objects
closest to its center than to any other center, that is:

Ci ={x I d(x,c) =d(x,¢), 1=j=m}

While pivot-based methods try to obtain good lower bounds ofthe distance from
the object to the query for each individual object in the database, clustering-based
methods try to obtain good lower bounds for groups of objects

Although the information stored in the index for each cluster varies for the
di erent clustering-based methods, all methods store at last a reference to the
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Figure 2.8: Indexing and searching with clustering-based methods.

center of the cluster, and the covering radius, which is the étance from the center
of the cluster to its furthest object in the cluster, that is:

re, = max{d(x,ci), x L4}

The center and the covering radius de ne a ball in the space. Te ball associated
to the cluster C; is the set of all points of X at distance less thanr,, from c; (note
that we say objects in X, not objects in U), that is:

(ci,re) = {x A, d(x,¢) <rg}

It is important to note the di erence between the cluster, and its associated ball.
The cluster is a set of objects. The ball is a region in the spae For example, in a
two-dimensional vector space, a cluster is a set ofx, y) points in the space, while
the ball is a circumference with centerc; and radius r¢,. The intersection of two
clusters is always empty, but their associated balls can irgrsect.

When given a range query(q, r), the query object is compared with the cluster
centers. These distances and the covering radius of each eher permit us to
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Figure 2.9: Use of ball partitioning in clustering-based methods.

Figure 2.10: Use of ball partitioning in clustering-based methods.

determine if the intersection between the ball correspondig to the cluster and
the ball corresponding to the query is empty. The clusterC; is discarded from the
result set if:

d@,ci)=rg +r

whererg, is the covering radius ofC;. If this lower bound is greater than the search
radius r, no object of the cluster is in the result set and thus the cluser can be
pruned from the search. In the example shown in Figure 2.8, &lthe objects on
clusters Cy, C,, C4, C7, Cg, and Cgy are directly discarded from the result without
being compared with the query.

Figures 2.9 and 2.10 show two examples of how the policy for sicarding clusters
works. In the example of Figure 2.9, the lower bound is greatethan the search
radius and the complete cluster can be discarded. As we can s@ethe gure, the
query ball does not intersect with the ball corresponding tothe cluster. However,
in the case of the example shown in Figure 2.10, the query balhtersects with the
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ball corresponding to the cluster and it is not possible to dscard it, nor any of the

objects in it. Note that in the case of (g2, r), there is no necessarily any object of
the cluster in the result set. The ball corresponding to the duster is used as an
approximation of the real contents of the cluster. The ball is used to try to discard

it. Since it is an approximation, the fact that both the clust er and query balls

intersect does not guarantee that any object of the cluster$ in the result set.

The capacity of pruning the search space depends on the charteristics of the
partition. On the one hand, if the clusters are too large, it is more di cult to discard
them from the result, since it is more probable that the query ball will intersect
them. On the other hand, having a lot of small clusters improwes the pruning of
the search space but increases the internal complexity of th search, since the query
object has to be compared with a larger number of cluster cemrs.

Most clustering-based methods create a multilevel recurse partition of the
space for this reason. In a rst level, the space is decompodein few, large
clusters. Each of them is then recursively decomposed in sahusters that will
also be decomposed in smaller clusters until the resultinglasters are small enough.
During the search, the larger clusters are used rst, and therecursive decompositions
of each of them is used if they can not be discarded from the rett.

The resulting partition of the space depends directly on theset of objects chosen
as cluster centers and the criteria for creating the clustes. With this approach, two
clusters can have a di erent number of elements. Some methaduse di erent criteria
for obtaining a balanced partition of the space, although it has been shown that it
is not the best choice in terms of search performance [Chaveand Navarro, 2005].

Existing clustering-based methods di er in how they choosethe cluster centers,
how they partition the space, and in the information they store in the index for
each cluster. Clustering-based methods can be classi ed ithose based on the use
of hyperplanes, as GHT [Uhimann, 1991], and those based on thesa of the covering
radius (distance from the center to its furthest object in the cluster) of each clus-
ter, as BST [Kalantari and McDonald, 1983], VT [Dehne and Noltemeier, 1987],
M-Tree [Ciaccia et al., 1997] and List of Clusters [Chavez ad Navarro, 2005].

Comparison

There are important di erences between pivot and clustering based methods.
On the one hand, pivot-based methods signi cantly outperfam clustering-based
methods in what refers to search cost (that is, the number of étance computations
needed for solving a query).

On the other hand, clustering-based methods use linear spacfor storing the
index, while in the case of pivot-based methods the space regqements depend
directly on the number of pivots, and, therefore, on the dislance computations they
store in the index.
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2.3.3 Search complexity

As we have already explained, the search performance of a meil for searching in
metric spaces is measured as the average number of distancengputations needed
for solving a query. The total number of distance computatins carried out during
a search is given by the sum of the internal and external comgxities:

< Internal complexity: is the number of comparisons for comparing the query
object with the pivots or cluster centers used by the index. t is called internal
since this number of comparisons depends on the resources cannternal
structure of the index.

e External complexity: is the number of comparisons needed for comparing the
guery object with the objects that could not be discarded by the index during
the search. As we have already explained, it is necessary to egpare them
with the query in order to avoid false positives in the nal result.

In most methods there is a trade-o between both components 6 the search
cost. Reducing the external complexity by using more pivotsor cluster centers
increases the internal complexity, and reducing the interral complexity of the
method increases the external complexity.

2.4 Intrinsic dimensionality

The intrinsic dimensionality of a metric space is an interesing concept that has an
important in uence on the search performance obtained with methods for searching
in metric spaces. In a vector space, the dimension of the spacis the number
of components of each vector. In general, when vector spacese indexed with
multidimensional access methods, the higher the dimensiality, the more di cult
the search.

Though general metric spaces do not have an explicit dimenenality, as vector
spaces have, we can talk about their intrinsic dimensionaty following the same
idea. The intrinsic dimensionality of a metric space is a measure of its complexity.
The higher the dimensionality, the more di cult the search. That is, discarding
objects from the result without comparing them with the query is more di cult in
spaces with high intrinsic dimensionality.

This concept has been studied in depth in [Chavez et al., 20Gi], that proposes a
way of estimating the intrinsic dimensionality of a metric space, and that permits to
have an idea of its complexity and the e ciency that could be achieved with indexing
algorithms. To obtain this estimation, [Chavez et al., 2001a] uses the histogram of
all the distances between objects in the metric space. The &h is that the more
concentrated the histogram, the more di cult the search. Th erefore, the intrinsic
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Figure 2.11: Spaces with low (left) and high (right) dimensionality.

dimensionality of the metric space will be higher when the man p of the histogram
is higher and the variancea? lower. Figure 2.11 illustrates this idea.

Given a random range query(q, r), the distances between the query object
and the pivots are distributed according to the histogram of distances. The policy
for discarding an object using pivots determines that any olject x [ can be
discarded if:

d(p,x) £1d(p,q) — r,d(p,q) + 1]

Thus, the shadowed areas in Figure 2.11 represent the objextn the space that
the method can not discard. The more concentrated the histogam around the
mean, the less the objects that can be directly discarded.

Based on this idea, [Chavez et al., 2001a] proposes a formular estimating the
intrinsic dimensionality of a metric space (we omit the analtical steps that led to
this formula, available in [Chavez et al., 2001a])):

The intrinsic dimensionality of a space is therefore given b the distribution and
topology of the objects in the space. Even among collectionsf objects of the same
nature, one of the collections can be more di cult than the other in terms of the
number of distance computations that can be avoided for soling the query.
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2.5 State of the art

2.5.1 Pivot-based methods

As we explained in Section 2.3, pivot-based algorithms use aubset of objects of
the collection as reference objects, called pivots. The inekes maintain distances
from these pivots to the objects of the collection. During the search, the query
is compared with the pivots, and these distances are used witthe index and the
triangle inequality to discard objects without comparing them with the query (see
Figure 2.3), as we have already explained.

In this section we review the most important proposals in pivot-based methods.
As we will see, the existing methods di er mainly on how they cloose the pivots
in the space, the information they store in the index, and thedata structures they
use to store that information.

Burkhard-Keller Tree (BKT)

Burkhard-Keller Tree (BKT) [Burkhard and Keller, 1973] was probably the rst
proposal to the problem of similarity search in metric spacs. It works only with
discrete metrics. The information about the space is storedn a tree-like structure,
recursively built as follows: an objectp [ is selected at random to be the rst
pivot, and the root of the tree. For all the values i > 0 that can be returned by the
distance function, the setU; is de ned as:

U ={x O d(x,p) =i}

That is, U; is the set of objects placed at distancd from the pivot p. For each
non-empty U;, a child node is added to the root, and the corresponding brach is
labeled with the distance valuei. The same process is recursively applied to each
new node. When a subsetJ; has less thanb objects, a leaf node is created for it
and the recursive construction of the index stops in that branch. The index uses as
many pivots as nodes has the tree, and the distances from theiyots to the rest of
objects of the database are stored in the branches of the tree

Given a range query(q, r), the search is carried out by traversing the tree from
the root to the leaves. The query objectq is compared with the pivot stored in the
root of the tree. Once the distanced(q, p) has been computed, the search proceeds
recursively through the branches for which:

d(p,g) —r=<i<d(p,q)+r

When the search reaches a leaf node (with up td objects), the objects of the
leaf are directly compared with the query. Each time the quey is compared with
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Figure 2.12: First level of a BKT tree for a set of points in R2.

either a pivot or an object in a leaf node, it is added to the resilt set if d(q,x) <r.
With this structure, the search process can prune some brarfes of the tree by using
the triangle inequality and the precomputed distances thatlabel each branch of the
tree. Therefore, the search space is pruned and the query obgt is not compared
with objects that can be discarded by using the information d the index.

Figure 2.12 shows an example of how BKT works in a two-dimensinal scenario.
The left side of the gure shows the set of points indexed. Therst object selected
as a pivot is X3;. The gure shows the lines that intersect the objects placedat
each distance of this rst pivot. For each one of these distaces, a new branch is
added to the tree. The right side of the gure shows the rst level of the tree. As
we can see in the gure, the branch of objects placed at distace 5 from the pivot
can be pruned, sox, and x19 can be directly discarded from the result set.

Fixed-Queries Tree (FQT)

Fixed-Queries Tree (FQT) [Baeza-Yates et al., 1994] is a moictation of BKT that
achieves a smaller number of evaluations of the distance fumion by reducing the
number of comparisons of the query object with the pivots of he index. In FQT,
all the nodes of a given level of the tree use the same object a&s pivot, and the
rest of objects of the database are stored in the leaves of theee. Note that, in
this case, an object used as a pivot in a node does not necespabelong to the
subset of objects processed in that node. In this way, the inelx reduces the number
of comparisons by reducing the internal complexity (comparsons of the query with
pivots). Only one comparison is needed in each level of the & . Avoiding these
distance computations can be signi cant if the distance furction can return too



30 Chapter 2. Indexing and searching in metric spaces

Pivots
x11

‘xll‘ ‘x5x8‘ ‘ ‘ ‘ ‘ ‘x2x10‘<7x7

4 5 3 6

\x3x13\ \x4x9Hx1x12H X6 \

Figure 2.13: First level of a FQT tree for a set of points in R?.

many di erent values, something that would generate a very kroad tree, or if the
collection had a large number of objects, that would make thetree to be very deep.
The search proceeds as in a BKT tree.

Figure 2.13 shows the FQT tree corresponding to the set of pais we used in
the previous example, assuming = 2 (we do not show the set of points with the
distances to each pivot for reasons of space). As we can see et gure, the pivot
used in the root of the tree is againx;;. However, instead of using a di erent pivot
for each node in the next level, the objectx; is used as a pivot for all of them. All
the rest of objects of the database are referenced in the leas of the tree.

A modi cation of this algorithm, Fixed-Height Tree (FHT) [Bae za-Yates, 1997],
structures the tree with all the leaf nodes are at the same hgiht h, independently
of the number of objects they store. In this way, the shortestpaths are extended
through additional paths. The fact of having a deepest tree an improve the search,
since those deeper paths can be discarded before reachingetleaf nodes (avoiding
the comparison of the query with the objects stored in that leaf). Since the number
of pivots is the number of levels of the tree, we can easily sta how many pivots
are going to be used. Although the extra cost for processing th structure is
higher in this way, having more pivots permits to discard more objects by using
the triangle inequality. While in BKT and FQT the number of pi vots depends on
the speci ¢ collection and the values returned by the distarce function, in FHT the
number of pivots has to be stated in advance. The experimentaresults shown in
[Baeza-Yates, 1997] show that a deeper tree can reduce the mber of evaluations
of the distance function.

Fixed Queries Array (FQA)

Fixed Queries Array (FQA) [Chavez et al., 1999, Chéavez et al., P01la] is a compact
representation of FHT. That is, instead of implementing the tree with nodes and
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Figure 2.14: Fixed Queries Array (FQA) for a set of points in R?.

pointers, it is transformed into a plain vector representation with the associated
algorithms for e ciently performing the necessary operations on it.

Given a FQHT tree of height h, the FQA representation of the tree is obtained
by performing a traversal of the leaves of the tree from the |& to the right, storing
the objects of the leaves in an array. For each object in the amy, we obtain the
h numbers that determine the path for reaching that object in the tree (that is, h
distances in the tree). Each of theséh numbers is coded inb bits in such a way that
the highest levels of the tree correspond to the more signi ant digits.

The resulting vector is sorted by the hb-bits for each element. In this way, each
interval of the FQA corresponds to a subtree of FQHT, and a movenent in the
FQHT is simulated with binary searches in the FQA. This implies an additional
CPU cost for processing the index.

Figure 2.14 shows the FQA corresponding to the FHT index we usg in the
previous example. The advantage of this structure is that, sing the same memory,
FQA can use more pivots than FQHT, and this can improve the number of objects
discarded by the algorithm. This reduction in the number of evaluations of the
distance function compensates the extra CPU time needed foprocessing the
structure. In addition it is more adequate for storing it in secondary memory.

BKT, FQT, FHT, and FQA are designed to work with discrete dista nce functions
that return a nite, and relatively small, set of values. If a pplied with continuous
distance functions, the tree would be completely plain and he search would consist
in a sequential scan. Baeza-Yates et al. [Baeza-Yates et all994] proposed a way
of using these data structures with continuous distance fuitions by dividing the
range of distances of the metric in a set of intervals and asghing intervals to each
branch of the tree.

Vantage Point Tree (VPT)

Vantage Point Tree (VPT) [Yianilos, 1993] is also a tree-like pvot-based index. The
index is a binary tree recursively built as follows: a rst pivot p [ is selected
at random as the root of the tree, and the distances from this fpvot to the rest of
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Figure 2.15: Vantage Point Tree, example of tree construction

objects of the collection are computed. Ifm = median{d(p, x), x U}, the objects
x [0 for which d(x,p) < m are processed in the left subtree, and the objects
for which d(x,p) > m are processed in the right subtree. Each node stores the
pivot and the median distance to the rest of objects processkin that node. This
procedure is recursively applied in each node until reachig the stop condition when
the number of objects assigned to a subtree is small enoughn lthis structure the
objects are stored in all the nodes of the tree, and not only irthe leaves.

Figure 2.15 shows an example of a VPT structure on a set of poigtin a two-
dimensional vector space. As in previous exampless;; is the rst object selected
as a pivot. The dashed line corresponds to the median of disteces from this
pivot to the rest of objects of the collection. The recursive construction of the
index gives as result the tree shown in the right side of the gire (we assume
that b = 2).

Given a range query(q, r), the search starts by computing the distanced(p, q)
at the root of the tree. If d(p,q) —r < m, the search has to process the left subtree;
if d(p, @) —r = m the search has to process the right subtree. Note that in any nde
of the tree, it may be necessary to continue the search in botkchildren nodes if
the pruning condition does not hold for any of them. The structure is very simple
but the options for pruning a branch depend on the query radiss. As argued in
[Yianilos, 1993], the index is very e cient for small query radius.

Other important contribution of VPT is that it showed that the way the
pivots are selected a ects the search performance. In [Yiahds, 1993], the authors
concluded that, for VPT, the best pivots are the farthest objects from the rest of
objects in the collection. That is, they concluded that outliers are good pivots.

Multi-Vantage Point Trees (MVPT)

VPT tries to prune the search space in each subtree by discardg some of its
branches. When this is not possible both the branches have tde explored and
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backtracking is necessary in order to nish the search. In sme cases, this problem
can degenerate in an almost sequential search, especiallyhen the search radius
is not small. A variant called Multi-Vantage Point Tree (MVPT ) was proposed
by [Bozkaya and Ozsoyoglu, 1997] as an extension of VPT that ies to solve this
problem. MVPT is a vantage point tree in which each node hask children, with
k > 2. Instead of using the median of the distances from the objet to the pivot
for partitioning the space, MVPT uses the k — 1 percentilesdy,,, ..., dm, ;-

Both the algorithms for index construction and search are vey similar to the al-
gorithms  of VPT. The experimental evaluation presented in
[Bozkaya and Ozsoyoglu, 1997] shows that MVPT does not alwayperform better
than VPT. This is the case of high-dimensional spaces where #hdistances between
any pair of objects are very small. In this case it can be necaary to enter in all
the children of a node for answering a query.

Approximating Eliminating Search Algorithm (AESA)

Approximating and Eliminating Search Algorithm (AESA) [Vidal, 1 986]

[Vidal, 1994] and its variants are the most e cient pivot-bas ed algorithms. Instead
of using a tree structure as the methods we have already prested in this section,

this method stores the distances from the pivots to rest of the objects in the database
in a table. The data structure built by AESA is a n < n matrix which stores the

distances between any two of objects in the database. The spa needed for storing
the matrix of distances can be reduced tan(n—1)/2 due to the property of symmetry

of the distance function. Having all the distances in the inde&, any object of the

database can be used as a pivot.

Given a query (g, r), the algorithm selects an objectp at random and uses
it as a pivot. The distance d(q,p) from the pivot to the query is computed and
is used to discard as many objects as possible, that is, all #h objects for which
|d(q,p) — d(x,p)| > r. The algorithm selects then another object as a pivot, the
closest to the query in order to maximize the possibilities édiscarding more objects.
This is repeated until the list of objects that could not be discarded is small enough.

Figure 2.16 shows an example of AESA after the rst iteration of the search
process. In this example xi; is the rst object selected as a pivot. The two circles
with center x;; are de ned by the policy for discarding objects|d(q, p)—d(u,p)| >,
and enclose between them the objects that cannot be discardeusing this rst pivot.
In the next iteration this process will be repeated with another pivot, the closest
to the query, in order to discard as many objects as possiblerém the result. In
this way, the areas that contain the candidate list for each pvot intersect giving as
result a smaller candidate list.

Although AESA is very e cient in what refers to distance comput ations, and
easy to implement, the huge space requirements for large dabases can prevent it
to be used in some cases. If the database contains a high numbef objects, the
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Figure 2.16: First step of the search with AESA on a set of points inR?.

space needed for storing the precomputed distances can beamssive. For example,
if we had to index a database with 100, 000 objects, and the distances among any
two of them are stored as oating point numbers of 8 bytes, we would need37 GB
for storing the index.

This does not mean that AESA is not applicable to real problems It is an
adequate method for problems with very costly distance funtions and not very
large databases. For example, it is a good option for indexig a database with
a few thousand DNA sequences that are compared using the editistance. The
evaluation of a distance is very costly in this problem and tke index would need
only 15 MB of space, which is a reasonable space requirement takingito account
the cost of a sequential search for this problem.

Linear AESA (LAESA)

Linear AESA (LAESA) [Mico et al., 1994] is a variation of AESA in wh ich the space
requirements are reduced at the cost of an increment of the nmber of distance
computations. In LAESA a subset of m objects of the database are selected as
pivots, and the distances from the rest of objects of the dathase to these pivots are
stored in an > m matrix. Therefore, the index stores only n x m distances instead
of n(n —1)/2 in the case of AESA. For example, for a database 0f00, 000 objects,

if 50 pivots were selected, the index would require justl9 MB instead of the 37 GB
required by AESA. Of course, the less information we have for puning the search
space, the higher the number of distance computations needeto solve a query.

The index construction process is basically the same of AESA. Aér the pivots

are selected, the distances from the objects in the databasé the pivots are
computed and stored in a table. When given a query(q, r), the query object is
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compared with the k pivots, and these distances are used with the distances sted

in the index and the triangle inequality to discard as many objects as possible.
The objects that could not be discarded make up the candidatdist and have to be
directly compared with the query. An important issue in this algorithm is how the

pivots are selected from the database. The number of pivotsthe speci ¢ objects

used as pivots, and their location with respect to each otherand to the rest of the

objects in the database a ect the search performance.

A problem present in both AESA and LAESA is that they are static i ndexes.
This means that the index has to be built on the complete datalase, and that
further insertions or deletions of objects can degrade thendex performance.

2.5.2 Clustering-based methods

As we have already explained in Section 2.3, clustering-bademethods take a
di erent approach to prune the search space. They decomposéhe space into a
set of clusters, each of them represented by a cluster centerDuring the search,
the information of the partition of the space is used to diredly discard complete
clusters from the result set without comparing any object in them with the query
object.

The existing clustering-based methods di er in the criteria the use to discard
clusters from the result set, how they partition the space, ad the information they
store in the index for each cluster.

Bisector Tree (BST)

Bisector Tree (BST) [Kalantari and McDonald, 1983] is probably one of the rst
clustering-based methods for searching in metric spaces.t Is a very simple tree
structure that is built by recursively partitioning the spa ce. For each node, two
objectsc; and ¢, are selected and stored as cluster centers. The objects ctosto ¢,
form the cluster that will be assigned to the left child of the node, and those closer
to ¢, form the cluster that will be assigned to the right child of th e node. With these
two objects used as centers the space is partitioned in two akters. This partitioning
procedure is recursively applied in each node of the tree uiitthe clusters are small
enough and are not further partitioned. The nodes store the tuster center and the
covering radius (distance from the cluster center to its futhest object in the cluster)
for each cluster.

The center of a cluster and its covering radius de ne aball (c, r¢) in the space.
It is important to note the di erence between the cluster (a set of objects), and
the ball de ned by the cluster (a region in the space). The intersection of any two
clusters is empty, while the balls corresponding to di erert clusters can intersect.

During the search, the tree is recursively processed from # root to the leaves.
In each node, the query object is compared with the cluster agters. These distances
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Figure 2.17: Space decomposition for the rst level of a BST index.

and the covering radius (¢) permit to know if the intersection of the cluster and

the result set is non-empty. If d(c,q) < r; + r, the balls de ned by (c,r.) and

(g, r) intersect, so we have to further explore the cluster since itcan have objects
belonging to the result set. If the intersection is empty, that region of the space is
directly pruned.

The idea is to use the tree to directly discard complete regios of the space, as
soon as possible. Of course, in a given step of the search itrcdoe necessary to
explore both the clusters because the result set intersectthe balls de ned by each
of them. When the search reaches a leaf of the tree, the querg directly compared
with each object stored in it.

Figure 2.17 shows an example of BST and how it is used for the aech. In the
rst level, the objects x;0 and x4 are used as cluster centers for partitioning the
space. The line between them de nes the limit of each regionEach cluster would
be further partitioned until reaching the leaves.

The recursive partition of the space ensures that clusters fothe adequate size
will be available during the search to prune the search spaceOn the one hand, a
too large cluster has more chances to intersect with the qugrball even if no of its
objects are in the result set. On the other hand, working with too small clusters
increases the internal complexity since the query has to beampared with more
cluster centers. A recursive partition re nes the decompogion of the space in each
level of the tree, from larger clusters to smaller ones.

Generalized Hyperplane Tree (GHT)

Generalized Hyperplane Tree (GHT) [Uhimann, 1991] uses the saendata structure
as BST, but it does not use the same policy for discarding clusrs during the search.
Instead of using the covering radius of each cluster to dised complete regions, it
uses the hyperplane placed between the two cluster center&iven a query (g, r), in
a given level of the tree we have to process the left child ifi(q, c;) —r < d(g,c2) +r,
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Figure 2.18: Space decomposition in the rst level of GNAT (m = 4).

and the right child if d(g,c;) +r =d(qg,c2) + —r. As in BST, it can be necessary
to process both children to complete the search. An advantagef GHT is that it
does not need to compute the covering radius of each clusteand this avoids a lot
of distance computations during the index construction.

Both in BST and GHT, the structure can be improved if one of the objects
used as a center in a node is the cluster center of its parent. His makes the
regions smaller, which improves the search performance, dnreduces the internal
complexity of the structure (that is, the comparisons of the query with the centers
stored in the tree), since there are less cluster centers irhe tree.

Geometric Near-neighbor Access Tree (GNAT)

Geometric Near-neighbor Access Tree (GNAT) [Brin, 1995] is a gneralization of
GHT using a m-ary tree instead of a binary tree. In the rst level of the tree m
cluster centerscy,...,cn are selected, and the space is partitioned irm clusters
Ci = {x [, d(ci,x) <d(u,c;), JE i}. The root of the tree stores these centers
and each cluster is recursively partitioned.

Figure 2.18 shows the decomposition of a two-dimensional sge in the rst level
of a GNAT index, with m = 4. As we can see in the gure, the ball de ned by
the query intersects with the clusters represented byx;, and Xg, but not with the
clusters represented byx, and xs, that can be directly discarded from the result.

The construction process is very similar to the construction of GHT, but the
search is quite di erent. When the tree is built, each node sbres also am><m matrix
de ned as range(i, j) = [miny gy (Ci, u), miny gy (ci, u)]. That is, each node stores
a matrix that contains the minimum and maximum distances from each cluster
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center to each one of the rest of clusters. Given a quer{g, r), g is compared with a
center selected at randomc;. This distance and the distances stored in the matrix
of the node permit to discard all those clusters for whichd(g, ¢;) is not in the range
de ned by range(i, j). This process is repeated with the rest of cluster centers it

no more clusters can be discarded. The search process willritmue recursively
exploring the clusters that could not be discarded.

Partitioning the space in more clusters in each level of the tee gives as result
smaller regions. This decreases the chances of the result $e intersect with all of
them and thus the need to further explore them. In addition, GNAT combines the
cluster and pivot approaches, by storing precomputed distaces in the nodes of the
tree that permit to discard some clusters from the result without comparing them
with the query, thus reducing the internal complexity.

Voronoi Tree (VT)

Voronoi Tree (VT) [Dehne and Noltemeier, 1987] was proposed aa set of modi -
cations to the original BST that signi cantly improve the se arch performance. In
this case, each node of the tree has two or three cluster cente The main di erence
with BST is that when a new node is created to insert a new objetin the collection,
the closest object of its parent node will also be inserted irthe new node. In this
way, the clusters are more compact as we move down in the tredracture, which
permits to discard more objects during the search.

The experimental results provided by [Dehne and Noltemeier,1987] show that
VT obtains a better search performance than BST. Noltemeier et al.
[Noltemeier, 1989] show that the VT trees can be constructed filowing an insertion
criterion similar to that of the B-Trees.

M-Tree (MT)

The M-Tree [Ciaccia et al., 1997] is one of the most importantmethods for indexing
and searching in metric spaces. It was designed for e cienyy supporting insertions
and deletions on the database without degrading the search grformance of the
structure. This means that M-Tree is a fully dynamic method: the database
can be initially empty and grow later as new objects are inseted or deleted. In
addition, it can be e ciently stored in secondary memory and obtains a good search
performance.

M-Tree has a very similar structure to that of GNAT. As in GNAT, it uses a tree
with several cluster centers stored in each node. However, thsearch algorithm is
di erent. In the case of M-Tree, the tree stores the coveringradius for each cluster.
When given a query (q,r), q is compared with all the cluster centers of the node
and this information is used to discard as many clusters as pssible.
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The main di erence with other structures is how the insertion of new objects is
managed. When a new object is added to the database, it will bénserted in the
best subtree possible, that is, in that for which the coverirg radius is less increased.
As we have seen in other algorithms, the smaller the radius oftte clusters, the more
the possibilities of discarding more objects during the seah. The insertion looks
for the leaf node of the tree in which the object should be insged. If the node
has place for this new object, it is just inserted. If not, the node is splited as in
a B-Tree. This insertion procedure makes M-Tree a balancedtsicture, e cient
in terms of the number of distance computations for answerig a query and in the
number of I/O operations needed for loading and processinghte index during the
search.

Spatial Approximation Tree (SAT)

Spatial Approximation Tree (SAT) [Navarro, 1999] follows a di erent approach and
tries to take advantage of the relationships of proximity between the objects in
the space when building the index. The index created with SATis a tree that
approximates a Delaunay graph of the space, de ned as follows: if the space were
divided into a Voronoi partition, a Delaunay graph contains a node corresponding to
each cell of the partition, and edges connecting the nodes oesponding to directly
neighboring cells in the space. Since the construction of €l a graph is a NP-
complete problem, SAT tries to obtain an approximation at a reasonable cost.
The construction of the index proceeds recursively as folles. The root of the
tree, p, is selected at random. For this root nodep, the method obtains the set
N (p), de ned as the set of all the objects which are nearer tgp than to any other
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Figure 2.20: List of clusters on a set of two-dimensional points.

object in N(p) (the de nition is self-referenced, and for a given objectp, many
valid N(p) sets are possible). In order to obtain this set,p is compared with the
rest of the objects of the database, which are sorted accondg to their proximity to

p and added toN (p) if they hold the condition that de nes the set. Each object in
N (p) becomes a child node op, and the same construction procedure is recursively
applied to each of them. Each node stores the covering radiyshis is, the maximum
distance from p to any object in N (p).

When given a query(q, r), the tree is recursively traversed, comparing the query
object with the nodes that can not be discarded from the resul by applying the
ball partitioning principle.

List of Clusters (LC)

Most clustering-based methods organize the index as a trelike structure that re-
ects a recursive decomposition of the space. List of Clustes (LC)
[Chavez and Navarro, 2005] follows a dierent approach by crating a Voronoi
partition of the space and organizing the resulting clustes in a list, without further
partitioning them.

This partition can be obtained by creating clusters of a xed radius, or by
creating clusters with a xed number of objects. For exampleg in the case of clusters
with a xed number of elements s, the index algorithm proceeds as follows. A cluster
center is selected and a cluster is created from it with itss nearest objects. The
process is repeated with the objects that were not processed this rst step, until
all objects have been indexed.

Figure 2.20 shows an example of a list of clusters for a set ofoints in a two-
dimensional vector space. In this example all the clusters &ve the same covering
radius. The index is just a list that stores the cluster centes {Xy, X10, X14} and the
list of objects in each cluster.

The search algorithm proceeds as usual. The query object isompared with all
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the clusters and the search space is pruned by discarded frothe result as many of
them as possible.

Although it can work better than other clustering-based methods in its optimal
con guration, either the optimal covering radius of the clusters or the optimal
number of objects in each of them have to be obtained by trial ad error on the
collection, a disadvantage with respect to previous method.

2.6 Selection of reference objects

An important aspect in any method for searching in metric spaes is how the objects
used as references (either pivots or cluster centers) are @@lly selected. Although

most methods select them at random, it has been shown that thespecic set of

objects used as references and the way they are selected atedhe overall search
performance and other characteristics of the index. The surey Searching in Metric

Spaces [Chéavez et al., 2001b] deeply analyzed the existing method®r searching in

metric spaces and proposed a uni ed taxonomy of methods. Theonclusions of this
survey already pointed out the selection of e ective referace objects as a problem
worth of further research.

In this section we review the existing techniques for the selction of reference
objects for methods for searching in metric spaces, and the dwantages and
drawbacks of each of them.

Issues related to the selection of reference objects

The selection of reference objects for methods for searchgnin metric spaces has
many implications in both the search performance and other baracteristics of the
method. Several issues are associated to the selection ofextive reference objects:

« Selecting the most e [eckive pivots: The possibility of a pivot to discard an
object from the result set depends on its relative position vith respect to the
qguery object and to the object we try to discard. If two pivots are more
or less in the same position, their e ectiveness will also banore or less the
same. The position of the pivots with respect to each other, ad their position
with respect to the objects stored in the database a ect the werall index
performance. A random pivot selection does not ensure the gbcts used as
pivots to be as best as possible.

e Determining the optimal number of pivots: The higher the number of pivots,
the more the possibilities the index has for discarding an ofect from the
result. However, since the total complexity is given by the sun of internal
and external complexities, there is a point in which the number of comparisons
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of the query with the pivots does not pay for the gain in the reduction of the
candidate list.

There is an optimal number of pivots that optimizes the trade-o between the
internal and external complexities. A random pivot selection does not give
any insight about the optimal number of pivots.

Space requirements: In general, the larger the number of objects the index
uses as pivots, the more space we need for storing the distaes from objects
to pivots. Given two set of pivots that show the same performance in the
search, the smaller is the best one, since it requires less mery. The number
of pivots is an important issue since memory requirements i®ne of the main
drawbacks of pivot-based algorithms and can make impossiblto apply them
in practical applications if the pivots are too many.

Static indexing: Selecting pivots at random inevitably makes the index statc.
Due to the trade-o between internal and external complexities, the optimal
number of pivots has to be determined by trial and error on the whole
collection. This means that the database has to be complete dfore building
the index. Some indexes do not allow insertions or deletionsf objects after
the index is built. Other indexes allow these operations, bt the search
performance can degrade if the number of insertions and deiens is not
small. With a fully dynamic index the database could be initially empty, and
the index is built as new objects are inserted or removed fronthe collection,
maintaining a stable search performance while the databasevolves.

Complexity of the selection: The cost of selecting pivots also a ects the index
operation, since it translates in the cost of inserting an olject in the collection.

If dynamism and interactivity are important for the operati on of the system,
the complexity of pivot selection is also important.

The problematic of the selection of reference objects was wjinally thought for

pivot-based methods, but the same issues arise for the setem of e ective cluster
centers in clustering-based methods. The number of clustecenters, their position
with respect to each other, and their position with respect to the rest of objects
of the database determine the properties of the decomposith of the space, and
therefore a ect directly the capacity of the index for pruni ng the search space. For
example, the set of cluster centers determines the compac#ss of each cluster and
the overlapping between them. As in the case of pivot-based ntbods, a random
selection of cluster centers has several drawbacks.

Although most techniques for the selection of reference obgs have been

proposed for pivot-based indexes, in this thesis we considehis problem also for
the selection of e ective cluster centers.
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Previous work on selection of reference objects
Random selection of pivots

Most pivot-based methods select the pivots at random. Obviassly, a random
selection of reference objects do not give us any guaranted the obtained set
of objects to be e ective. Although the selection is not compkx since it does not
involve any kind of extra computation in order to decide which objects become
references, it su ers of all the issues we have described im¢ previous section.

Selecting far away pivots

The rst techniques for pivot selection focused in using as jvots objects that are

far away between them, and also far away from the rest of objds of the database,
that is, outliers. This idea was rst explored in LAESA [Micé et al., 1994], where

the objects selected as pivots were selected as far as podsitbetween them.
[Yianilos, 1993] and [Brin, 1995] extended this idea to the dection of cluster

centers, trying to obtain objects maximizing the sum of distances between them
to minimize as possible the overlap between the clusters.

Although these works introduced the idea that far objects wok well as pivots,
this was not the problem in what they focused, so the e ect of fivot e ectiveness
was not studied in much depth. Later contributions fully focused on the e ect and
techniques for pivot selection. They are presented in the rgt of this section in
chronological order.

MaxMin

MaxMin [Vleugels and Veltkamp, 2002] was proposed as a techque for pivot
selection following the idea of obtaining pivots that are fa from each other. In
this technique, the rst pivot is chosen at random. Then, ead pivot p;, 2<i<m
is chosen as the object maximizing the distance to the previasly selected pivots.

The idea is very similar to the proposed in works as [Micé et al 1994],
[Yianilos, 1993], and [Brin, 1995]. Note that this technique tries to obtain pivots
far away from each other, but it does not impose the conditionthat they have to
be far from the rest of objects of the database.

In addition, this technique does not provide any guidance onhow to obtain the
optimal number of pivots for a given space.

Stepwise Forward Leave-One-Out (SFLOO)

Stepwise Forward Leave-One-Out (SFLOO) [Hennig and Latecki 2003] introduces
the concept of the loss of quality introduced by the pivots asa measure of the
di erence between the real distance between two objects andhe distance between
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their representation in the vector space de ned by the pivots. The selection
procedure obtains an e ective set of pivots by minimizing the loss of quality it
introduces.

Let (X, d) be a metric spaceU = {Xi,...,X,}, U X, the database of objects,
and P = {p1,...,pm} @ set of m pivots. For any object x [, its representation
in the vector space de ned by the pivots is given by:

m) = (d(q, pl)! s !d(q! Pm ))

Given a query objectq, the distance between the query objecty and an object
x [0 in the vector space de ned by the pivots (dy) is given by the Euclidean
distance between the vectors that represent them in that spae:

dv (9, x) = [NAd) — ¥l

From these de nitions, the nearest object to the query q in the vector space
de ned by the pivots (from now, the pivot space), s(q, U), is the object x [Ul that
minimizes the value of the distanced, (q, x), that is:

s(g,U) ={x LU/ LU — {x}, d(q,x) = d(q,y)}

Hennig and Latecki [Hennig and Latecki, 2003] consider that tke set of pivots
introduces a loss of information in the search if the query'snearest neighbor in the
pivot space and the query's nearest neighbor inJ using the distance functiond are
not the same object. The loss of information introduced by tre set of pivots for the
object ¢ [X is de ned as the distance between the query and its nearest righbor
in the pivot space, that is:

1(9,s(q,U)) = d(g,s(q,U))

Then, Hennig and Latecki de ne the loss of quality introduced by the set
of pivots as the average loss of information for all the objets in the database
[Hennig and Latecki, 2003], that is:

X
L(s) = I(x,s(x,U —{x}))

x U1

S|

The selection of the pivots tries to optimize the value of theloss of information
introduced by this search procedure. The selection is incmeental: the rst object
selected as a pivot is the one that alone gives the smaller lssthen, the next pivot
is chosen as the object minimizing the value of the loss togber with the rst one;
and this is repeated until reaching the desired number of piets.
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This selection involves a high computational cost. In[Henng and Latecki, 2003],
the authors try to reduce this cost using a sample of objects @ evaluate the loss
function, and by taking the pivots also from a sample of objets updated in each
iteration of the process.

Incremental and Local Optimum

Incremental and Local Optimum [Bustos et al., 2003] try to obtain an e ective set
of pivots by iteratively re ning an initial set of pivots sel ected at random, according
to a criteria for evaluating the e ectiveness of a set of pivds. An important
contribution of [Bustos et al., 2003] is a criterion for estimating the e ciency of
a set of pivots of a given size.

Let (X,d) be a metric space, andP = {p1,p2,...,Pm}, with p; O, a set of
pivots. Given an object x [0, Bustos et al. [Bustos et al., 2003] denote with
[X] the representation of x in the pivot space, that is, the tuple composed by the
distances fromx to each pivot in P:

[X] = (d(X, pl)v d(Xv p2)1 v vd(X1 Pm ))

Thus a new space of object§P] is de ned as [P] = {[x] / x (X}, which is a
vector spaceR¥. We can de ne a distance function on this new space as:

Dp ([X], [y]) = maxi<ij<m [d(x, pi —d(y, pi)|

Since the distance functionDp is a metric de ned on the objects of[P], the pair
([P]1,Dp) is a metric space. That is, the set of the representations oflathe objects
in the pivot space and the maximum distance forms a new metricspace.

Given a query (q,r), the policy for discarding an object from the result set
without comparing it with the query, |d(pi,u) —d(pi,q)| > r for some pivot p;, can
be translated to the new metric spaces as:

Dp ([a], [u]) > r

Intuitively, the above expression means that we can discardhe object x from
the result if the best lower bound obtained with the set of pivots P is greater than
the search radiusr.

The more objects it can discard, the more e ective a set of piots is. Thus, a set
of pivots P; is better than other set of pivots of the same sizeP, if the probability
of Dp, ([q], [X]) = r is higher than the probability of Dp, ([q], [x]) > r, with x [U.
If up, is the mean of the distribution of the distance function Dp, the larger the
value of yp, the better the set of pivots P is.
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Thus the criterion proposed by [Bustos et al., 2003] estabtihes that a set of
pivots P1 = {p1,p2,...,Pm} is better than the set P, = {p\ p5!...,pL} if:

Hp Py = Hp Py

[Bustos et al., 2003] also proposes several strategies foivpt selection based on
this e ectiveness estimator:

« Selection: This technique selectsN groups of pivots at random, and it nally
uses the one that maximizes the e ectiveness criterion, thais, the one that
obtains the higher value for yp. Although it is a very simple strategy, it
obtains better results than a simple random selection if thenumber of samples
N is high enough, usually around50. In order to estimate the value of yp
for the N samples of pivot sets, instead of computing the value on the hole
collection, it is used a set ofA pairs of objects selected at random form the
collection, where A can be a much smaller value than the total number of
possible pairs of objects. Since the value ofip is estimated N times, the
pivot selection requires2mAN evaluations of the distance function.

< Incremental: the incremental pivot selection starts the process with a ot
selected from a subset o objects from the collection. This rst pivot is the
object maximizing alone the value ofpp. Then, a second object is selected
from another sample of N objects, in such a way that{pi, p.} maximizes the
value of up, consideringp; is already selected. The process is repeated until
completing the set of m pivots. Each time a new pivot is added to the set, it
is necessary to carry out? AN evaluations of the distance function (in order to
determine what is the object maximizing up ), and thus this selection strategy
has the same computational cost than the previous one2mAN. With the
same computational cost, the results of [Bustos et al., 20Q1show that this
strategy selects better pivots than Selection.

e Local Optimum: the last technique proposed in [Bustos et al., 2001] follow
an iterative local optimum strategy. In this case the selecton algorithm
starts with a set of m pivots selected at random. Then, in each iteration,
the algorithm removes from the set of pivots the object that less contributes
to the value of yp, and it is replaced by the best pivots among a sample oK
objects selected at random from the collection. This procesis repeatedN™
times. To determine what is the pivot replace in each iteration, the algorithm
stores a multidimensional matrix M of A rows and m columns, beingA the
number of objects used to estimatqip and m the number of pivots. The initial
construction of the matrix requires 2Am evaluations of the distance function,.
In each iteration, determining the pivot to be replaced doesnot have additional
cost at all, since all the necessary information is inM. Obtaining the pivot
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that will replace it requires 2AX evaluations of the distance function. Thus,
the total cost is 2A(k + NK).

[Bustos et al., 2001] considers two versions of this seleoti strategy. The rst
one usesN "= m and X = N — 1, that gives as result a complexity of2AmN.
The second one usedl“= N —1 and X = m, with the same nal complexity.
With the same complexity, the rst variant uses more objects to obtain the
new pivot, while the second performs more iterations. [Busbs et al., 2001]
shows that the results obtained in each case do not need to bejeal.

The results presented in [Bustos et al., 2001] proof the impaance of a good
pivot selection for the index performance. Itis the rst wor k providing an analytical
criterion for comparing the e ciency of two sets of pivots of the same size.

Spacing

The technique proposed by [van Leuken et al., 2006] is basedhdwo criteria which
address the number of false positives in the retrieval restd directly. The rst
criterion, the spacing, concerns the relevance of a singleiyot; the second criterion,
the correlation, deals with the redundancy of a pivot with respect to the other
pivots.

The spacing is achieved by avoiding clusters on the vantagexis belonging to the
pivot p;. The spacing between two consecutive objects; and x;+1 of the database
on the axis of the pivot p; is:

d(Xi+1, p] ) - d(xi ' p] )

If uis the average spacing, the variance of spacing is:

-1

((d(xi+1,p5) — d(xi, py)) — W)?

i=1

To ensure that the database objects are evenly spread in theipots space, the
variance of spacing has to be as small as possible. A pivot wita small variance of
spacing is said to be a relevant pivot.

However, a low variance of spacing does not guarantee that thelatabase is
well spread out in pivot space, since the pivot axes might betsongly correlated.
Therefore, they compute all linear correlation coe cients for all pairs of pivots and
make sure these coe cients do not exceed a certain threshold

As can be noticed, the number of pivots and two thresholds (forthe variance
of spacing and for the correlation coe cients) must be set bdorehand. There is
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a clear new tradeo there: the stricter these threshold values are, the better the
selected pivots will perform but also the higher the chance ba pivot needing to be
replaced, resulting in a longer running time to select the wiole set of pivots.

Maximum Pruning

Maximum Pruning [Venkateswaran et al., 2008] is an iterative strategy for pvot
selection. After initializing the set of pivots, the algorit hm replaces in each iteration
some pivot by a most promising object taken from the databasean strategy similar
to Local Optimum [Bustos et al., 2003]. As in other techniques, the number of piots
to select, m, is given as a parameter to the algorithm, and its optimal vaue has to
be determined by trial and error.

The set of pivots contains initially a set of m objects considered promising pivots,
which are selected as follows: given an object [CUl, the mean and variance of its
distances to the rest of objects of the database give an ideaf the amount of near
and far objects it has. If the variance is small, most objectsare more or less at
the same distance fromx; if the variance is high, x has near and far objects. The
set of pivots is initialized with the m objects that show the maximum variance in
their distances to the rest of objects in the database, assuimg that, the higher the
variance, the more promising is the object as a pivot.

After the initialization of the set of pivots, the algorithm r eplaces a pivot by a
more promising object in each iteration. Let P be the set of pivots andQ a set
of sample queries taken from the database. In each iteratignall the objects in U
are candidates for replacing some pivot irP. Basically, the algorithm computes for
X; and eachp; [P], the gain obtained in the e ectiveness of the set of pivots by
replacing p; by x;. In each iteration the algorithm does the replacementx; — - p;
that maximizes this gain. The replacement of pivots stops wlen the e ectiveness
of the whole set can not be improved with any replacement.

Although the algorithm obtains good results in what refers to search perfor-
mance, we consider that this method presents two inconveniees. First, it needs
to know the search range during the indexing phase in order toselect the setQ
of sample queries used in each iteration, or at least a rangef walues bounding
this search range. This restricts the search range to that usd during the indexing
phase, and gives the algorithm an advantage over the rest of mthods, since no
other method assumes to know this information to index the daaset.

The second inconvenience of the algorithm is the high compuattional cost
involved in the indexing phase: during the initialization, each object has to
be compared with the rest of objects or with a signicant samde of them;
then, each replacement involves a high computational cost do. As noted by
the authors [Venkateswaran et al., 2008], the algorithm is ipractical for large
databases without applying sampling-based optimizations
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[Venkateswaran et al., 2008] proposes two sampling-basedptimizations for
reducing the cost of index construction. The rst one consis¢s in reducing the
number of objects to be searched in for each query when estirting the gain in
the e ectiveness of the set of pivots. The second optimizatn consists considering
a subset of objects in the database as candidates for replamg a pivot, instead of
considering the entire database.
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2.7 Summary

In this chapter we introduced the problem of similarity search, and how it can be
formalized using the concept of metric spaces. We have desbed the most typical
similarity queries, and typical distance functions that can be applied to a wide range
of problems.

We then introduced the basic concepts of methods for simildty search in metric
spaces, which try to make the operation more e cient by avoiding the comparison
of the query object with all the objects in the database. Pivd-based methods
select a subset of objects from the database as referencesdacompute and store
in the index the distances from those reference objects to th rest of objects in
the database. During the search, these distances are expted with the triangle
inequality to obtain lower bounds on the distances from the qiery to each object
in the database and thus discard as many objects from the resu

Clustering-based methods take a di erent approach by dividng the data space
into a set of clusters, storing in the index for each of them tle cluster center and
the covering radius, which is the distance from the center toits furthest object in
the cluster. During the search, the objects in the clusters vkich enclosing ball have
an empty intersection with the query ball are directly discarded from the result set.

After reviewing the most important methods of the state of the art, we analyzed
the di erent issues related to the selection of e ective rekerence objects, and how
they can a ect the search performance, as well as other paraeters as the space
requirements of the index, the indexing cost and the possiliity of dynamically
indexing the database. We have presented a detailed desctipn of the previous
techniques proposed for the selection of e ective pivots.
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Sparse Spatial Selection

3.1 Overview of the chapter

In this chapter we present Sparse Spatial Selection (SSS),r@ew pivot-based method
for searching in metric spaces. While previous methods trig to obtain pivots as far
as possible between them, our method ensures the set of pivoto be well distributed
in the space. This is the most outstanding property of our mehod and it has not
been considered before. As we will see in this chapter, the seh performance we
obtain is better than, or at least as good as the obtained withprevious and more
complex and expensive techniques for pivot selection.

Sparse Spatial Selection has other important characterists. It works with
continuous and discrete distances. Both the selection of pbts and the construction
of the index are dynamic and adaptive. That is, our method buids and adapts the
index as new objects are inserted into or removed from an inially empty database.
The construction of the index never nishes, and the informaion it stores depends
on the content of the database in each moment. The number of pots does not
have to be xed beforehand, and the selection is more e cientthan in previous
techniques. The selection of pivots and the construction othe index are described
in Section 3.2, and Section 3.3 describes the changes to berdoin the index when
an object is deleted from the database. Search is described Section 3.4

The simplest structure for storing the index is a table that stores in each row the
distances from an object in the database to all the pivots. Setion 3.5 discusses other
alternatives for e ciently storing and retrieving the inde x in secondary memory,
suitable for its dynamic nature. Section 3.6 presents the rsults and conclusions
of the experimental evaluation of the method. Finally, Secton 3.7 provides a
discussion of the advantages and drawbacks of the proposedathod, and Section
3.8 summarizes the contributions presented in this chapter

51
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3.2 Pivot selection and index construction

Sparse Spatial Selection (SSS) is a new pivot-based methodrfsearching in metric
spaces. As methods like AESA [Vidal, 1986] and LAESA [Mico et al.1994], it
selects a set of objects from the database to be used as pivptand stores the
distances from all the objects in the database to the pivots. The main di erence
with previous methods is its policy for pivot selection. While previous methods try
to select as pivots objects as far as possible from each othesur method selects a
set of pivots well distributed in the space. Our intuition was that well distributed
pivots will have more probability of discarding an object from the result.

In order to obtain a set of well distributed pivots, an object becomes a pivot if
it is far enough from the already selected pivots. We considethat the object x is
far enough from the current set of pivots,P = {p1,...,pm}, if its distance to any
pivot is equal or greater than M a, where M is the maximum distance between any
two objects of the space, anda is a constant parameter that takes values between
0 and 1, typically around 0.4. That is, we consider that the object is far enough
from the already selected pivots if it is up to a fraction of the maximum distance
between any two objects in the database.

An important di erence of SSS with previous techniques is tha it is dynamic.
It assumes that the construction of the index starts from an enpty database and
never nishes. The pivots are selected and the index is builtadapting itself as new
objects are inserted into the database.

Let (X, d) be a metric spaceU = {X3,...,Xn}, U X] the database, andP =
{p1,---,pPm}, P [ the set of pivots selected by SSS. To simplify the conceptda
approach let assume that the distances from the objects to tk pivots are stored
in a table with as many rows as objects in the database and as nmy columns as
pivots. The construction of the index proceeds as follows:

< When an objectx,+; [X is inserted into the database,U « U [{Rk,+1}, itis
compared with the pivots already selected to obtain the disancesd(X,+1, pi),
l<ism.

e If dXp+1,pi) = Ma,1<1i<m, Xp4+1 becomes a pivot,P - P [{Xn+1} A
column is added to the table of distances and the distanced(Xn+1,Xj), 1 =
Jj =< n, are computed and stored in that column.

< If the new object is too close to an already selected pivot, idoes not become
a new pivot. In this case, a row is added to the table of distanes and the
distancesd(Xn+1,pi), 1 <i<m, (already computed) are stored in it.

When the rst object is inserted in the database, it becomes he rst pivot since
there are no other pivots to compare it with. If the index is built on a complete
database, the rst pivot can be chosen at random. As we will seén the experimental
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Figure 3.1: Example of indexing in a two-dimensional vector space.

evaluation of the method (Section 3.6), neither the selectin of the rst pivot nor the
order in which the rest of objects of the database are procees a ects signi cantly
the search performance of the method, ensuring its robustres.

Figure 3.1 shows an example of how the pivots are selected aritbw the index
is built for a small database where the objects are distribued in a two-dimensional
space. In this example, the pointsxy,...,X14 are sequentially inserted into an
initially empty database. The objects selected as pivots a& shown in bold.

The rst object inserted in the database is X;. Since no pivot has been selected,
it is far enough from all pivots and it becomes the rst one. The objectsx, and
X3 are then inserted in the database. Sincel(x2,X;) < Ma, and d(xs3, X1) < Ma,
they are not selected as pivots, because they are not far engh from x;. When x4
is inserted, it becomes a new pivot, sincel(Xs4, X1) = Ma. The objects Xs, Xg, X7,
Xg, and Xg are then inserted, falling too close tox; or X4, and, therefore, they do
not become pivots. The last pivot selected is<yg. Finally Xi1, X12, X13, and X14 are
inserted and none of them becomes a pivot.

As we can see in this example, the index evolves as the databaskanges when
new objects are inserted. The pivots are selected and the irek is adapted as needed.
In addition, it is not necessary to state beforehand the numker of pivots to use. New
pivots are selected as the collection expands to new regioms the space. If the space
is completely covered by the set of pivots, no more pivots wilbe selected despite of
the number of new objects inserted. That is, the number of piwts depends on the
complexity or dimensionality of the space, and not on the sie of the collection.

It is important to take into account that the information use d for selecting pivots
is the same that is needed to insert an object in the databasethe distances from
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the new object to the pivots already selected. When an objecbecomes a pivot, the
cost of computing the distances from the rest of objects to itis also the needed in
any method. Therefore, SSS does not impose an additional cqmtational cost for

pivot selection. All previous methods need an extra processq for pivot selection,

very signi cant in some cases.

Algorithm 3.1 : Insertion of a new object with Sparse Spatial Selection.
Input : u A, P, M, a

Output : P
selected — true;
i« 1

repeat

distance = d(x, pi);
if distance < Ma then
selected ~ false;
end
i<~ i+1;
until not  selected or i > |P| ;
if selected then
return P X},
end
return P;

The pseudo-code shown in Algorithm 3.1 summarizes the algdahm for the
insertion of a new object in the database with Sparse SpatiaSelection.

3.2.1 Pivot selection policy

In order to obtain a set of well distributed pivots, a new object becomes a pivot
if its distance to the rest of pivots is equal or greater thanMa. For instance, if
a = 0.5, an object becomes a pivot if it is up to a half of the maximum dstance
from the already selected pivots.

The parameter a controls the density of pivots with which the space is coverd,
it imposes a lower bound on the distance between any two piva The smaller the
value of a, the more the pivots selected, and the closer they will be. Sicea controls
the number of pivots selected, it also controls the trade-o between the internal
(comparisons of the query with the pivots) and external compexities (comparisons
of the query with the objects that could not be discarded). The experimental
evaluation reveals that the optimal values of this paramete are around 0.4 for
collections of di erent nature.

Note that it is not necessary to state beforehand the number opivots to select.
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The method determines by itself the optimal number of pivots from the maximum
distance between two objectsM, the distribution of objects in the space and the
parameter a. SSS adapts both the number of pivots and the index structureto the
complexity and distribution of the space.

This is another advantage of this selection policy when comared with previous
techniques. In previous methods the number of pivots has to b stated beforehand
and its optimal value is obtained by trial and error on the complete collection, which
makes the index static. However, the construction of the ind& in SSS is dynamic
and pivots are selected as needed.

3.2.2 Estimating the maximum distance

Although it is not necessary to state beforehand the number opivots to select, this
number is determined by the parametera and the maximum distance between any
two objects. In most cases, the value of the maximum distancean be obtained
from the de nition of the metric space, that is, from the de n ition of the objects
and the distance function used to compare them. For instancewhen comparing
words with the edit distance, the maximum distance will be around 21 for most
languages, and?7 for German. If we are indexing a collection of images represged
by feature vectors, the maximum distance between two obje@ can be obtained
from the maximum and minimum values of each component of the gature vectors.

If it is not possible to obtain this value analytically, a good approximation of
the maximum distance can be obtained while conserving the dyamic nature of the
method. Instead of indexing every object from an initially empty database, the
method can postpone the construction of the index until the database contains a
sample of objects (although it does not have to be complete).Those rst objects
inserted into the database can be used to obtain the estimatin of the maximum
distance. The selection of pivots would start from that point.

Instead of comparing the objects in the database against e&icother to obtain
the value of the maximum distanceM, an approximation can be obtained with the
following algorithm, proposed in [Goel et al., 2001]. An objet is picked at random
and compared with all the other objects, in order to nd its fu rthest neighbor. This
furthest neighbor is them compared with the rest of objects b obtain its furthest
neighbor. The process is repeated for a given number of itetmns. It has been
shown that a very good estimation of the maximum distance, ifnot the exact value
of that distance, can be obtained in about four iterations.

Therefore, even if it is not possible to analytically obtain the value of
the maximum distance, it can be approached without incurring into a high
computational cost. The value of the maximum distance can ao be updated as
more objects are inserted into the database.
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3.3 Deleting an object

In order to delete an objectx U from the database, the rst problem is to nd
it, to check if it is in the database or not. Unlike in classical data structures,
this can not be done by simulating the insertion of the object In this case, the
object can be found by performing a range query with search rdius zero, that is,
R(q,r) = R(x,0). The cost of nding the object will be reasonably small, sine the
smaller the search radius is, the cheaper the range query. @e the object is located
in the database, there are two possibilities depending on wéther the object to be
deleted is a pivot or not.

If the object x to be deleted is not a pivot, it can be deleted from the databae
without cost. The row that stores the distances from this object to the pivots can be
removed, and no further changes are necessary in the indexinse the set of pivots
remains the same and no other object is a ected by the deletin of x. In this case,
the deletion of the objects does not imply any additional evduation of the distance
function.

Figure 3.2: Deletion of a pivot without physically removing it.

If the object is a pivot, we have two alternatives to delete it:

e The pivot x can be tagged as a deleted object, so it will not be included to
the result of any query. That is, the object no longer belonggo the database,
but we use it as an element that gives us information for maingining the
index. Although it is easy, this choice has two drawbacks. Fist, in some
applications the objects are very large and would be conveent to physically
delete it. Second, we could reach a situation in which the delted pivot covers
a region of the space that does not need to be covered, sinceette are no real
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objects in it. This may led to unnecessarily increasing themternal complexity
of the search (see Figure 3.2).

« If the object is physically deleted, another object of the ddaabase can become
a pivot after removing this one. If x = p; was the only pivot that prevented
other object to become a pivot, that object has now to be addedo the set
of pivots. In this case, to update the index is enough to checkn the index
for the objectsy [ such that d(x,y) < Maq, if d(y,p;) =Ma, 1<j=m.
If y becomes a pivot, the distancedgl(y, x;), for x; [, must be computed
The distances fromy to the rest of pivots are already stored in the index, so
the deletion of the pivot only implies the computation of distances if another
object becomes a pivot. In order to preserve the structure ofhe set of pivots
on the space, the rst objects to be checked should be the neast to the
deleted pivot.

Following the second option, the index also adapts its struture and information
when objects are removed from the database without increasp the internal
complexity with pivots that are no longer needed. This is andher important
di erence with previous techniques.

3.4 Searching

When given a query (q,r), the search proceeds as in general in most pivot-based
methods. The query object is compared with the pivots in orde to obtain the
distancesd(q,p;), 1 = j = m. These distances are used with the distances from
the objects to the pivots, stored in the index, d(x,p;), x (Ul 1< j < m, to obtain
lower bounds on the distance from each object to the query usg the triangle
inequality, as explained in Section 2.3.1. That is, for eactobject x [, if d(g, X) =
|d(q, p) —d(x,p)| > r, for any pivot p [P], the object is directly discarded from the
result set.

After processing the information stored in the index, the objects that could not
be discarded from the result set are directly compared with he query object to
make up the nal result set.

3.5 Index structure and storage

The simplest way of storing the distances from objects to piwts is a table with as
many rows as objects in the database and as many columns as pits. However,
due to the amount of information stored in the index by pivot- based methods, if the
information stored in the index is processed in that way, theextra CPU time for
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loading the index and processing it can be signi cant. Seveal optimizations of this
processing are possible depending on how the index is storéu secondary memory.

A rst improvement can be obtained if the index is processed olumn-wise
instead of row-wise [Chavez et al., 2001b]. The query objeatan be compared with
the rst pivot p; to discard as many objects as possible from the result with tis rst
comparison. If the rows corresponding to each object of thedallection are ordered
by the distance of each object to the rst pivot, the rst list of discarded objects
can be obtained with two binary searches.

Methods that follow this alternative put in the rst place th e pivot they evaluate
as the best one, sort the objects in the database by their digtnces to this pivot,
and they store in the table the distances to the rest of pivots Thus, binary search
is only possible for the rst pivot.

Storing the distances in a table has another disadvantage wén the method is
dynamic. When an object is added to the database, a row is to beadded to the
table. When a new pivot is selected, a column has to be added tthe table. Either
if the table is stored by rows or columns, one of the two casesiWbe a problem for
the growth of the index.

The solution we propose for storing the distances from objes to pivots in
dynamic pivot-based methods consists in storing the distanes from one pivot to
the objects in the collection in a B-tree, taking as keys the dstances and as values
the identi ers of the objects. That is, each pivot has its own B-tree in which the
distances from the pivot to the rest of objects are stored. Tle index can then be
seen as a list of B-trees. This structure has several advangges:

< The list of objects discarded by each pivot can be obtained vih two accesses to
the B-tree it has associated. The nal candidate list could then be obtained as
the intersection of the candidate lists of each pivot. Thus,instead of processing
the O(n x m) distances stored in the table, the nal candidate list can be
obtained by checking only O(m x log n) distances.

e Using B-trees solves the problems of growth of the index, eiter when an
object is added to the database or when it becomes a new pivot.

< When working with very large databases the amount of informdion stored in
the index can be too high. This structure is also suitable forthe application
of a technique called scope coarsening [Chavez et al., 20Q,Llwhich consists
in storing the distances with less precision in order to redee the space
requirements of the index. The experimental exploration ofthis possibility
remains as future work.

Some methods apply techniques of scope coarsening to reduteat amount of
information [Chévez et al., 2001b]. Scope coarsening comsss in storing only
for each object the distances to its most promising pivots. This structure is
also suitable for this technique.
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These issues are important when working with very large dathases and the
system has to deal with a signi cant amount of queries in eachunit of time.

3.6 Experimental evaluation

In this Section we present the results and conclusions extted from the
experimental evaluation of Sparse Spatial Selection.

First, we present our results about di erent aspects of the kehavior of the method
in terms of the complexity, size, and intrinsic dimensionalty of the collection. Then,
we present the results obtained from the experiments carrié out in order to evaluate
the e ciency obtained with our method in comparison with a ra hdom pivot selection
and existing techniques.

Appendix C describes with detail the experimental environment in which the
experiments were carried out.

3.6.1 Our hypothesis
Pivot selection and growth of the collection

SSS selects a set of pivots well distributed in the space wittut being necessary to
state beforehand how many pivots the algorithm has to select it selects as many
pivots as necessary for adequately covering the space. As weipted out in Section

3.2, this number of pivots depends on the complexity of the cliection, on its actual

content, but not on its size. That is, once the space is coverkwith a good set of
pivots, no more pivots will be selected despite how much the alection grows.

The growth of the size of the set of pivots in terms of the growh of the collection
is an important aspect. If the number of pivots selected doesot stop in some point
as the collection grows, the internal complexity can unbalace the trade-o between
the internal and external complexities, and the memory requrements for storing the
information of the index can become unacceptable too.

We tested SSS with collections of synthetic vectors of dimesion 8, 10, 12, and 14,
uniformly distributed in hypercubes of side 1: VECTOR8 VECTOR1Q VECTOR12
and VECTOR14 respectively (they are all described in Appendix C). For each
collection, we obtained the number of pivots selected by SS$®r di erent sizes of
the collection. The results obtained are shown in Figure 3.3

As we can see in Figure 3.3, the number of pivots grows quickly kaen the rst
objects are inserted into the collection, and that the numbe of pivots moderates
its growth as the collection becomes larger, until it nally converges to a stable
value when all the space is covered with pivots. Although the mmber of pivots
selected can seem to be high for these collections, we havettke into account the
dimensionality of each of them.
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Figure 3.3: Pivots in terms of the size and dimension of the collection.

The second aspect we can see in these results is that our metthaelects more
pivots for the collections of higher dimensionality. This result is coherent with our
analysis, since the higher the intrinsic dimensionality, the more di cult the space
is to cover, and the more di cult the search is.

Controlling the density of pivots

Although in our method it is not necessary to state beforehandthe number of pivots
to select, we have to set the value of the parameten, and the number of pivots
selected by Sparse Spatial Selection depends on this paratee The parameter a
controls the density of pivots used to cover the space. The higher the value af, the
less pivots selected, since the distance that must separateach pivot from the rest
of them is larger. Therefore, di erent values of a led to di erent trade-o0 s between
the internal and external complexities during the search.

We run Sparse Spatial Selection on collections 000,000 vectors from VEC-
TORS, VECTOR1Q VECTOR12 and VECTOR14with values of a ranging from 0.30
to 0.50. Figure 3.4 shows the search performance we obtained for dacon guration
of the method in each collection.

As we can see in Figure 3.4, the optimal results are always obtaed for values
of a between0.35 and 0.40, and the search performance is virtually the same for
all the values of a included in this interval. We can also observe that whena >
0.40, the number of evaluations of the distance function is highe in the spaces
with higher dimensionality. The reason for this result is that an increment in the
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Figure 3.4: Search cost in terms ofa and the dimension of the collection.

value of a means a reduction in the number of pivots, and the degradatia of the
search performance due to having less pivots becomes morepuortant in the most
complex spaces.

E ect of the order of objects

As we pointed out in Section 3.2, if the construction of the incex is dynamic, the
rst object inserted in the database becomes the rst pivot, and if the construction
is static, the rst object can be chosen at random.

Immediately we can wonder if the choice of the rst pivot, or the order in which
the rest of objects inserted into the collection are procesd, can aect the nal
result in search performance or in the number of pivots selded, since SSS goes on
in each step with the information it has, and never goes back.

In order to analyze the dependency of the search performancen the order in
which the objects of the database are processed, we perforghaeveral experiments
using the real data collections we calENGLISH and NASA (a detailed description
of these test collections is provided in Appendix C). We run SS indexing the 90%
of the collection with 10 di erent orders for each value of a between0.30 and 0.50,
recording for each run the number of pivots and the number of dstance evaluations
for solving the remaining 10% objects used as queries.

In these experiments we worked with real collections of datasince the objects
in them do not have a regular distribution that could hide the e ects of the order
in which the objects are processed.
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ENGLISH NASA

a Pivots Search cost Pivots Search cost
V1 o vl o V1 o V1 o)
0.30 | 1557.70 | 11.91 | 1590.25 | 11.76 | 372.40 | 4.92 | 436.22 | 4.18
0.32 | 1558.40 | 11.86 | 1591.25 | 11.76 | 270.90 | 3.78 | 339.28 | 3.63
0.34 813.10 5.57 855.71 5.19 | 201.80 | 4.92 | 276.95 | 4.92
0.36 813.10 5.57 855.71 5.19 | 156.20 | 4.37 | 235.51 | 2.90
0.38 813.10 5.57 855.71 5.19 | 119.50 | 5.58 | 205.37 | 4.72
0.40 404.30 8.10 474.38 6.54 95.50 | 4.81 187.39 | 3.57
0.42 404.30 8.10 474.38 6.54 79.10 | 3.73 178.08 | 3.52
0.44 204.70 5.36 | 354.43 5.15 64.70 | 3.06 | 171.16 | 4.12
0.46 204.70 5.36 354.43 5.15 55.50 | 2.64 | 168.07 | 5.44
0.48 107.60 4.48 506.73 | 36.60 4850 | 3.10 | 171.19 | 4.58
0.50 107.60 4.48 506.73 | 36.60 38.40 | 2.55 173.57 | 7.65

Table 3.1: E ect of the order of objects in pivot selection.

For the collections ENGLISHand NASA, Table 3.1 shows the mean and typical
deviation of the number of pivots selected and the number of tstance computations
needed for solving a query, for values ofi between 0.30 and 0.50. For both
parameters, the mean and typical deviation were obtained wkn running SSS10
times on each collection, processing the objects in a di enet random order each
time. In this table we can see how the number of pivots selectk decreases when
the value of a becomes larger. As we can see observing the typical deviatisrof
each parameter, the e ect of the order in which the objects ae processed does not
introduce a signi cant deviation in the nal results.

E ect of the intrinsic dimensionality of the space

In the description of the method (see Section 3.2) we pointecbut an important
hypothesis: the set of pivots selected by SSS depends on thepology and
characteristics of the space, and not on its size. That is, tk set of pivots is adapted
to the complexity and distribution of the space. In order to validate this hypothesis,
we carried out experiments to study the behavior of the methal in terms of the
intrinsic dimensionality of the space.

Particularly, we tested SSS with two di erent collections of words, ENGLISHand
SPANISH Both are collections of words taken from natural language It, according
to the estimator of the intrinsic dimensionality p = p2/2¢? [Chavez et al., 2001b],
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ENGLISH and SPANISH, number of pivots in terms of a
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Figure 3.5: Pivots in terms of a in ENGLISHand SPANISH

they have di erent intrinsic dimensionality. That is, one o f them is more complex
than the other. They also dier in the number of objects they contain. For each
collection, we obtained the number of pivots selected by SS&nd the number of
object comparisons needed to solve a query, for di erent vales ofa.

Figures 3.5 and 3.6 show the number of pivots selected and thaumber of
evaluations of the distance function for both collections espectively. SinceSPANISH
contains more objects thanENGLISH we could expect to need more pivots in order
to index the rst collection. However, the intrinsic dimensi onality of ENGLISHis
higher and is therefore the collection is more complex.

In Figures 3.5 and 3.6 we can see that, for the same values of the algorithm
selects a higher number of pivots in the case dENGLISH necessary to cover all the
space. However, the results obtained about the search perforance are virtually
the same for both collections, independently of their size ad the number of pivots
used to index each of them.

The results of this experiment show that SSS indexes the spacnot depending
on the size of the collection, but on the complexity of the seech space.

3.6.2 E ciency
Comparison with random selection

A rst evaluation of the search performance of Sparse SpatibSelection was obtained
by comparing it with a random pivot selection, in several syrthetic and real
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ENGLISH and SPANISH, search cost in terms of a, r = 2
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Figure 3.6: Search cost in terms ofa in ENGLISHand SPANISH

collections of data: VECTORE VECTOR1Q VECTOR12 VECTOR14 ENGLISH
SPANISH and NASA

For each collection, the 90% of the objects were used as the database to be
indexed, and the 10% of the objects were used as queries. In each experiment, we
obtained the average number of distance computations needeto solve a query. In
collections of vectors, the search range was adjusted to retrieve an average of the
0.01% of the objects of the database in each query, and in collectizs of words, the
search range used was = 2 (as usual in most works dealing with distances among
words).

Figures 3.7, 3.8, 3.9, and 3.10 show the results obtained fdhe collections of
uniformly distributed vectors of dimensionality 8, 10, 12, and 14, respectively. As we
can see in the results, the number of comparisons is higher f@ollections of higher
dimensionality, but SSS always performs better than a randomn pivot selection,
independently of the dimensionality of the space.

Table 3.2 shows the mean and typical deviation of the number b distance
computations needed for solving a query, for each collectio of vectors. As we
can see in these results, the typical deviation is smaller wh our method, which
is coherent with our hypothesis. That is, not only SSS is alwgs better, but its
behavior is also more stable (smalleiw) than when pivots are selected at random.
This parameter can be important in systems that receive a lage number of queries
in each unit of time.
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VECTORS, 100,000 objects, 10,000 queries, retrieving the 0.01% of the database
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Figure 3.7: Search cost with Random and SSS, collectioWECTORS8

VECTOR10, 100,000 objects, 10,000 queries, retrieving the 0.01% of the database
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Figure 3.8: Search cost with Random and SSS, collectioWVECTOR10
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VECTOR12, 100,000 objects, 10,000 queries, retrieving the 0.01% of the database
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Figure 3.9: Search cost with Random and SSS, collectioWECTOR12

VECTOR14, 100,000 objects, 10,000 queries, retrieving the 0.01% of the database
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Figure 3.10: Search cost with Random and SSS, collectioWVECTOR14
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VECTORS8 | VECTOR10 | VECTOR12 | VECTOR14
Method
V! (o) V] (o) vl (o) V1 (o]
Random 224 | 53 | 581 166 1046 | 316 | 2087 | 622
SSS 151 | 33 | 390 | 101 689 | 193 | 1452 | 399

Table 3.2: Variation of the search cost in uniformly distributed vectors.

Comparison with other techniques for pivot selection

We compared SSS with previous techniques to evaluate its copetitiveness in what
refers to distance computations. We selected the followingechniques to compare
our method  with: Incremental [Bustos et al., 2001], MaxMin
[Vleugels and Veltkamp, 2002], SFLOO [Hennig and Latecki, 208], and Spacing
[van Leuken et al., 2006]. We do not considered Maximum Prumg nor Maximum
Variance [Venkateswaran et al., 2008, Venkateswaran et gl.2006] since they use the
search range in the indexing phase, and the comparison wouldot be fair. For
the comparison we used two real data collections of di erentnature: ENGLISH a
collection of words, andNASA, a collection of images.

As usual, for each collection, the90% of the objects of the collection were used
as the database to be indexed, and the remainind0% objects were used as queries.
We obtained the average number of distance computations neked for solving a
query, using di erent numbers of pivots. The results are shovn in gures 3.11, and
3.12 respectively, as the number of distance computationsniterms of the number
of pivots used by each algorithm. Tables 3.3 and 3.4 list the elevant subset of the
results shown in each gure. The rst ve columns show the results obtained with
previous techniques for xed numbers of pivots. The last three columns show the
results obtained with di erent values of the parameter a with SSS.

In  the collections ENGLISH and NASA SSS and MaxMin
[Vleugels and Veltkamp, 2002] obtain the best search perforance. SSS obtains
a better result in ENGLISHand MaxMin obtains a better result in NASA, although
the di erence between them is not very signi cant.

Although the di erences in search performance between SpaesSpatial Selection
and previously proposed methods are not very signi cant, own method is clearly
better than the previous ones in other operations and featues, important for the
operation of a real database system. As we pointed out in prewus sections, SSS
is the only dynamic pivot-based method, it adapts its structure as the database
grows. It obtains the smaller cost for the insertion of an obgct and the selection of
pivots, since the only information it needs is the needed foinserting an object into
the database.
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Figure 3.11: Comparison with other techniques, collectionENGLISH

’ Piv. ‘ Increm. | Maxmin | SFLOO | Spacing H ‘ Piv. ‘ SSS
20 6957.48 8214.77 7432.28 | 11608.43 0.8 3 | 30060.68
40 3025.13 2659.12 3182.53 4421.69 0.76 5 | 30060.68
60 1726.65 1231.56 1661.63 1950.95 0.72 5 | 24377.49
80 1098.74 754.86 1047.32 1190.86 0.68 11 | 13622.29
100 838.88 561.47 762.26 816.83 0.64 18 8257.96
120 675.00 440.23 612.01 725.13 0.62 18 8257.96
140 562.00 392.53 519.21 534.74 0.58 31 3600.80
160 497.77 366.14 461.88 559.31 0.54 55 1332.30
180 463.51 353.36 438.23 406.70 0.50 107 506.73
200 443.35 350.62 419.57 42451 || 0.46 204 349.43
220 429.84 353.77 410.68 477.21 0.42 404 474.38
240 428.86 361.43 407.67 396.68 0.38 813 855.71
250 429.37 365.17 410.00 397.64 0.34 813 855.71

Table 3.3: Comparison with other techniques, ENGLISH
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NASA, 40150 objects, retrieving the 0.01% of the database
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Figure 3.12: Comparison with other technigues, collectionNASA

’Piv.‘lncrem. Maxmin | SFLOO | Spacing H a ‘Piv.‘ SSS ‘

30 243.21 193.24 207.91 408.57 0.64 10 284.97
40 210.78 165.87 189.73 398.72 0.62 12 263.31
50 203.06 160.55 189.05 395.58 0.60 14 | 270.34
60 199.23 158.52 185.64 288.47 0.58 18 230.49
70 202.27 163.42 188.03 315.19 0.56 20 240.11
80 205.75 171.17 189.76 319.61 0.54 25 199.58
90 202.49 173.65 196.59 294.44 0.52 26 213.27
100 209.79 181.77 200.29 298.83 0.50 36 178.40
110 212.72 188.60 205.72 303.10 0.48 48 171.19
120 220.18 195.11 211.85 326.30 || 0.46 55 | 168.07
130 228.03 204.00 217.33 326.33 0.44 64 171.16

Table 3.4: Comparison with other techniques, NASA
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3.7 Discussion

In this Section we summarize the main advantages and drawb#s of the method
we have proposed in this chapter, in comparison with the chaacteristics of existing
methods for the selection of e ective pivots.

Cost of indexing

An advantage of SSS when compared with previous methods is theost of the
selection of reference objects. In other techniques, the ketion involves a very high
number of distance computations that makes the construction of the index very
costly. SSS does not need any extra information for the seléion of pivots. When
an object is inserted into the database, it has to be comparedvith all the pivots,

and that is the only information that our method needs to determine if a new object
becomes a pivot or not.

If an object becomes a pivot, the distances from all the objets in the database
to the new pivot it have to be computed and stored, but that distances would need
to be computed in any case for inserting the object into the déabase.

Optimal number of pivots

An important characteristic of SSS is that it is not necessaryto state the number
of pivots beforehand. The method determines by itself how may pivots it needs
for indexing the collection of data. New pivots are selected s needed because the
database of objects has grown. The method determines by itéfehow many pivots
are necessary in each moment.

In all previous techniques this number has to be stated befar the indexing, and
the optimal value for the trade-o between internal and external complexities has
to be obtained by trial and error on the complete collection,which inevitably makes
the index static.

Dynamic and adaptive

Being dynamic and adaptive are another two important advantages of SSS over
previous methods. All previous techniques for pivot selectin are static, thus forcing
the users to have a complete database before the indexing pka, and limiting the
insertions or removals of objects after the index has been b, since they can
degrade the performance of the structure.

SSS starts the construction of the index from an empty databae. As new objects
are inserted, SSS adapts the structure of the index and the iformation it stores
as needed when new objects are inserted into the database ameéw regions of the
space appear. The index is also adapted when an object is rewed, removing a
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pivot if necessary and therefore conserving the trade-o b@veen the internal and
external complexities in the search performance.

Search performance

In the experimental evaluation provided in Section 3.6, we howed that SSS is
always more e cient than a random pivot selection, and that it is a competitive
technique when compared with previous proposals in data ctdctions taken from
real problems.

Particularly, we have compared Sparse Spatial Selection il the previous tech-
niques described in Section 2.6: random selection, MaxMinSFLOO, Incremental,
and Spacing. In the experimental comparison we used both syhetic collections
of data with which specic parameters of the method were evalated, and also
collections of data extracted from real applications.

Parameter tuning

A possible drawback of our method is the parameter tuning. Although in most
scenarios is possible to analytically obtain the value of tle maximum distance, or
that it can be approximated on a rst sample of objects, it can be seen as a problem
in some domains. The use of the parametea can be seen also as a disadvantage,
although our experimental results show that it also gives tre best results, or results
very near to the best for values ofa in values from 0.30 to 0.40.
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3.8 Summary

In this chapter, we have presented Sparse Spatial Selectidi$SS), a new pivot-based
method for similarity search in metric spaces. While previaus methods select pivots
based on the hypothesis that they have to be as far as possibleom each other,
Sparse Spatial Selection selects a set of pivots well disbiited in the space.

An important characteristic of SSS when compared with other methods is that
it is dynamic. That is, the method starts with an initially em pty database and
pivots are selected or removed and the index is adapted as nessary when objects
are inserted or removed from the database. Another advantag®f Sparse Spatial
Selection when compared with previous techniques is the co®f the construction
of the index. When an object is inserted in the database, it ha to be compared
with the already selected pivots to index it. Our method doesnot need any further
information in order to decide if this new objects becomes a ew pivot or not.
Therefore, the overhead introduced by the pivot selection $ 0, the cost for the
selection of pivots is minimum.

In this chapter we presented the algorithms for inserting ard removing objects
in the database, and discussed possible data structures fahe construction of the
index, suitable for its dynamic nature.

The chapter also presents the results and conclusions takerfrom the
experimental evaluation. It has been shown that the number & pivots selected by
the algorithm does not grow in nitely, it stops growing when the set of pivots fully
covers the space. It also has been shown that the optimal vaks of the parameter
a are in the range [0.35,0.45], and that the search cost is virtually the same for
all values in that range. The results also show that the orderin which the objects
are processed does not a ect signi cantly the nal search peformance. Finally, the
experimental evaluation shows that SSS is as e cient as or b#er in most cases
than previous techniques.
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Sparse Spatial Selection Tree

4.1 Overview of the chapter

In clustering-based methods, the specic set of objects ugk as cluster centers
directly determines the structure of the index and its capadty for pruning the
search space. Although most methods select the cluster cente at random, the
speci ¢ set of objects used as cluster centers directly detenines the e ectiveness of
the index during the search. Other important aspect of clusering-based methods
is the structure of the index. In most cases it is a completelybalanced structure
that may not adequately t the irregular distribution of the data in the space.

In this chapter we provide an analysis of the issues relateda the selection of
e ective cluster centers and the use of unbalanced index strctures as a way to
improve the search performance obtained with clustering-bsed methods.

We present Sparse Spatial Selection Tree (SSSTree), a new clustering-based
method for similarity search. In each level of the tree, it séects as many cluster
centers as necessary to cover the space and obtain clusters @mpact as possible.
In addition, the index structure is completely unbalanced. That is, each node of
the tree will have as many children as necessary, and some brehes can grow while
others have already stopped depending on if a region of the sge is worth of further
partitioning or not.

Section 4.2 presents our analysis of the e ect of cluster caar selection and
the use of unbalanced index structures for clustering basednethods respectively.
Section 4.3 presents Sparse Spatial Selection Tree, the algthms for index
construction and searching, and other issues related to howthe cluster centers are
selected and possible criteria for stopping the partitionng of the space. Section 4.4
presents the experimental evaluation of the method.

73
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4.2 Issues related to the selection of cluster centers

Before introducing our analysis of the issues related to theelection of cluster centers
in clustering-based methods, it is worth to remind some impatant aspects about
how these methods proceed to prune the search space and thusduce the number
of comparisons needed for solving a query.

Clustering-based methods select a subset of objects from ¢hdatabase as cluster
centers, c1,...,Cm. Then, each object in the database is assigned to the cluster
corresponding to its nearest cluster center, dividing the pace into a set of disjoint
clusters, Cq,...,Cn:

C ={x [ dx,¢)=d(x,¢), 1<j=m}

The clusters are disjoint, and the result of the union of themis the complete
database. This division of the space is called a Voronoi paition. The information
stored in the index for each cluster usually consists in the luster center ¢; and
the covering radius of the clusterrc,, which is the distance from the center to its
furthest object in the cluster.

The center of the cluster and the covering radius de ne aball that encloses the
cluster. It is important to note the di erence between the cluster (a set), and its
enclosing ball de ned by the center and the covering radius. A query (q,r) also
de nes a ball in the space, with centerq and radius r. Therefore, the result set
must contain all the objects in the database that fall inside the ball.

A cluster is directly discarded without comparing the query with any of the
objects it contains if the intersection of the ball enclosirg the cluster and the ball
de ned by the query is empty. When given a query(q, r), the cluster C; is discarded
from the result if:

d(@,c)=>rc+r

The probability of discarding a cluster from the result depends on its size (that
is, on its covering radius). The larger a given cluster is, tle more the chances that
its enclosing ball intersects the query ball. Therefore, ifthe partition creates small
clusters, the probability of discarding them increases. Howver, the query object
would have to be compared with too many cluster centers, whik increases the
internal complexity. Most clustering-based methods (see &ction 2.5.2) address this
problem by recursively partitioning the space. That is, the space is rst partitioned
in large clusters that are then recursively partitioned in smaller clusters and so
on. If a cluster is not discarded from the result, it is further processed instead of
comparing the query with all the objects it contains.
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Figure 4.1: Example of compact (a) and non-compact (b) clusters.

Even in methods that recursively partition the space, the e ectiveness of the
partition for pruning the search space depends mainly on thecompactness of each
cluster, and on the overlapping between the balls de ned by ach cluster:

< Acluster is said to becompact if its associated ball does not have wide regions
without any object. Figure 4.1 shows examples of compact aneion-compact
cluster. As we can see in the gure, the compact cluster has mar chances to
be discarded from the result if it does not contain any objectin the result,
since it is less probable that its ball intersects the ball dened by the query.

< The overlapping between the balls of clusters also a ects tlke capacity of the
index for pruning the search space. If the balls of two clustes intersect, it
is more di cult to discard one of them from the result. Figure 4.2 shows an
example. In the step of the search shown in the gure, only thecluster C;
can be discarded from the result. If the intersection betwea C, and C3 were
empty, one of them could be pruned from the search space.

Problems of randomly selected cluster centers

Most clustering-based methods select the cluster centerstaandom. As happens
with the selection of pivots in the case of pivot-based methds, this approach
presents several inconveniences:

< First, in order to avoid the non-empty intersection between the enclosing ball
of each cluster and the query balls, the cluster centers shdd be selected in
such a way that the clusters are as compact as possible. Cldgr random
selected cluster centers do not guarantee the resulting chiers to be compact.
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If an object is not really near of its nearest center, this wil cause the enclosing
ball of the cluster to be much larger than it should. This increases the
possibilities of the enclosing ball of the cluster to have arintersection with
the ball de ned by the query.

< Second, with a random selection of the cluster centers, therare no guidelines
for determining the optimal number of centers. Too much ceners led to more
compact clusters, but also to too much comparisons of the qug with cluster
centers (increment of the internal complexity). Few cluste centers can cause
the enclosing balls of each cluster to be larger than they shdd. Thus, the
optimal number of cluster centers should be determined by tial and error.
Again, this inevitably makes the index static.

Figure 4.2: Search pruning and overlap between clusters.

Recursive tree-like indexes try to address this problem by ecursively partitioning
the space. For instance, in the root of the tree the space is pttioned in four
clusters, and each of them is further partitioned in four new clusters in the next
level of the tree and so on. This strategy obviously helps to btain compact clusters,
but it could be improved by following some strategy to improve the quality of the
clusters in each level.

Another aspect of all clustering-based methods is that the nmber of clusters
created in each node is always the same. Again, this can causee partition on
each level to be far from the optimal.
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4.3 SSSTree: Sparse Spatial Selection Tree

Most clustering-based methods, as BST [Kalantari and McDorld, 1983], GHT
[Uhlmann, 1991], GNAT [Brin, 1995], VT [Dehne and Noltemeier, 187], or M-Tree
[Ciaccia et al., 1997] (all of them described in Setion 2.5)2 create tree-like indexes
in order to recursively partition the space. They dier mainly in the structure of
the tree and the information about the partition they store i n each level of the
tree. Something that most of them have in common is that the trees are balanced
structures. That is, all the nodes of the tree have the same nmber of children
nodes, and usually all the leaf nodes are all at the same level

In our opinion, since real collections of data present biase and irregular
distributions, this approach trying to index an irregular space with a balanced
(regular) data structure is not a good alternative. By contrast, an index structure
which does not impose a rigid structure can adapt better to the irregular distribution
of the objects in the data space, and obtain therefore more gopact and e ective
clusters.

SSSTree is a clustering-based method for similarity searclbased on a tree
structure where the cluster centers of each internal node ofhe tree are selected
applying Sparse Spatial Selection (SSS) (presented in therpvious chapter). The
structure we propose is unbalanced in order to explicitly adpt to the structure of
the space, and tries to select in each level the best possib&uster centers in order
to improve the search cost.

Our hypothesis is that, using SSS to select the cluster cents, the partition of the
space will be better and the performance of the search opern will be improved.
Each node stores the covering radius of its correspondingas$ter. Then, that cluster
is recursively divided in several clusters, again selectmthe cluster centers with SSS.
An important di erence with methods like GNAT is that SSSTree i s not a balanced
tree and not all the nodes have the same number of branches. Ehtree structure
is determined by the number of clusters selected by SSS and ¢hnefore it depends
on the internal complexity of the subspace de ned in each nod by the objects it
contains.

4.3.1 Construction

The construction process starts with all the objects in the database. In the root of
the tree, a set of cluster centers is selected applying SSSh@ maximum distance can
be estimated as in the previous chapter). That is, the nhumberof clusters created
in the root of the tree is not stated beforehand. The algorithm selects as many
reference objects as necessary to cover the space. All the star centers will be at
a distance greater thanMa from the rest of centers in the rst level.

Figures 4.3 and 4.4 show an example of tree construction aftehe selection of
the cluster centers at the root of the tree. As usual, each objet is assigned to the
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(b) Decomposition of the space in the first level of the tree.

Figure 4.3: Partition of the space in the root of the tree.

cluster corresponding to its nearest center. For each clust, the tree stores the
cluster center and the covering radius of the cluster.

The process is recursively repeated. That is, each clusterfahe rst level
is partitioned following the same approach, selecting as nwy cluster centers as
necessary applying SSS. The recursive process stops when laster has a small
number of objects. The minimum number of objects must be esthalished previously
(threshold 4). The process stops when a cluster has a number of objects &than
or equal to a threshold d or, alternatively, when the covering radius of the cluster
is smaller than a given threshold.

This is the main di erence of SSSTree with previous methods. While existing
techniques create a balanced tree with the same arity in all he nodes, SSSTree
creates a tree structure where the number of children of eachode depends on the
SSS selection of cluster centers. Each cluster of the rst kel can be subdivided in
a di erent number of clusters, depending on the number of obgcts they have, and
the distribution of the objects in the subspace.
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Figure 4.4: SSSTree tree after the rst space patrtition.

In each internal node we have to estimate again the maximum ditance in
the cluster associated to it (since the maximum distance of he metric space is
not valid for each new cluster). The maximum distance can vay even between
di erent clusters in the same level. In the next subsection ve explain di erent ways
to e ciently estimate the maximum distance into a cluster. O nce the maximum
distance inside a cluster is estimated, the new cluster ceets are created.

Applying this strategy for the selection of cluster centers, not all the nodes of
the tree will have the same number of child nodes. Each clusteis divided in a
number of regions which depends on the distribution and comfexity of the data of
that cluster. This is a very important di erence with other s tructures like GNAT.
The index construction adapts the index to the complexity and distribution of the
objects of the metric space, and in each level of the tree onlthose needed clusters
will be created. This property is derived from the fact that SSS is able to adapt
the set of reference objects to the complexity of each space subspace.

Estimation of the maximum distance M

One of the problems of the construction process is the need afomputing the
maximum distance M in each cluster. The naive way to compute this distance
is to compare each object in the cluster with all the other obgcts in the cluster,
but this approach is too expensive.

Let M be the maximum distance between any pair of objects of the clster C;,

and r¢, the covering radius ofC;, the distance from the cluster center to the furthest
object in the cluster. Then, we know that M < 2xr.,. As we can observe in Figure
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4.5, if we use2 x r¢, as the cluster diameter, we can cover the same objects as ugin
M as diameter. Therefore,2xr¢, can be used as a good estimation of the maximum
distance during the construction process.

Furthest object

Figure 4.5: Estimation of the maximum distance in each cluster.

Note that with this solution, neither the computation of the c overing radius
or the estimation of the maximum distance between two object of the cluster
introduce any additional cost. In any level of the tree, oncethe cluster centers have
been selected, each object has to be compared with all the cems in order to assign
it to a cluster. The covering radius can be obtained from theg distances without
additional computation, and therefore, so does the estimabn of the maximum
distance between two objects in each subcluster.

4.3.2 Searching

When given a query (q,r), the search works as usual. The tree is traversed from
the root to the leaves, pruning the search space when poss#l In a given node of
the tree, the query object is compared with all the cluster caters ¢; stored in that
node. Using these distances and the covering radius of the @dter corresponding to
each center, the algorithm discards from the result all cluters for which:

d(g,c) >r+rg,

When a branch of the tree is pruned, its corresponding regiorin the space is
discarded from the result. The search algorithm traverseslte tree by following the
branches that could not be discarded, until reaching the leaes of the tree.



4.4. Experimental results 81

4.4 Experimental results

The performance of SSSTree was tested with several colleotis of data: a collection
of synthetic vectors with uniform distribution in an hyperc ube of side 1, and the
real collections SPANISH (words) and NASA (images). All of them are described
with detail in Appendix C.

SSSTree was compared with other well-known clustering-basl indexing meth-
ods: M-Tree [Ciaccia et al., 1997], and GNAT [Brin, 1995] (desribed in Chapter
2.5), and EGNAT [Uribe et al., 2006], a modi cation of GNAT.

Figure 4.6 shows the results obtained when comparing SSSTeewith existing
methods, with the collection of uniformly distributed vect ors. As usual,90% of the
collection was used as the database of objects to be indexednd the remaining
10% of the objects were used as queries. The gure shows the avaga number of
distance computations needed for solving a query, for di eent search radius.

We used three di erent search radius that retrieve for each aery the 0.01%,
0.10%, and 1.00% objects of the database respectively. The reason for using drent
search radius is that, for clustering-based methods, this grameter can a ect the
results obtained and the comparison of a method with others.

As we can see in these results, SSSTree is signi cantly more eient than M-
Tree and GNAT in all cases, and also more e cient than EGNAT, for all the search
radius. In these results we can see the variation in the seanccost in terms of the
search radius. Obviously, the larger the search radius, thenore di cult to discard
objects is for the method.

Figures 4.7 and 4.8 show the results obtained from the comp&on of SSSTree
with M-Tree, GNAT, and EGNAT, in the collections SPANISH(words) and NASA
(images). In the case of the collectionSPANISH we used search radius froml to
4, for the same reason as in the previous case. In the case of tieellection NASA,
we used again three di erent search radius, that retrieve anaverage of the0.01%,
0.10%, and 1.00% of the objects in the database.

The results we obtained are very similar to the obtained for wniformly distributed
vectors. SSSTree is systematically more e cient than previbus techniques in both
collections. In the case of the collection of words, SSSTreis signi cantly more
e cient than all the other methods for all search radius.
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Evaluations of the distance function

VECTOR10, 100,000 objects, 10,000 queries, different search radius
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Figure 4.6: Comparison with other methods, collectionVECTOR10

Evaluations of the distance function
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SPANISH, 86,056 words, different search radius
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4.7: Comparison with other methods, collection SPANISH
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Figure 4.8:

Comparison with other methods, collectionNASA
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4.5 Summary

In this chapter we addressed the problem of selecting e ectie indexing objects for
clustering-based methods. In Section 4.2 we provided a desgtion of the issues
related to this aspect. The main conclusion of that analysisis that, with a random
selection and a number of cluster centers xed beforehand,here is no guarantee of
obtaining compact clusters and of their associated balls inhe space to have a small
overlap. We also analyzed the consequences of the use of batad or unbalanced
tree-like structures in clustering-based methods. In linewith the results of our
previous analysis, our hypothesis was that the use of balamd structures does not
adapt the structure and information stored in the index to th e irregular distribution
of the data space, present in real applications. That is, a blnced index structure
and decomposition of the space is not the optimal con guraton for real datasets.

Based on the results of our analysis of the issues related teekecting e ective
cluster centers and the use of balanced or unbalanced indetractures, we proposed
a new clustering-based method Sparse Spatial Selection Tree (SSSTree). It is an
unbalanced tree-like index that uses in each level the numbreof cluster centers it
considers necessary in terms of the amount of objects in theegion of the space
it covers and on their distribution in the search space. Thus the index adapts its
structure and its resources to the actual distribution of the data. In Section 4.3 we
presented the algorithms of construction and searching.

In Section 4.4 we present the experimental evaluation of thenethod, in which we
compared our method with state-of-art methods. Our experimental results con rm
our hypothesis. SSSTree is signi cantly more e cient than previous methods in
both synthetic and real collections, for di erent search radius in each of them.



Chapter 5

Non-Redundant Sparse Spatial
Selection

5.1 Overview of the chapter

In this chapter we present Non-Redundant Sparse Spatial Set¢ion (NR-SSS), an
improved version of SSS for the selection of indexing objest Although an e ective
set of pivots can be obtained with SSS, it is a greedy algoritm and some of the
decisions taken during the selection could be improved as #h database evolves.
NR-SSS re nes the criterion for selecting pivots of SSS at theexpense of a higher
computational cost of the selection.

When a new object is inserted into the database, it becomes aandidate pivot
if it satis es the selection criterion of SSS. Then, its individual contribution to the
overall set of pivots is computed. Based on the contributionof the candidate, it
may be discarded, it may be added to the set of pivots, or it maybe added to the
set of pivots replacing another pivot that is considered wose. The resulting set of
pivots is smaller, which reduces the internal complexity ofthe search, but maintains
the capacity for directly discarding objects from the resut. As in the case of SSS,
the selection is dynamic, that is, the pivots are selected asew objects are inserted
an initially empty database.

The rest of the chapter is organized as follows: Section 5.2rpsents the details
of the motivation for this new method. Section 5.3 presents Na-Redundant Sparse
Spatial Selection (NR-SSS): the algorithm for the estimation of the contribution
of each candidate pivot and the policies for deciding what todo with each new
candidate pivot. Section 5.4 explains how the cost of the settion can be reduced
at the expense of a loss in search performance. Finally, Sésh 5.5 presents the
results obtained in the experimental evaluation of the mettod.

85
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5.2 Motivation

In Chapter 3 we presented Sparse Spatial Selection (SSS) asnaw method for pivot
selection. As we have seen in our analysis, it is competitive ith previous techniques
in what refers to search cost (comparisons needed for sol\gna query), but in
addition it is clearly better in other characteristics: it i s dynamic, it adapts the
index structure to the distribution of the objects in the space, and it has minimum
cost for the selection of pivots and the construction of the ndex.

However, SSS is a greedy algorithm for selecting reference jebts. That is, each
time an object is inserted into the database, the method dedes if it becomes a
pivot or not with the information it has up to that moment. Onc e an object is
selected as a pivot, the method does not go back on that decin. In some moment
as the database evolves, some of that decisions can becomgomeous in some way.
Two situations are likely to arise:

< An object could be selected as a pivot without being necessaryhat is, the
set of pivots could achieve the same search performance withit that pivot
because other pivots do the same work it does, because the @gjs that are
discarded by that pivot can also be discarded by other pivotsof the set. In
this case, comparing the query with that pivot is useless, ad it increases the
internal complexity.

e It is possible that an object was selected as a pivot when anber object
inserted later could be more e ective to cover a given regiorof the space. That
is, an object selected as a pivot can prevent another better lnject to become
a pivot. In this case the problem is not only that the internal complexity is
increased. The selection of the rst pivot prevents to redu@ even more the
external complexity.

Therefore, by analyzing the set of pivots obtained with SSS wwen the database
has a signi cant number of objects, it is possible to nd pivots that are in some
way redundant, that is, pivots such that the set of pivots would obtain the search
performance without them.

Figure 5.1 shows an example of this situation in a two-dimen®nal scenario. Lets
suppose that the set of points within the rectangle shown in he gure is the universal
set, that they are compared using the Euclidean distance, ath that the database
contains the points shown in the gure, that is, {Xi1,X2, X3, X4, X5, Xg, X7, Xg, X9}
The maximum distance between two points is given by the diagoal of the rectangle.
With a = 0.4, the set of pivots selected by SSS could contain the objects
{X1, X2, X3, X4}, shown in bold in the gure (we do not shown the regions coverd
by each pivot in the gure for the sake of clarity in the example). Therefore, the
index stores the distances from each objeck; to each of these four pivots.
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Figure 5.1: Example of redundant pivots with Sparse Spatial Selection.

When given the query (g, r), the query object is compared with all the pivots
in order to directly discard as many objects as possible fronthe result. If only
the objects x; and X, were used as pivots, the objectxs would not be discarded
from the result, since its distance to any of those pivots is he same as the distance
from the query object q to them (the lower value of the distance from x5 to g
would take a value close to0). Similarly, if only the objects x; and x3 were used as
pivots, the object xg would not be discarded from the result for the same reason:
its distance to a pivot is more or less the same as the distancBom the query to
that pivot. However, if the set of pivots contains any subset d three objects from
{X1,X%2, X3, X4}, those pivots would be enough for perfectly locating the posion of
any point in the space, and thus discard from the result set tle objects that are not
contained in it.

This is an example in which SSS has selected more pivots thame really needed.
Some of the four pivots selected by SSS is redundant in some wathat is, one of
the four pivots could be removed from the set of pivots used irthe index, and the
capacity of the set of pivots for discarding objects from theresult would remain the
same. This situation unnecessarily increases the internatomplexity of the method.

This is a consequence the greedy approach followed by SSS. 8method obtains
a good set of pivots adapted to the distribution of the space,and in addition the
selection is dynamic and with minimum cost. However, if the application admits a
higher cost for the selection, the set of pivots obtained by SS could be re ned with
further processing of the collection. That is, it is possibe to remove some pivots
from the set and still conserve its capacity for discarding djects from the result.
This gives as a result a smaller set of pivots, which means a deiction of the internal
complexity and the space requirements of the index.
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If the system can deal with more costly insertions of object@&nd reasonably small
reorganizations of the index, it would be possible to modifythe selection criteria
in order to identify and remove the redundant pivots, that is, pivots that do not
contribute to the overall set of pivots. In this Chapter we present Non-Redundant
Sparse Spatial Selection (NR-SSS), a new dynamic techniqueif the selection of
indexing objects that follows this approach.

5.3 Pivot selection and index construction

This section describes Non-Redundant Sparse Spatial Seléoh (NR-SSS): the
criterion and algorithms for evaluating the individual contribution of a pivot, the

policies for adding it to the set of pivots in terms of its contribution, and the
procedures for pivot selection and index construction.

5.3.1 Estimation of the contribution of a pivot

Let (X,d) be a metric space,U [Xl a database of sizen, and P = {p1,...,pm}
a set of m = |P| pivots. When a candidate pivot pm+1 is selected, the method
evaluates the contribution of each pivot in P [{py +1} as follows. A set ofA pairs
of objects from the collectionPairs = {(x,y), X,y U}, A = |Pairs|, is selected as
a sample of pairs object-query. The set ofA pairs is a good sample of queries and
objects to be discarded, assuming that the distribution of the queries in the space
is similar to the distribution of the objects of the database in the space.

For each pivot p; and pair (X;,Y; ), the lower bound on the distanced(x; ,y;) is
computed as:

d(xj,y;) = [d(pi, x;) —d(pi, y;)I

We consider that the best pivot pmax for each pair (X; ,y; ), the one that obtains
the higher lower bound on the real distance, since it is the oa with more chances
for discarding the object x; when the y; object is used as a query or vice versa.
The algorithm obtains also the second best pivot for each paij pmax 2, as the pivot
maximizing the lower bound on the real distance ifpmax Where removed from the
set of pivots. The contribution of pmax for the pair (x;,y;) is de ned as:

|d(Xj » Pmax ) - d(yj » Pmax )l - |d(xj » Pmax 2) - d(Yj » Pmax 2)|

We consider that the contribution of the other pivots in P [{pm+1} for this pair is
0. That is, for each pair of objects, all the pivots compete to ke the best, and only
the one that obtains the best lower bound is given a score thats added to compute
its overall contribution for the set of A pairs of objects. Note that by computing
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the contribution of the best pivot as the di erence of its lower bound and the lower
bound of the second best pivot, the contribution does not depnd on the real value
of distanced(x;, ;).

The total contribution of a pivot p; [Pl [y +1} is the sum of its contributions
for the A pairs of objects. Note that a pivot that has contribution equal to 0 does
not maximize the distance in the pivot space for any pair of oljects. In that case,
we consider that the pivot is redundant (at least for those A pairs), since other
elements in the set of pivots can discard the objects it discals.

For each pair (X,y), we consider that the best pivot is the one maximizing the
lower bound on the real distanced(x,y), and this is the only pivot that gets a
positive score for this pair of objects. However, it is imporant to note that this
does not mean that it is the only pivot able of discarding the dject x against the
objecty. The second, third, or even all the pivots may be able to disced it from the
result. Therefore, removing a pivot with a contribution di erent than 0 does not
necessarily mean that the objects for which it is the best piwt can not be discarded
by any other pivot. It is also important to note that, since th e contribution of the
pivots is computed on a sample of queries, the results obtagd are an approximation
of their real contribution when solving real queries.

5.3.2 Pivot selection

Both the database and the set of pivots are initially empty, and the index is built
as new objects are inserted in the database. When an object [X is inserted
in the database, the algorithm checks if it becomes a candida pivot applying the
criterion of SSS. If the distance fromx to the pivots already selected is greater or
equal than Ma (where M is the maximum distance between any two objects andx
a constant parameter that takes values betweerd and 1, usually between0.35 and
0.45), the object x becomes a candidate pivot.

If the number of pivots is smaller than some small constant, x is directly added
as a pivot. Therefore, the rst candidates are directly added to the set of pivots
since a number of them is necessary for the computation of theontribution of each
pivot. If some of them are redundant, they will be removed in rther steps of the
algorithm.

If the set of pivots has already more thanc objects, the algorithm selectsA
pairs of objects at random and computes the contribution of @ch pivot, including
the new candidate pivot. The already selected pivot with the lowest contribution is
taken as thevictim, and it can be replaced if the contribution of the new candidae
pivot is better than its contribution to the set of pivots.
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Based on the values of these contributions, the algorithm aplies the second
criteria for deciding what to do with the new candidate. Three cases are possible:

e The contribution of the candidate is 0: it means that it has never won the
competition for discarding an object. Since the candidate an not discard any
pair of objects that is not discarded by the already selectedpivots, it does
not make sense to add it to the set of pivots since it would be rdundant.
Therefore, the candidate pivot is discarded.

e The contribution of the candidate is greater than 0, but lower than the
contribution of the victim: in this case, there are some pais of objects that
can only be discarded by this new candidate pivot. Since it imot redundant,
it is added to the set of pivots. Since the victim pivot discards more objects
than the new candidate, it is not removed from the set.

e The contribution of the candidate is greater than 0, and greater than the
contribution of the victim: in this case, the new candidate pivot is not
redundant, so it is added to the set of pivots. In addition, the algorithm
decides to remove the victim pivot because its contributionis smaller than
that of the new pivot.

The pseudocode shown in Algorithm 5.1 summarizes the seleotn of pivots in
Non-Redundant Sparse Spatial Selection. Algorithms 5.2 and 8 summarize the
computation of the contribution of each pivot and the selection of the victim from
the current set of pivots respectively.

The selection algorithm computes the contribution of the pivot candidate p,
using the rule de ned in Section 5.3.1. For each pair of objets (X, y), the algorithm
computes the lower bound on the distanceal(x, y), using p as pivot. If this distance
is greater than the distance obtained with the best pivot for that pair (stored in the
array MaxD), the algorithm adds the corresponding contribution of p for pair (X, y),
otherwise it adds nothing. In this case, the algorithm remoes the contribution of
the former best pivot for that pair of objects (x,y). The total contribution of p is
the sum of its contribution for all pairs of objects. If the contribution of pis 0, itis
directly discarded as pivot.

Finally, the algorithm decides if the new pivot p should be added toP ivots or the
victim should be replaced. If the contribution of p is greater than the contribution
of the victim, the victim is replaced with p. Otherwise, p is added to the Pivots,
thus incrementing its size in one.

Note that this dynamic algorithm for selecting pivots ensures that it will select
only pivots that are at distance at least Ma to the other pivots. Thus, the set
of selected pivots holds the same property of those selectagsing Sparse Spatial
Selection (SSS).
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Algorithm 5.1 : Pivot selection in Non-Redundant Sparse Spatial Selection
Input : u A, U, Pivots, M, a, A, ¢
Output : Pivots
/I Initially, Pivots « [
if [plPlivots, d(u,p) = Ma then
if |Pivots| <c then
/I The algorithm selects the first C pivots.
Pivots « Pivots ({0}
else
/I Compute the victim from  Pivots
(victim, contributionV ictim, MaxD, Pairs)
computeV ictim(U, Pivots, A);
/I Compute the contribution of u (the pivot candidate)
contributionNew ~ computeContribution(u, A, MaxD, Pairs);
/I If the contribution is positive, decide between adding
the pivot or replacing an old one
if contributionNew > 0 then
if contributionNew > contributionV ictim then
/I Replace victim with new pivot
Pivots — (Pivots — victim) {0},
else
/[ Add pivot to  Pivots
Pivots « Pivots [},
end
end
end
end
return Pivots

The space and time complexities of the proposed method are nirdy given by
the function computeV ictim, which computes the contribution of each pivot and
pivot candidate, and decides if the candidate becomes a piva@r not, and whether
it replaces the victim or not in case of becoming a new pivot.

Regarding the space complexity, the algorithm needs spaceff storing the A pairs
of objects (x,y) [Plairs, that is, 2A. It is also necessary to store the contribution
of each pivot (P ivots|), and the array MaxD (A), that stores the best lower bound
on the real distanced(x,y) for each pair (x,y) [CRairs. Thus, the total space
complexity is O(A + |Pivots]|).

Regarding the time complexity, the Algorithm 5.1 for the selection of pivots
computes rst the distances of the new object inserted in thedatabase to the already
selected pivots P ivots). Then it needs to initialize the arrays Pairs (that stores
the sample of A pairs of objects), contribution (used to store the contribution of
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Algorithm 5.2 : Function computeContribution
Input : p XA, A, MaxD, Pairs
Output : contributionN ew
contributionNew — O;
for i from 1 to A do
(x,y) « i pair of objects in Pairs;
diff — |d(x,p) —d(y,p)I;
if diff > MaxDJi] then
contributionNew ~ contributionNew + diff — MaxDIiJ;
end
end
return contributionN ew

each pivot, and MaxD (used to store the best lower bound for each pair of objects
in Pairs), (A + |Pivots| + A). The algorithm computes then the contribution of
each pivot for each pair of objects A - |Pivots|), and nally it computes the victim
pivot (A).

The function computeContribution performs only O(A) extra instructions, thus
the time complexity of Algorithm 5.1 is O(A - |Pivots|). If one considers a xed
set U that must be indexed, a loose upper bound of the total time conplexity for
selecting the pivots iSO(A-|Pivots|-|U|), because theO(A:|P ivots|) operations are
performed only when an object from|U| is su ciently far away from the previously
selected pivots.

Therefore, Non-Redundant Sparse Spatial Selection (NR-SSSinvolves both
space and time overhead in the selection of pivots if compactkwith Sparse Spatial
Selection (SSS).

5.4 Reduction of the construction cost

An inconvenient of the method as it has been described in the mvious section, is
that when an object is inserted in the database, the algoritim has to select a set
of A pairs of objects from the database and compute the distanceBom each pivot

to the two components of each pair, in order to evaluate the cotribution of each

pivot. This adds a signi cant overhead on the insertion of eah object. Although

this is the optimal process in what respects to the quality ofthe pivots selected, the
cost it introduces in the insertion can be too high for some aplications.

The time complexity of the algorithm for computing the victi m (Algorithm
5.3) can be improved by reusing most of the pair of distancesra by storing the
corresponding computed distances (e.g., by changing onlyne pair of objects on each
call of this algorithm). With this approach, the new time com plexity of Algorithm
5.3 (and therefore of Algorithm 5.1) isO(|P ivots]), instead of O(A - |P ivots]|), which
is the minimum cost possible for inserting an object, as in Sprse Spatial Selection
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Algorithm 5.3 : Function computeV ictim
Input : U, Pivots, A
Output : victim, contributionV ictim, MaxD, Pairs
Pairs « [
/I Select randomly A pairs of objects from u
for i from 1 to A do Pairs — Pairs [Crandom pair of objects (x,y) U= U;
/Il Initialize array with contribution of each pivot
for i from 1 to |[Pivots| do contribution[i] — O;
/I Initialize array with distances in pivot space
for i from 1 to A do MaxDIJi] < 0;
/[l Compute contributions
for i from 1 to A do
(X,y) < i pair of objects in Pairs;
/I Compute best pivot for row of x,y)

MaxDIi] — max{Zy* ' [d(x, py ) = d(y, p)l;
indexMax « arg maxj“Z‘f’tS Nd(x, p;) — d(y, py)l;
/I Compute second best pivot for row of (x,y)

Pi .
max2 maxjI =|\1?th§IindexMax [d(x, p; ) — d(y, pj)I;
/I Add contribution for best pivot of row
contribution[indexMax] — contribution[indexMax] + MaxD[i] — max2;
end
/[ Compute victim and its contribution
victim — argmin/Z¥° I contribution[i];
contributionV ictim — min/?¥* | contribution[i];

return (victim, contributionV ictim, MaxD, Pairs)

(it is the minimum cost because in any method the new object ha to be compared
with all the pivots in order to store the distances from the objects to the pivots).

However, as the A pairs of objects are now not randomly selected on each
iteration of Algorithm 5.3, it is possible that the quality of the estimation of the
contribution of each pivot decreases. That is why, instead bkeeping a xed sample
of pairs of objects for the whole algorithm, we change at ledsone pair in each
iteration, in an attempt of updating that information witho ut incurring in a high
computational cost.

As we will see in the experimental evaluation of the method (Setion 5.5), the
experimental results reveal that the loss of e ciency in the search when the pairs
of objects for evaluating the contribution of each pivot arereused, is not signi cant
when compared with the gain in the construction cost. Howevey the resources
devoted to the construction in each step depend on the spect application and
users of the method can choose to replace a given number of pgiin each iteration
if they can a ord it.



94 Chapter 5. Non-Redundant Sparse Spatial Selection

5.5 Experimental evaluation

In the experimental evaluation of our proposal we used sevet collections that
represent real similarity search problems. More speci cdl, we used the collections
NASA, and ENGLISH(described in the Appendix C).

In each experiment, the 90% of the collection was used as the database to be
indexed, and the remaining10% objects were used as sample queries, averaging the
results obtained in each of them. For collections of imagesthe search range was
adjusted to retrieve an average 0f0.01% objects from the database in each query.
For the collection of words, the search radius used wa&8. As parameters, we used
¢ = 5 (minimum size of the set of pivots), and A = 5.000 (maximum number of
sample pairs of objects), for all the experiments.

5.5.1 Size of the set of pivots

One of the important characteristics of NR-SSS is that its polcy for detecting and
replacing redundant pivots gives as a result a set of pivotsmaller than the obtained
with SSS but that conserves its capacity for discarding objets from the result. We
carried out several experiments in which forNASA, and ENGLISH we obtained the
number of pivots selected by Sparse Spatial Selection, and MeRedundant Sparse
Spatial Selection, for di erent values of the parameter a.

Figures 5.2, and 5.3 show the results obtained forNASA and ENGLISH
respectively. As we can see in the results, NR-SSS selects Igsgots than SSS,
and the size of the set of pivots is signi cantly smaller.

In these results we can also observe that the number of pivotseplaced by NR-
SSS is higher for smaller values ofi. When the value of the parametera is small,
SSS introduces more objects as pivots, and it is more probaélto have redundant
pivots that are replaced by NR-SSS. As we can see in Figures 5.2nd 5.3, the
number of pivots selected by NR-SSS is very stable when the vaé of a varies.
That is, the number of pivots selected by NR-SSS is more or lesthe same for all
the values ofa we considered. This is another advantage of this improvemenof
SSS. Although the insertion of objects is more costly, the beavior of the method
is not so sensible to the value of then.
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performance

Our hypothesis is that by detecting and removing or replacirg pivots that are
considered redundant under the criterion we de ned in Sectbn 5.3, the set of pivots
would be smaller but conserving its capacity for discardingobjects. In the previous
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NASA, 40,150 objects, 4,015 queries, retrieving the 0.01% of the database
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Figure 5.4: Search cost with SSS and NR-SSS iNASA

subsection we have already seen that the set of pivots obtaed by NR-SSS is smaller
than the obtained with SSS. Since the total search complexit is given by the sum
of the internal and external complexities, if the hypothesk is true, NR-SSS should
show a better search performance than SSS for di erent valug of a.

Figures 5.4, and 5.5 show the search performance obtainedthiSSS and NR-SSS
for the collections NASA and ENGLISH for values di erent values of the parameter
a.

As we can see in the results, NR-SSS systematically shows a bett search
performance than Sparse Spatial Selection in the collectio NASA In the case of
ENGLISH the di erence in search performance depends on the value af, although
NR-SSS is more e cient for the values of a between 0.30 and 0.40, identi ed as
the optimal range of values for this parameter in the previols chapter. For higher
values ofa, SSS selects a smaller number of pivots. In this case, the NRSS can
replace some pivots that contributed to the capacity of the index for discarding
objects, obtaining thus a worse result than SSS. This situabn could be avoided
by re ning the criterion for removing pivots, or by establis hing a condition for the
starting the replacement of pivots, which remains as futurework.

5.5.3 Cost of index construction
As we pointed out in the description of the method, selectingA pairs of objects

and comparing each component of them with all the pivots can le a computational
cost too high for an insertion in systems with dynamic requiements, where objects
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are constantly inserted and removed. Section 5.4 describetiow to reduce the
construction cost of the index by keeping the set of pairs of bjects during the

construction of the index and replacing a minimum number of them in each step as
the database evolves.

We compared the cost of construction of the original Non-Redadant Sparse
Spatial Selection (NR-SSS) and the lower construction costlR-SSS-LCC). Figure
5.6 shows the dierence in the cost of construction of the in@éx for a collection
of images. The left vertical axis represents the average nubrer of comparisons
needed for solving a query with both versions of the method. Te right vertical
axis represents the number of distance computations needddr indexing the whole
collection. As we can see in these results, the loss of e ciencin the search
performance is not very signi cant and the reduction of the cost of building the
index can pay for it if this parameter is a problem for the application.

5.5.4 Comparison with previous techniques

Finally, we compared NR-SSS with previous techniques for pigt selection. As
in the case of SSS (see Chapter 3), we compared our method wittmcremental
[Bustos et al., 2001], MaxMin [Vleugels and Veltkamp, 2002], SFLOO
[Hennig and Latecki, 2003], and Spacing [van Leuken et al., ZIB]. As in Chapter 3,
we did not consider Maximum Pruning nor Maximum Variance
[Venkateswaran et al., 2008, Venkateswaran et al., 2006] rsie they use the search
range in the indexing phase, and the comparison would not beair. In this
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NR-SSS vs. NR-SSS-LCC, collection of images
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Figure 5.6: Reduction of the construction cost by reusing distances.

comparison we used the collectionNASA, in which SSS obtained a worse result
than previous methods.

The results are shown in Figure 5.7 and Table 5.1, which lista relevant subset
of the results shown in the gures. The table shows for each m#od the number
of distance computations needed for solving a query, for dierent numbers of pivots
(P). In the results we can see that NR-SSS improves the results a¢bined with
SSS in this collection, in which SSS is not the best method. Iraddition, it needs
less distance computations for solving the query than any pevious method. An
interesting result is that NR-SSS obtains better results with fewer pivots than any
other method. While SSS needsl68 computations of the distance function for
solving a query with 55 pivots, NR-SSS needs onl\150 comparisons with 51 pivots.
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SSS NR-SSS
[ P [ Increm. Maxmin SFLOO Spacing H P Dist. P Dist.
30 243.21 193.24 207.91 408.57 0.50 38 173.57 31 167.65
40 210.78 165.87 189.73 398.72 0.48 48 171.19 32 163.01
50 203.06 160.55 189.05 39558 || 0.46 55 | 168.07 34 | 165.27
60 199.23 158.52 185.64 288.47 0.44 64 171.16 43 172.45
70 202.27 163.42 188.03 315.19 || 0.42 79 | 17808 | 51 | 150.24
80 205.75 171.17 189.76 319.61 0.40 95 187.39 60 164.26
90 202.49 173.65 196.59 294.44 0.38 119 205.37 70 164.78
100 209.79 181.77 200.29 298.83 0.36 156 235.51 84 170.22
110 212.72 188.60 205.72 303.10 0.34 201 276.95 88 168.98
120 220.18 195.11 211.85 32630 || 032 | 270 | 339.28 | 101 | 186.81
130 228.03 204.00 217.33 326.33 0.30 | 372 | 43622 | 110 | 188.95
Table 5.1: Comparison with previous techniques, collectionNASA
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5.6 Summary

In this chapter we have presented Non-Redundant Sparse Spat Selection (NR-
SSS), a new method that improves Sparse Spatial Selection §8) for the selection
of e ective reference objects.

As we have seen in Chapter 3, SSS obtains a good set of pivots Wdistributed
in the space and it is competitive with previous methods in wrat refers to search
cost. However, as we have explained in Section 5.2, SSS is a eglg algorithm: each
time an object is inserted into the database, SSS decides if becomes a pivot or
not with the information up to that moment, and never goes bad.

NR-SSS re nes the set of pivots selected with SSS by identifyig and removing
pivots that are redundant, that is, pivots that do not contri bute to increase the
capacity of the whole set of pivots for discarding objects fom the result.

In Section 5.3 we presented the algorithms for selecting pists and building the
index. When a new object is inserted into the database, it beames a candidate
pivot if it satis es the selection criteria of SSS. Then, we ®mpute its individual
contribution to the capacity of the set of pivots for discarding objects from the
result. The computation of the individual contribution of e ach pivot is based in a
sample of objects taken at random from the database and usedsabbject-query pairs.
Once the contribution of the candidate pivot has been compuéd, three situations
are possible. It that contribution is 0, the candidate is directly discarded and it
does not become a new pivot. If the contribution of the pivot is not 0, it is added
to the set of pivots. In addition, if its better than the worst current pivot, called
victim, it replaces it.

In this way, the set of pivots obtained with NR-SSS is smaller han the set of
pivots obtained with SSS, but the capacity for discarding oljects is more or less the
same. Thus, the search cost is reduced since the internal cquexity is smaller.

In Section 5.3 we presented an alternative construction algrithm that reduces
the construction cost at the expense of a loss in search e ciecy.

The results of the experimental evaluation of the method wee presented in
Section 5.5, in which we show that the set of pivots of NR-SSS iactually smaller
than the set of pivots selected with SSS for di erent values & a. We have also
shown that the number of pivots replaced is greater for smabr values ofa, and
that the variations of the value of a a ect less to NR-SSS. We compared NR-SSS
with previous methods with real metric spaces, showing its ompetitiveness.
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Nested Metric Spaces

6.1 Overview of the chapter

The distribution of the objects in the data space is one of thefactors that a ects the
capacity of methods for searching in metric spaces for prumg the search space. In
general, the distribution of the objects in the space is not egular, and methods for
searching in metric spaces try to be robust even in the case #t irregularities are
present in the data space. However, those irregularities arextreme in some cases.
In this chapter we continue with the idea of taking the distri bution of the objects
into account for indexing. However, in this case we focus on té identi cation and
treatment of a particular type of irregularity, which we cal | nested metric spaces.

In some collections of data, the objects are grouped into dese subspaces that
contain a large amount of objects in a small region of the spae But, in addition, we
have observed that the dimensions or features that explainhe dissimilarity between
two objects inside those dense clusters are di erent than tie dimensions or features
that explain the dissimilarity between any two objects in th e rest of the space. We
refer to these irregularities as nested metric spaces, sieeach dense subspace is like
an independent metric space nested into a more general one. a&\have also observed
that the presence of nested metric spaces can degrade the sela performance of
some methods for searching in metric spaces.

In this chapter we introduce the concept of nested metric spaes and why they
can appear in real collections of data. We also explain why th presence of this
particular type of irregularity of the space can degrade the search performance
of methods for searching in metric spaces. We provide experiental results that
con rm our hypothesis on the presence of nested metric spasein real collections
of data and their e ect on the search performance. Finally, we present an approach
for dealing with nested metric spaces.

101
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6.2 Introduction

The search performance obtained by methods for searching imetric spaces is given
by the number of distance computations needed for solving augry. The capacity
of methods for directly discarding objects from the result,that is, their capacity for
pruning the search space, depends on many factors. The dishution of the objects
in the data space is one of them. Existing methods assume thathe distribution of
the objects in real metric spaces is not uniform and that it can present irregularities.
For example, the number of objects in a region of the space cabe higher than in
others, or some objects can be outliers far from the rest of gbcts in the database.
In addition, the type of irregularities that appear in a give n space do not necessarily
have to appear in another.

Therefore, methods for searching in metric spaces try to beabust in what refers
to the dependence of the search performance they achieve \ithe presence of the
many irregularities that can appear in real applications. In previous chapters we
have already seen how some methods try to explicitly adapt te structure of the
index and the information they store to the distribution of t he objects in the space
and thus obtain a better search performance.

For pivot-based methods, many pivot selection techniques ave been proposed
(MaxMin [Vleugels and Veltkamp, 2002], SFLOO [Hennig and Latecki, 2003], In-
cremental [Bustos et al., 2003], Spacing [van Leuken et al2006], Maximum Prun-
ing [Venkateswaran et al., 2008], SSS and NR-SSS) that try to latain an e ective
set of pivots for each particular space, instead of choosinghem at random. For
example, SSS selects an e ective set of pivots well-distrilited in the space, in order
to cover the space in such a way that the dissimilarity betwea two objects can be
detected in spite of the possible irregularities present inthe space.

Clustering-based methods usually build tree-like indexeghat recursively parti-
tion the space. In Chapter 4 we presented Sparse Spatial Sekon Tree (SSSTree)
and we show how the search performance can be improved by adipg the structure
of the index to the distribution of the objects in the data space. Particularly, in the
case of SSSTree, the index is adapted to the topology of the ape by partitioning
each cluster in as many clusters as needed for each region dfet space, and not in
a xed number of clusters. With this approach, the index devaotes more resources
of the index to speci ¢ regions of the space.

In this chapter, we continue with the idea of exploring the distribution of the
objects in the data space and taking it into account for indexng. But in this
case, we focus on the detection and treatment of a specic typ of irregularity of
the space which we callnested metric spaces. We introduce the concept of nested
metric spaces and why they can appear in datasets of real apightions. We show
how the presence of nested metric spaces a ects the search fimmance of some
methods for searching in metric spaces, and we show that adéipg the resources of
the index to these irregularities can improve the search cds
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6.3 The concept of nested metric spaces

6.3.1 Discovering nested metric spaces

During the experimental evaluations of the methods SSS (Chpater 3) and SSSTree
(Chapter 4) that we carried out as part of this work, we discowered that there are
metric spaces in which the irregularities of the distribution of the objects in the
space are extreme.

We found that there are metric spaces in which a signi cantly large number of
objects are grouped in dense subspaces that cover a small reg of the space. That
is, in some metric spaces there are large groups of objectsahare very similar
between them. But not only the objects are grouped in very dese subspaces. In
addition, the dissimilarity between any two objects in the subspace is explained by
dimensions di erent to the dimensions that explain the dissmilarity between other
objects in the general metric space. We refer to this irregudrity as nested metric
spaces. We use this term since each subspace is like an independentetnic space
nested into a more general metric space.

Figure 6.1 shows an example of the presence of nested metripexes in a three-
dimensional vector space. As we can see in the gure, the datase contains a set
of points. The space has three explicit dimensions: the maircorresponds to the
X axis, and the other two correspond to they and z axis. In this example, there
are two subspaces with a large number of objects along the agey and z. The
objects inside a subspace are almost equal according to theaim dimension but
di erent according to the speci ¢ dimensions of the subspae they belong to. The
dimensions that explain the di erence between the objects m each nested metric
space are dierent from the dimensions that explain the dierence between two
objects in the general metric space.

The presence of nested spaces can be caused by several reasdrypically, the
objects in some groups will be closer between them than to theest of the objects
in the space due to their similarity in a relevant feature.

Nested metric spaces can easily appear in real databases ofjetts. Perhaps the
most evident example is a collection of images represented/lvectors of features. In
content-based image retrieval systems, images are usualgnalyzed with computer
vision algorithms in order to detect and extract certain features of interest. Then,
each image is represented by a vector that contains numeri¢aalues that represent
those features. Typical features of interest for images inade points of the histogram
of each color of the image, features about the texture of themage, and about
the presence of certain shapes. Nested metric spaces are likéo appear in such
a database. For example, if a large group of images share theame main color
(something easy in a collection of nature photographs, for xample), their feature
vectors will be grouped in the space, very close between themln addition, the
distance between any two of those images will be small, and # dissimilarity
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Figure 6.1: Dense subspaces nested into a general metric space.

between them is explained by di erent features than in the case of other images
of the database.

The same situation could happen in a collection of strings. Br example, in a
database of words, all the words sharing the same root will berery close between
them but further from the rest of words in the database. In that case, the groups of
words would not be very large. But the same could happen with 8 the words that
share the same word su xes (as -ment, -tion, or -able, for example). Nested
metric spaces could also appear in a database of DNA sequendeswhich certain
patterns repeatedly appear in large groups of sequences.

6.3.2 E ect on the search performance

We have already shown that the distribution of the objects in the data space could
be taken into account for improving the structure and performance of the index.
Moreover, in some cases, the presence of irregularities agsted metric spaces can
degrade the performance obtained with some methods.

During our experiments we found such a situation when testig Sparse Spatial
Selection (SSS) with a collection of color imagesCOLORIs a collection of112, 544
color images represented by feature vectors of dimensiatl2. That is, 112 features
of interest were extracted from each image. However, if we argze the contents of
the database, most of the coordinates take the valu® or a value very close to0 for
a large fraction of the images. As a result, all images are coeatrated around the
origin of coordinates and distributed in groups de ned by cetain features.
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Figure 6.2: Average search cost with Random, Incremental and SSS.

This collection is an example of the presence of nested metrispaces. The
collection COLORIs also an example in which the presence of nested metric spas
degrades the performance of some methods. Figure 6.2 showssammary of the
average search cost for solving a query in the collectionENGLISH NASA, and
COLOR(the details of each collection are described in Appendix C) \ith a random
pivot selection, an Incremental pivot selection [Bustos etal., 2003], and SSS. As
usual, the 90% of the objects of each collection were used as the database tme
indexed, and the remaining 10% of the objects were used as queries in order to
obtain the average search cost. As we can see in the results, Sets the best
result in ENGLISH and NASA, followed by the method for we call Incremental
[Bustos et al., 2003]. However, in the case of the collectiol©OLOR the results
are dierent. The advantage of both Incremental and SSS overa random pivot
selection is substantially reduced. Actually, in this collection, a random pivot
selection performs very well.

In a collection like COLOR SSS, or Incremental, or any other method trying to
distribute the pivots in the space, is only able to put a pivot in each dense subspace.
The maximum distance between two objects is given by the mairdimensions of the
space, and therefore, few pivots t inside each subspace ithey are selected with a
method that distributes the pivots in the space (since the dstance between objects
inside them is much smaller). However, a random pivot selectin has more chances
to place more pivots inside each subspace. This explains thdi erence in search
performance between a random pivot selection and other apmach in this collection
of images.
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This is the same situation we draw on Figure 6.1, which showsrmmexample of the
presence of nested metric spaces in a three-dimensional gga As we can see in the
gure, the maximum distance between any two objects is givenby the dimension x
of the general metric space. Therefore, SSS is only able togide ve pivots in the
space. Only one pivot is placed near to each nested metric spa. In contrast, a
random pivot selection has more chances of placing more pit® in each subspace,
thus devoting more resources of the index to them.

6.3.3 \Validating our hypothesis

In the previous section we introduced the concept of nested ®etric spaces as a
particular type of irregularity of the distribution of the o bjects in metric spaces.
We also argued that their presence in a database can a ect théehavior of methods
for searching in metric spaces, as it happens in the case of ¢hcollection COLOR
with methods as Incremental and SSS.

In this section we present experimental results that con rm the validity of our
hypothesis. That is, we show experimentally that nested metic spaces can appear
in real collections of data and that they a ect the search peiformance of methods
for searching in metric spaces. Particularly:

 We studied the distribution of the objects in the collection COLOR and
compared it with the distribution of the objects in the data space of other
collections in which we did not observe the presence of nesteanetric spaces.

< We created an arti cial collection of vectors that contains nested metric spaces
to con rm that they a ect the search performance of methods for searching
in metric spaces.

Test environment

For the validation of our hypothesis we used three collectios of real data: ENGLISH
NASA, and COLOR (described in Appendix C). As usual, the 90% of the objects
of each collection was used as the database to be indexed, attte remaining 10%
of the objects were used as queries. The search radius was aslied in each case
to retrieve the 0.01% of the objects of the collection in average. In the case of the
collection of words, the search radius was set to = 2, as usual.

Additionally, we generated two synthetic collections of vectors with known
distribution. We refer to the rst one as REGULAR a collection of 100, 000 vectors
of dimension 12, uniformly distributed in an hypercube of side 1. We refer to
the second collection asslRREGULAR It is again a collection of 100,000 vectors
of dimension 12, but, as the name of the collection suggests, their distribtion is
completely biased. Three nested metric spaces are presemt the collection. Each
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Collection #0O #C | #0O/#C
ENGLISH 69,069 69 | 1001.0000
NASA 40,150 40 1003.7500
COLOR 112,544 | 112 | 1004.8571

Table 6.1: Experimental setup for each collection.

of them contains a 30% of the objects in the database. The objects of the rst
nested metric space are very similar according to the rst three dimensions. The
objects in the second nested metric space are very similar eording to another

three di erent dimensions, and the objects in the third nested metric space are very
similar according to another three di erent dimensions. The remaining 10% objects

in the collection are uniformly distributed in the space. The covering radius of each
nested metric space is twice the typical search radius for sth a collection.

Nested metric spaces in real collections of objects

Our initial hypothesis was that, when working with real coll ections of data, we can
not assume the objects to have a regular distribution in the pace. We argued that
in real collections, the objects can be grouped in clustershiat contain a signi cant
amount of objects of the database in small regions of the spac

To validate this hypothesis, we used the three real collectins described above:
ENGLISH NASA, and COLOR For each of them we partitioned the data space into a
set of clusters. Table 6.1 shows for each collection: the nulber of objects it contains
(#0), the number of clusters in which the collection was partitioned #C), and the
relation between the number of objects in the collection andthe number of clusters
in which the collection was partitioned (#0O/#C). In each collection, we chose a
number of clusters ¢C) such that the number of objects in each cluster is more
or less the same in all collections, that is, we partitioned ach collection in such a
way that #0/#C takes more or less the same value in all collections (see thast
column in Table 6.1). In this way, the results obtained in a given collection are
comparable with the results obtained in the other collectims.

For each collection, the cluster centers used to partition he space were obtained
with SSS. After partitioning each collection, we obtained fa each cluster the number
of objects it contains. Figures 6.3, 6.4, and 6.5 show the hiesgram of the number of
objects into the clusters in the collectionsENGLISH NASA, and COLORrespectively.
The x axis represents the number of objects into the clusters, exgssed as the
percentage of objects of the database they contain. The axis represents the
relative frequency.

As we can see in the results, the number of objects contained o each cluster
follows the same distribution in the collections ENGLISHand NASA Most clusters
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Figure 6.5: Histogram of clusters density for COLOR

contain between the 1% and the 2% of the objects in the database, and some of
them contain a larger number of objects, between the8% and 14% of the objects in
the database respectively. There are no nested metric spasén these collections.

However, the number of objects into each cluster follows a copiletely di erent
distribution in the case of the collection COLOR As we can see in Figure 6.5, there
is a cluster that contains half the objects in the database, tearly representing a
nested metric space, while the rest of clusters contain veryew objects. This is a
clear case in which nested metric spaces are present in thellzation.

Figure 6.6 shows together the histogram of cluster densitie of the collections
ENGLISH NASA, and COLOR Although in all of them there are clusters signi cantly
larger than the mean, in the gure we can see that the collecton COLORs an
extreme case.

Table 6.2 shows a summary of the results obtained in the exp@nents we have
described. For each collection, the table shows the minimummaximum, mean,
and standard deviation of the number of objects in each clustr, expressed as a
percentage of the objects in the database.
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Figure 6.6: Histogram of clusters size in real collections.
Collection % min % max K o
ENGLISH | 0.079631| 8.009382| 1.447828 | 1.672078
NASA 0.01925 | 13.21544| 2.497509 | 3.284655
COLOR 0.000889| 50.64775| 0.8919686| 4.927192

Table 6.2: Distribution of the percentage of objects in each cluster.

E ect on the search performance

Our second hypothesis was that the presence of nested metrgpaces can signi -
cantly a ect the search performance of the methods for seafting in metric spaces.
A random pivot selection obtains a better result than other methods that, like SSS,
distribute the pivots in the space when there are nested meic spaces.

In order to validate this hypothesis we used the collectionsREGULAR and
IRREGULAR which was synthetically created with three nested metric paces. We
obtained the average search performance obtained with a ratom pivot selection
and SSS for di erent values of the parametera in each collection. As usual, the90%
of the objects of the collection were used as the database toebindexed, and the
remaining 10% were used as query objects (of course, the objects in the cetition
IRREGULARwere randomly unsorted, in other case only the objects in thenested
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Figure 6.7: Average search cost with random and SSS IREGULAR

metric spaces would be indexed). Figures 6.7 and 6.8 showsdhesults we obtained.

In the case of the collectionREGULAR SSS obtains always a better result than
a random pivot selection. However, as we can see in Figure 6.8e results in the
collection IRREGULARare very similar to the results obtained with the collection
COLOR The random pivot selection sistematically obtains a bette result than SSS
for all values of the parametera. This result is due to the presence of nested metric
spaces, since the distribution of the objects is controlledand there are no other
features of the collection that could cause this result.

6.4 Indexing nested metric spaces

In this section we present an approach for detecting and indeing nested metric
spaces. Our method uses Sparse Spatial Selection (SSS) toteld the presence
of highly dense subspaces in the database, in order to furtmeadapt the structure
and information stored in the index to the distribution of th e objects. With this
method we will show that the search cost can be improved if thepresence of nested
metric spaces is detected and the resources and structure die index are adapted
to them. We refer to this method as Sparse Spatial Selectiondr Nested Metric
Spaces (SSS-NMS).

SSS-NMS works in two levels. In the rst level, the method credes a Voronoi
partition of the space. The cluster centers used to create sth a partition are
selected with SSS, which guarantees the cluster centers toebwell distributed in the
space. Then, the density of each of these clusters is computdn order to detect



112 Chapter 6. Nested Metric Spaces

IRREGULAR, 100,000 objects, 10,000 queries, retrieving the 0.01% of the database
1000

Random —6— ]
SSS —H—

800

600 -

400

Distance computations

200

0 n n n n n n n n n
030 032 034 036 038 040 042 044 046 048 050
a

Figure 6.8: Average search cost with random and SSS iIRREGULAR

the presence of nested metric spaces. In the second level ettmethod indexes only
those clusters considered dense by applying a pivot-basedt'ema inside each of
them. The objects used as pivots in each cluster are again sslted with SSS inside
each nested metric space.

With this approach, SSS-NMS is able to detect complex groupsfoobjects in the
database in order to then devote more resources of the indeotthem, according to
their complexity.

6.4.1 Construction

As we have already explained, the construction of the index icarried out in two

levels, and SSS is applied in both of them: in the rst level S$ is used to obtain
e ective cluster centers adapted to the data space in order ¢ create a Voronoi
partition of the space; in the second level, SSS is applied teelect the set of objects
used as pivots inside each subspace that was considered tovieaa high density in

the rst level of the index.

Since SSS is used in each of them, we will refer to the constathat control the
density of objects selected by SSS ag and (3 for the rst and second level of the
method respectively.

First level: Voronoi partition of the space with SSS

In the rst level of the index, the space is decomposed into a \gronoi partition.
The objects used as cluster centers are selected with SSS, #wey will be well
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distributed in the space. This is important in order to parti tion the space according
to the distribution of the objects in the space. Once the cluser centers{cy,...,Cm}

are selected fn is not a xed value, it depends on the value ofa), each object is
compared with them to create the Voronoi partition. The space is decomposed in
a set of clustersC;. The objects in each cluster are:

Ci ={x I d(x,c) =d(x,¢), 1=j=m}

With this procedure for partitioning the space, an object becomes a cluster
center if its distance to the already selected centers is eql or greater than Mq,
where M is the maximum distance between two objects andx a constant parameter
that takes values between0 and 1. The value of a should be small in this rst phase
because a largen would produce fewer clusters and having few clusters couldesult
in dense clusters that contain also objects that do not belog to the real dense cluster
of objects. This situation would increase the covering radis of the cluster, giving
as a result a non-compact cluster.

This gives as a result a set of disjoint clusters which union iyes as result the
complete space. Since the cluster centers are not close toakaother, because they
have been selected with SSs, and they are well distributed ithe space, the resulting
clusters are more compact and less overlapping than if they are selected with a
random pivot selection.

Second level: Indexing dense clusters with SSS

After partitioning the space into a set of clusters accordingto the main dimensions
of the space, the second level of the index tries to identify ested metric spaces and
further index them. In order to detect the presence of nestednetric spaces we need
some way of measuring how dense a cluster is, that is, if the maber of elements it
contains is too large for the region of the space it covers.

We de ne the density of a cluster as the relation between the mmber of elements
assigned to the cluster and the covering radius of the cluste a measure of the region
covered by the clsuter:

density(C;) = @

Ci

Computing the density of all clusters could be very costly if the maximum
distance of each of them is obtained by comparing all the objets in the cluster
with each other.

Although we have de ned a way of measuring the density of objets in each
cluster, we still do not have any kind of criteria for deciding which clusters are worth
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of further indexing and which not. We could think on establishing a threshold as
a criterion, but its value should be di erent for each collection, so it is not a valid

choice. Instead of using a threshold, we decide if a clustesitoo dense or not by
analyzing how dense it is if compared with the rest of clustes. If u and o are the
mean and typical deviation of the density of a cluster, we cosider that a cluster is
dense enough to be further indexed if:

density(Cj) > u+ 20

If the distribution of the objects in the space is more or lesgegular, the densities
of the clusters will be around the mean, and few clusters wilbe dense enough to
be further indexed. If nested metric spaces are present in & space, their density
will be for sure far from the mean, so they will be easily deteted.

For each cluster considered dense enough to be further indes, a set of objects
is obtained with SSS to be used as pivots, and the table of disinces from all the
objects of the cluster to the pivots is computed and stored. h this second level the
index stores more information for the dense complex subspas. In this case, the
value of 3 should be around0.4.

The clusters that are not considered dense are no further ineixed. During the
search, they are pruned from the result if possible with the nformation of the
partition of the space. If they are not discarded, the query dject is compared with
all the objects they contain.

6.4.2 Search

Given a query (g, r), the query object is compared with all the cluster centers othe
rst level in order to discard as many objects as possible fron the result without
comparing them with the query object. Those clustersC; for which:

d(@,c)>r+r¢

are directly discarded from the result set, since the intersction of the cluster and
the result set is empty. For the clusters that could not be dizarded there are
two possibilities. If the cluster is not a dense cluster and herefore does not have
associated a table of distances from its objects to pivots, He query has to be
directly compared with all the objects of the cluster (as hapens, for example,
in list of clusters [Chavez and Navarro, 2005]). If the cluste has associated a table
of distances, the query is compared with the pivots and the téle is processed to
discard as many objects as possible. The objects that can ndbe discarded are
directly compared with the query.
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6.4.3 Preliminary comparison

It is di cult to carry out a fair comparison of SSS-NMS with pre vious methods, as
Incremental or SSS. While pivot-based methods work with a lage table of distances,
SSS-NMS stores precomputed distances for only some region$ the space. In
order to obtain a fair comparison, all methods should be giva the same amount of
memory, that is, the same amount of information. A similar problem arises if we
think in comparing SSS-NMS with clustering-based methods, imce they use linear
space, while SSS-NMS uses more information than them.

However, a preliminary comparison with previous methods, ugg the same
amount of memory, can be enough for evaluating if the negatig e ect of nested
metric spaces in the search performance can be overcome bytdeting them and
devoting more resources of the index to them. We compared SSSMS with SSS,
Incremental [Bustos et al., 2003] and a random pivot selectin [Mico et al., 1994].

Again, 90% of the objects of each collection were indexed an@l0% were used as
queries, retrieving an average 00.01% of objects of the database for each query in
the case ofNasaand Color, and using a search radiug = 2 for English

Figure 6.9 shows the results we obtained. For each collectio and method
we show the average distance computations needed for solgna query. These
results show that SSS-NMS is more e cient in terms of distance computations
than the other methods when using the same amount of space. Asaxcan see in the
results, SSS-NMS obtains better results than SSS and Increméal in all collections,
including COLOR in which a random pivot selection performs very well.

Although the comparison in the search result is di cult due to the dierence
in the amount of information used by each method, the resultsshow that devoting
more resources of the index to the more complex regions of thgpace the search
performance can be improved.
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6.5 Summary

Many factors determine the capacity of a method for searchig in metric spaces
for pruning the search space, that is, for discarding objed from the result set
without comparing them with the query. The distribution of t he objects in the
data space is one of those factors. In this chapter we contired with the idea of
taking advantage of the distribution of the objects in the space in order to improve
the search performance of methods for searching in metric sges. However, in this
case we focused in the detection and treatment of a particulatype of irregularity
that can appear in real metric spaces, which we call nested ntiec spaces.

We introduced the concept of nested metric spaces as subspmxcthat contain a
large amount of objects in a small region of the space, and in kich the di erence
between two objects is explained by dimensions di erent to he dimensions that
explain the di erence between two objects in the general metic space. We use the
term nested metric spaces because each subspace is in somg lik® an independent
metric space nested into a more general one. As we have seen hig chapter, this
is an extreme irregularity of the space that can appear in rehcollections of data.

We have also explained how the presence of nested metric sgEccan negatively
aect the search performance obtained with pivot-based mehods as SSS and
Incremental. We carried out an experimental evaluation with both synthetic and
real collections of data that con rms our hypothesis on the eect of nested metric
spaces in the search performance of methods for searching inetric spaces.

Finally, we presented Sparse Spatial Selection for Nested Miec Spaces (SSS-
NMS), an approach for the detection and indexing of nested meic spaces. This
method works in two levels: in the rst one the space is decompsed into a
Voronoi partition and the density of each cluster is computed; in the second level,
those clusters considered dense are further indexed with aiypt-based approach.
Although the comparison of this approach with previous methas is di cult due to
the di erences in memory requirements, the preliminary resilts we presented show
that the e ect of nested metric spaces can be overcome if moreesources of the
index are devoted to these complex regions of the space.
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Chapter 7

Conclusions

7.1 Summary of contributions

The number of applications of similarity search has signi cantly grown in the last

years. Most of these applications appeared in systems as ntithedia databases,
search engines, or social networks, characterized for mageng very large collections
of objects of complex data types, in constant interaction wth the user. Therefore,
reducing the comparisons needed for solving a query as muchsapossible is
mandatory in order to provide e cient search capabilities.

In this thesis, we have presented several methods for simifily search in metric
spaces that aim not only to improve the search performance, bt also other aspects
important for real applications, as the construction cost, the space requirements
of the index, the possibility of working with both discrete and continuous metrics,
and the possibility of dynamically adapting the information in the index as the
collection of objects evolves from an initially empty database.

This section summarizes the main contributions of this thess:

 We have presentedSparse Spatial Selection (SSS), a new method for the
selection of e ective indexing objects for searching in metic spaces. While
previous techniques based the selection on the idea that gogivots have to be
far away from each other and far away from the rest of objects bthe database,
our proposal selects a set of pivots well distributed in the pace. That s, pivots
are not near to each other, but they are not necessarily verydr away from
each other. The experimental evaluation shows that the perdrmance obtained
with this approach is better or at least equal than the obtained with previous
techniques. Therefore, we proved that good pivots do not nestto be far from
the rest of objects in the database.

119
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Sparse Spatial Selection has other important characterists that make it
suitable for real-life applications. The most important is perhaps that it
is dynamic. The method starts with an empty database and the fpvots
are selected as needed for building the index as objects araseerted into or
removed from the database. Since each pivot covers a regioff the space, the
index adapts its structure and the information it stores to the content of the
database in each moment.

An important di erence of Sparse Spatial Selection with previous methods
is that it is not necessary to state the number of pivots to usebefore the
indexing. While in previous methods the optimal number of pivots had to be
obtained by trial and error on the whole collection, our method determines
by itself how many pivots it needs in each moment depending orthe content
and complexity of the collection.

Other important characteristic of this method is that it doe s not impose
any additional cost for the selection of pivots. The only information it
needs is the same information needed for inserting an objeéh the database
(the comparisons of the object with the pivots). This is an important
di erence with previous methods, that require a signi cant amount of distance
computations during the preprocessing of the collection.

In this thesis we analyzed the selection of indexing objectfor clustering-based
methods. As in the case of pivot-based methods, the number ofester centers,
their position in the space with respect to each other, and tkeir position with
the rest of the objects of the database, determine the prunig capacity of the
method. Most existing clustering-based methods select theluster centers at
random. As in the case of pivots, this approach has several immmveniences.
A random selection does not ensure the best search performee, and the
number of cluster centers has to be stated beforehand.

We have presented Sparse Spatial Selection Tree (SSSTree), a tree-like
clustering-based method that selects in each node the clust centers by
applying Sparse Spatial Selection. Thus, the number of clusr centers in
each node is adjusted as necessary depending on its size anuetobjects
it contains. This approach gives as a result an unbalanced e structure
adapted to the topology of the space. The experimental rests con rm that
this unbalanced structure obtains a better search performace than existing,
balanced, methods.

We have proposed Non-Redundant Sparse Spatial Selection (NR-SSS), a
method to detect redundant pivots and remove or replace themfrom the set
of pivots. We introduced the concept of redundant pivot as follows: a pivot
is considered to be redundant if it does not improve the e eciveness of the
set of pivots as a whole, that is, if the set of pivots has the sme capacity for
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pruning the search space with or without that pivot. We have also de ned a
criterion for estimating the contribution of each pivot to t he whole set.

By detecting and removing the redundant pivots, Non-Redundait Sparse
Spatial Selection obtains sets of pivots smaller than thoseobtained with
Sparse Spatial Selection, while conserving the capacity fgruning the search
space. Having less pivots reduces the internal complexity whout increasing
the external complexity. It also reduces the space requiremnts of the index,
something important for pivot-based methods.

Non-Redundant Sparse Spatial Selection is also dynamic anddaptive, and it
is not necessary to state beforehand the number of pivots thenethod has to
select.

« Finally, we have introduced the concept of nested metric spaces. A nested
metric space is subspace that contains a large number of olges in a small
region of the space, and in which the dimensions that explairthe dissimilarity
between any two objects are di erent from the dimensions tha explain the
dissimilarity between other two objects in the general metic space. We use
the term nested metric space, since they are as independent etric spaces
nested into a more general metric space. Nested metric spacase an extreme
irregularity of the distribution of the objects in the space. Their presence
can cause bad results in the search performance of some mett&o We have
experimentally shown the existence of these subspaces.

We have proposed an hybrid method that tries to detect these sbspaces and
take advantage of them during the indexing. This method indexes the space
in a rst level, and then devotes further resources to that special subspaces.

7.2 Future work

This section summarizes the next steps considered for futw work after this thesis.
First, with respect to the methods proposed in this work:

* The experimental evaluations carried out in this work used aset of common
test collections used by most researchers working in simitéty search in metric
spaces. Although these collections represent a good samplétbe problems in
which methods for searching in metric spaces are applied, welan to extend
the experimental evaluation of the methods we have proposedising large
collections of data taken from real applications, in order © reinforce the
robustness of our proposals when working with real, very lage collections
of data.

< We plan to extend our work in methods for searching in metric paces that take
advantage of the distribution of the objects in the space. Wehave proposed
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a method for detecting the presence of nested metric spaces the database,
and we have shown that devoting more resources of the index tthem can
improve the search performance. However, the method we haver@sented is
still not competitive when compared with pivot-based methods that use as
much memory as they need.

< We plan to design and build a product that solves a real appliation using the
methods we have proposed in this thesis.

In addition, we are already working in other aspects of methals for searching in
metric spaces that were not mentioned in this thesis. Partialarly, the optimization
of the space requirements of pivot-based methods.

As we introduced in the revision of the state of the art, pivot-based and
clustering-based methods have two important dierences. @ the one hand,
pivot-based methods can solve a query with much less distaeccomputations than
clustering-based methods. For instance, the number of distnce computations of a
pivot-based method can be in the order of hundreds, and the nmber of distance
computations of a clustering-based method can be in the ordeof thousands. On
the other hand, the space requirements of clustering-basethethods are linear with
the number of objects in the collection, while pivot-based nethods may require high
amounts of space for storing the information of the index. The space requirements
make pivot-based methods impractical for some problems.

Up to now, the decision of which type of method to use dependedrohow costly
the comparison of two objects is and the size of the databasdf the comparison of
two objects involves a very high computational cost, as happns with the comparison
of DNA sequences using the edit distance, the space needed bypwot-based method
can be compensated by the optimization in the search cost. Ifhat is not the case
and the database is expected to be very large, clustering-s&d methods are a good
option because the index needs a very small amount of space émwill surely t in
memory.

A promising line of research for similarity search in metricspaces is the reduction
of the space requirements of pivot-based methods, ideally aking them linear with
the size of the database, while conserving their capacity fopruning the search
space. We are currently working on methods for achieving tté goal by storing for
each object in the database only the distance to the most pronsing pivot for it.
Preliminary results of our work on this research line have ben already published
in [Ares et al., 2009a] and [Ares et al., 2009b].
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they have been cited (these citations were updated in Novemlre2009).
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Summary of notation

The following table summarizes the notation used throughot the text:

Symbol Meaning
X Universe of valid objects (universal set)

(X,d) Metric space
d Metric or distance function
u Database or collection of objects
n Size of the database

(q,r) Range query

q Query object
r Search radius

kNN (q) k-nearest neighbor query
k Dimension of the vector spaceRK
Lp Minkowski distances

p = n2/202 Estimation of the intrinsic dimensionality [Chavez et al., 2001b]

P Set of pivots
m Size of the set of pivots
M Maximum distance between any two objects of the space
C Cluster
Ci Center of the cluster C;
re, Covering radius of C;, r¢; = max{d(x,y)x,y &}

(ci,re;) Enclosing ball of the cluster C;, (ci, r¢;)
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Appendix C

Experimental Environment

In the experimental evaluations carried out during this thesis, we used the materials
available at the Metric Spaces Library?!, a library developed as part of theSimilarity
Search and Applications Conference (SISAP). It provides implementations of the
most relevant methods for searching in metric spaces, and aes of collections of
di erent nature. It is, therefore, a common test framework used by most researchers
in this eld. In particular, we used the following collectio ns:

e VECTOR8 VECTOR1Q VECTOR12and VECTOR14 Collections of synthetic
vectors of dimension 8, 10, 12, and 14, uniformly distributel in an hypercube
of size 1. Vectors are compared using the Euclidean distance

Since these collections are synthetic and all of them have #hsame distribution
of distances, they permit us to test the behavior of methods \th collections
of known dimensionality. The higher the dimensionality, the more di cult
the search.

We also worked with collections of images. Although the image are represented
by feature vectors, their distribution is not uniform, and t hey are useful in order to
test how the methods perform in data distributions taken from real applications:

e NASA: A collection of 40,150 images extracted from the archives foimage
and video of the NASA. Each image is represented by a feature veot of
dimension 20. The distance between two images is the Euclidean distance
between their feature vectors. This collection was used inHe 1999's of the
DIMACS Implementation Challenge.

The similarity of two images is based in terms of their color histograms, using
the Munsell space color (Hue,Saturation,Intensity). Each mage is divided

1The Metric Spaces Library can be accessed at http://sisap.org (November, 2009)
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in four regions of the same size, and the color histogram of eh region is
obtained. Each histogram is further divided in nine subspaes corresponding
to black, white, and other six colors. By concatenating the result obtained
for the four histograms, a vector of36 components is obtained. This vector is
then reduced to a vector of dimension20 by an analysis of main features.

e COLOR A collection of 112,120 color images, each of them represea by
a feature vector of dimension 102. The distance between twariages is the
Euclidean distance between their feature vectors.

The procedure to obtain the feature vector for each image islao based on the
color histogram, and it is very similar to the used in the previous collection.

When working with collections of vectors, the 90% of the collection was used
as the database to be indexed, and the remainind0% objects were used as query
objects. The search cost was computed as the average searabstfor each object
belonging to that 10%. For each collection, the search radius was adjusted to
retrieve an average of the0.01% of the objects of the database in each query.

We also worked with collections of words. Finding words sinlar to another one
for spelling correction is another common example of similaty search:

< ENGLISH A collection of 69,069 words taken from the English dictiorary, and
compared using the edit distance.

« SPANISH A collection of 86,056 words taken from the Spanish dictioary, and
compared using the edit distance.

We used two dierent collections because, although the objets in both
collections are words, the distribution of the distances isnot the same in each
collection. In the case of the collections of words, the90% of the collection was
used as the database to be indexed, and the remaininfj0% objects were used as
queries. The search radius used was always= 2.

Chapter 6 addresses the problem of nested metric spaces inalecollections of
objects, and how it can a ect the performance obtained with methods for searching
in metric spaces. In order to validate the hypothesis estabthed in that chapter, we
worked two synthetic collections of vectors:

e REGULAR it is exactly equal to VECTOR12 that is, it contains 100,000
vectors of dimension12 uniformly distributed in an hypercube of side 1. In
Chapter 6 we refer with this name to this collection for the s&e of clarity,
to remark that the objects in the collection have a regular ditribution in the
data space.

+ IRREGULAR s another collection of 100, 000 of dimension12. However, the
distribution of the objects in the space is not uniform, it is completely biased.
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We generated this collection in order to show that the presene of nested
metric spaces a ects the search performance of methods foearching in metric
spaces. The collection contains three nested metric spacesgith the 30% of
the objects of the collection in each one. The objects of therst nested metric
space are very similar according to the rst three coordinaes. The objects
in the second nested metric space are very similar according another three
di erent dimensions, and the objects in the third nested metric space are very
similar according another three di erent dimensions. The remaining 10% of
the objects are uniformly distributed in the space.

Table C.1 shows some statistics about the data distributionof each collection.
For each collection, the table shows the size of the colleain (the number of objects
in the collection), and the following parameters that characterize the histogram of
distances of the collection: mean, typical deviation, varance, minimum value, and
maximum value of the distance between any two objects in the allection.

Collection Size u o 0? min max

uvi4g 100,000 1.5086 0.2452 0.0601 0.4187 2.5317
uviz 100,000 1.4032 0.2456 0.0603 0.3173 2.5090
uv1o 100,000 1.2652 0.2450 0.0600 | 0.2600 2.3067
uvos8 100,000 1.1244 0.2469 0.0610 0.1463 2.1891
NASA 40,150 1.2342 0.3424 0.1172 0.0012 2.5079
COLOR 112,544 0.4005 0.1704 0.0290 0.0000 1.1517
ENGLISH 69,069 8.3176 2.0260 4.1048 1.0000 | 18.0000
SPANISH 86,061 7.4311 2.0168 4.0676 1.0000 | 19.0000
IRREGULAR| 100,000 0.3830 0.1447 0.0209 0.0069 0.8977

Table C.1: Statistics on the distance distribution of each test colletion.









