
From relational to deductive databases

Fernando Sáenz-Pérez?

Grupo de programación declarativa (GPD),
Dept. Ingenieŕıa del Software e Inteligencia Artificial,

Universidad Complutense de Madrid, Spain
fernan@sip.ucm.es

Abstract. This paper highlights the limits of current implementations
of SQL and shows how they can be overcome with deductive approaches.
Deductive query languages subsuming relational ones must include con-
structors to allow users for submitting queries semantically equivalent to
their relational counterparts. As deductive languages are based on first
order predicate logic, they are able to capture relational semantics, which
involves negation. In addition to negation, as e.g. needed to express set
difference, usual relational outer join statements and aggregate functions
must be taken into account for such subsuming deductive languages. We
base our presentation on the grounds of DES (Datalog Educational Sys-
tem), a deductive database system that integrates both deductive and
relational database languages in a common inference engine and system.

Keywords: Relational databases, Deductive databases, SQL, Datalog,
DES

1 Introduction

Contributions from mathematics to data management systems have revealed
important landmarks as exemplified by the work in the relational database model
by Codd [11]. By that time, logic programming (started with the work of John
McCarthy) lead to the Prolog language with well-known efforts from Edinburgh
and Marseille. This, in turn, branched in multiple disciplines including the work
on deductive database systems, pioneered by the Datalog [1] query language.
That decade was fruitful for data management in that also the SQL language
was firstly implemented in IBM’s System R.

Relational data model and its extensions have been of great success as they
are the base of current, widely-used, relational database management systems
and its ubiquitous SQL query language. But, despite its acknowledged benefits,
SQL is also claimed as an error-prone and unclear language [12]. Instead, Datalog
has been claimed as a pure declarative query language [1, 10]; i.e., it is able to
allow a user to specify what he wants rather than how it must be performed.
? This author has been partially supported by the Spanish projects STAMP

(TIN2008-06622-C03-01), Prometidos-CM (S2009TIC-1465) and GPD (UCM-
BSCH-GR35/10-A-910502)



Nonetheless, SQL builds on many features which as a whole are not usual in
deductive databases, making it more practical.

With the advent of new interest on deductive databases and emerging compa-
nies promoting deductive technologies, this might change in a future. Datalog has
been extensively studied and is gaining a renowned interest thanks to their appli-
cation to ontologies [9], semantic web [13], social networks [17], policy languages
[5], and even for optimization [15]. In addition, current companies as LogicBlox,
Exeura, Semmle, and Lixto embody Datalog-based deductive database technolo-
gies in the solutions they develop. All these facts reveal the actual resurgence of
Datalog in both academia and industry.

Thus, the aim of this paper is to try to look at deductive databases from a
renowned viewpoint as more features are being added making them more appeal-
ing. Section 2 introduces the concrete deductive system we base our presentation
on, which allows confronting both Datalog and SQL query languages, a subject
covered in the core Section 3 of this paper. The paper ends by drawing some
conclusions in Section 4.

2 Datalog Educational System

The Datalog Educational System (DES) [19] is a free, open-source, multiplat-
form, portable, in-memory, Prolog-based implementation of a deductive database
system. DES 2.3 [18] is the next shortcoming release (expected by May), which
enjoys Datalog and SQL query languages, full recursive evaluation with tabling,
full-fledged arithmetic, stratified negation [20], ODBC connections and novel
approaches to Datalog and SQL declarative debugging [6, 8], test case genera-
tion for SQL views [7], null values support, (tabled) outer join and aggregate
predicates and functions [18]. However, as the system was intended for educa-
tional purposes, it is not targeted at performance and also lacks features such as
concurrency, security and others that a practical database system must enjoy.

2.1 Datalog

The Datalog version considered in DES is as follows:

– A Datalog program consists of a set of rules. A program may contain line
remarks, which start with the symbol %.

– A rule has the form head :- body, or simply head, ending with a dot.
– A head is a positive atom including no built-in predicate symbols.
– A body contains conjunctions (denoted by “,”) as well as disjunctions (de-

noted by “;”) of literals (with usual associativity and priority).
– A literal is either an atom, or a negated atom (not(Atom)), or a built-in

(literals are also referred to as goals). Basic literals only include atoms,
negated atoms, and outer join built-ins.

– An atom is an atomic formula [2] restricted to have variables or constants
as arguments.



– A variable is a program symbol starting with either an uppercase letter or
an underline.

– A constant is a program symbol either starting with a lowercase letter or
being a sequence of characters delimited by single quotes.

– A query is a literal (some built-ins are exceptions, as will be shown in Section
3.4, and include other atoms as arguments). In addition, temporary views
can also be submitted as queries, as will be introduced in Subsection 2.3.

Compound terms are not allowed but as arithmetic expressions, which can occur
in certain built-ins (for writing arithmetic expressions and conditions).

Datalog programs are typically consulted from files, and queries are typed
at the system prompt. The answer to a query is the set of facts matching the
query which are deduced in the context of the database. A query with different
variables for all its arguments gives the whole set of facts (meaning) defining
the queried relation. If a query contains a constant in an argument position, it
means that the query processing will select the facts from the meaning of the
relation such that the argument position matches the constant (i.e., analogous
to a select relational operation with an equality condition). If a given variable
occurs more than once in a query, the corresponding predicate arguments are
required to match.

DES implements Datalog with stratified negation as described in [20] with
safety checks [20, 22]. Stratified negation broadly means that negation is not
involved in a recursive computation path, although it can use recursive rules. The
system can compute a query Q in the context of a program that is restricted
to the dependency graph (which shows the computation dependencies among
predicates) built for Q so that a stratification can be found. This means that,
even when a program could be actually non-stratifiable, a query involving a
subset of the program might be safely computable, provided that a suitable
stratification can be found for its dependency subgraph.

Evaluation of queries is ensured to be terminating as long as no infinite pred-
icates/operators are considered. Currently, only the infix operator is represents
an infinite relation and can deliver unlimited pairs (other built-ins, as comparison
operators, demand their arguments to be ground). For instance, let’s consider
the rules p(0). and p(X) :- p(Y), X is Y+1. Then, the query p(X) is not
terminating since its meaning is infinite ({p(0), p(1), ...}).

2.2 SQL

DES covers a reasonable set of SQL following ISO standard SQL:1999 (further
revisions of the standard cope with issues such as XML, triggers, and cursors,
which are outside of the scope of DES). There is provision for the DDL (data
definition language – CREATE TABLE, . . . ), DML (data manipulation language –
INSERT INTO, . . . ) and DQL (data query language – SELECT, . . . ) parts of the
language1.
1 Note that we distinguish, as opposed to common use, DQL and DML. Usually, DQL,

as we understand it, is rather included in DML.



Some supported features include:

– Arithmetic expressions.
– Null values.
– Outer joins (left, right and outer, no limitations on applications).
– Aggregates.
– Duplicates and duplicate elimination.
– Correlated queries.
– Recursive queries.
– Integrity constraints (primary keys and referential integrity).
– Types (domains).

Also, there are some important differences w.r.t. SQL:

– User identifiers are case sensitive (as table and column names).
– As the underlying engine works on a two-valued logic, logical expressions

over nulls do not behave exactly as defined in the SQL standard.
– Duplicates are disabled by default (but can be enabled as well)

Limitations can be found in [18], and to name a few, the following are un-
supported, up to now:

– ALL, SOME and ANY.
– Query result coercions to values in projection list.
– String expressions.
– ORDER BY clause.

SQL DQL statements are compiled to and executed as Datalog programs
(basics can be found in [20]), and relational metadata for DDL statements are
kept. Submitting a DQL query amounts to 1) parse it, 2) compile to a Datalog
program including the relation answer/n with as many arguments as expected
from the SQL statement, 3) assert this program, and 4) submit the Datalog
query answer(X1, . . . , Xn), where Xi : i ∈ {1, . . . , n} are n fresh variables.
After its execution, this Datalog program is removed. On the contrary, if a DDL
statement defining a view is submitted, its translated program and metadata do
persist.

2.3 System Features

As an interactive (text-based) system, DES accepts user inputs as both Datalog
and SQL queries, and commands. Commands are isolated from the database
signature, i.e., name clash is avoided even when a relation gets the same name
than a command because commands are preceded with the symbol “/”. There
is provision for rule database commands (inserting, deleting and listing both
programs and single rules), operating system commands (related to the OS file
system and OS commands and programs), extension table commands (tabling



information), log commands (logging system output to files), informative com-
mands (predicate dependency graph, stratification, system status, help and oth-
ers), and miscellanea commands (halting the system, quitting the session and
invoking Prolog).

There are available some usual built-in comparison operators (=, \=, >, . . . ).
When being solved, all these operators demand ground (variable-free) arguments
(i.e., no constraints are allowed up to now) but equality, which performs unifi-
cation. In addition, arithmetic expressions are allowed via the infix operator is,
which relates a variable with an evaluable arithmetic expression. The result of
evaluating this expression is assigned/compared to the variable. The predicate
not/1 implements stratified negation. Other built-ins include outer joins and
aggregates.

As a user facility, temporary views are provided: a novel feature that allows
to write compound queries on the fly (as, e.g., conjunctions and disjunctions). A
temporary view is a rule which is added to the database, and its head is submitted
as a query and executed. Afterwards, the rule is removed. For instance, given
the relations a/1 and b/1 defined by facts, the view d(X) :- a(X), not(b(X))
computes the set difference between the instance relations a and b.

In addition, automatic temporary views, autoviews for short, are temporary
views which do not need a head. When submitting a compound query (any
allowed body), a new temporary relation, named answer (a common name for
the relation result [1], Paradox, . . . ), is built with as many arguments as relevant
variables occur in the conjunctive query. answer is a reserved word and cannot
be used for defining other relations. The conjunctive query a(X), b(Y) is an
example of an autoview, which computes the Cartesian product of a and b.

Both Datalog and SQL languages are provided sharing the same database, as
SQL statements are compiled to Datalog rules and solved by the deductive infer-
ence engine. Moreover, Datalog programs can seamlessly refer to objects created
in the SQL side, as tables and views. Whereas RDBMS’s keep the extensional
database (EDB, defined by tables) isolated from the intensional database (IDB,
defined by views), i.e., their signatures are disjoint, in a deductive database both
parts are joined since a relation (predicate) is defined by rules. In addition to ac-
cess common data defined by both SQL and Datalog from within DES, another
possibility is to interact with external databases, as shown in next subsection,
since ODBC connections are available.

2.4 ODBC Connections

DES provides support for connections to RDBMS’s in order to provide data
sources for relations. This means that a relation defined in a RDBMS as a view
or table is allowed as any other relation defined via a predicate in the deduc-
tive database. Then, computing a query can involve computations both in the
deductive inference engine and in the external RDBMS SQL engine. Such rela-
tions become first-class citizens in the deductive database and, therefore, can be
queried in Datalog. These queries, in turn, can refer to both predicates, tables
and views in a transparent way. If the relation is a view, it will be processed



by the SQL engine. When an ODBC connection is opened, all SQL statements
are redirected to such connection, so DES does not longer process such state-
ments. This also means that all the SQL features of the connected RDBMS are
available.

However, as a caveat, notice that data from SQL queries are cached in an ex-
tension table during Datalog computations, and such data are not retrieved any-
more until this cache is cleared (either explicitly with the command /clear et
or because a command or statement invalidate its contents, as a SQL update
query). Therefore, it could be possible to access outdated data from a Datalog
query should the external database is modified.

In addition, it is not recommended to mix Datalog and SQL data. Current
release allows to assert rules for predicates with the same name and arity as
existing RDBMS’s tables and/or views. So, although on the DES side, rules
are known, they are not on the RDBMS side and thus a SQL statement will
answer data in the external RDBMS, without caring for possible Datalog rules
intersecting those. This is in contrast to the plain DES management of data (in
the absence of an ODBC connection): the DES engine is aware of any changes
to data, both from Datalog and SQL sides.

2.5 Query Compilation

As a final remark for this section, since SQL statements are compiled to Datalog,
it is an interesting exercise to inspect how the DES compiler translates SQL to
Datalog programs. This can be seen by enabling compilation listings at the sys-
tem prompt by issuing the command /show compilations on. Other possible
way is consulting a view schema (command /dbschema view name): the view
text is listed together with its compilation to Datalog rules (without an opened
ODBC connection).

3 Comparing SQL and Datalog

Here, we compare Datalog and SQL as query languages hopefully highlighting
the more compact and neat formulations and better expressiveness that Data-
log enjoys. In what follows, all statements (SQL and Datalog) can actually be
submitted in DES at its command prompt, sharing predicates, tables and views.

3.1 Defining Relations

First task to show is declaring metadata information about tables, that is, re-
lation variables (schema) as opposed to relation values (instances) (following
nomenclature in [12]). Whilst in SQL we use the CREATE TABLE statement for
such purpose, in DES we use type declarations instead. So, the following two
inputs produce equivalent results:

CREATE TABLE s(sno INT, name VARCHAR(10));
:-type(s(sno:int, name:varchar(10))).



Type declaration in DES predicates is optional and different from other sys-
tems so that is more geared towards compatibility with SQL. Such declarations
should be understood as program assertions (as in Prolog) rather than becom-
ing part of the language (assertions are not allowed in rule bodies). Another
assertion allows to defining a primary key with :-pk(s,[sno]).

One can also define a propositional relation (0-arity predicate) with :-type(p).
And as a distinguishing feature, such propositional relations can be queried from
both SQL and Datalog (in the former case, we depart from the relational model
by adding this feature).

3.2 Populating Relations

From the SQL viewpoint, populating relations are usually performed with INSERT
INTO statements. Datalog facts, defining the extensional part, are typically and
simply written in a text file and then consulted with a command, as in /consult
suppliers, where suppliers.dl is the intended file to be consulted (where ex-
tension .dl is optionally specified in the command). Also, the command /assert
Rule is provided for inserting a rule. The following are equivalent:

insert into employee values(’Smith’,’Sales’,1500);
/assert employee(’Smith’,’Sales’,1500).

INSERT statements are considered static in the sense they are not mixed with
query solving; but to a point: the statement can contain a query which acts as
a data source from tables and views. To enable termination in such queries, if a
target table t also occurs as a source relation, then source data for t are the ones
before insertions by the inserting statement. So, the second statement below is
terminating:

insert into s values(1,’1st Supplier’);
insert into s select sno+1,’2nd Supplier’ from s;

This kind of statements are processed in DES as follows: First, compile the
SELECT query to Datalog and solve this query. Then, its results are added to the
target table.

Such programmatic populations are not allowed in Datalog, but they are
rather subject of further work. Insertions and deletions could be allowed, respec-
tively, by prepending ’+’ and ’-’ to base relations, as in LDL++ [3].

3.3 Basic Queries

Basic extended relational algebra operations can be applied as follows, using
both Datalog and SQL. Note that in Datalog, an explicit denotation of relation
arguments is required. We assume that duplicated are disabled, so that outputs
are sets as in the relational model (duplicates can be enabled on user demand).

– πname(s): Projecting the second argument of s.



projection(Y) :- s(X,Y).
WITH projection(name) AS (SELECT name FROM s)
SELECT * FROM projection;

A renaming operation is also performed in the first case to get the relation
name projection. Note that such rule is known in DES as a temporary
view and can be submitted from the prompt as such. In SQL, an analogous
operation is performed via a WITH statement (parentheses have been added to
aid legibility; though, they are not needed). For the sake of brevity, however,
we’ll not apply renamings from now on. Also, as only single-line command-
prompt inputs are allowed, ending dots and semicolons are optional and we
can omit them safely.

– σsno=1(s): Selecting the name value from s such that sno is 1

s(1,Y)
SELECT name FROM s WHERE sno=1

– s× sp: Cartesian product of relations s and sp

s(X,Y), sp(U,V)
SELECT * FROM s, sp

– s on sp: Natural inner join of relations s and sp

inner_join(X,Y,V) :- s(X,Y), sp(X,V)
SELECT * FROM s NATURAL INNER JOIN sp

In the Datalog case, it is needed to use the temporary view to select the
arguments corresponding to the natural join.

– s ∪ q: Set union of relations s and q

s(X,Y) ; q(X,Y)
SELECT * FROM s UNION SELECT * FROM q;

Note that a view is evaluated in the context of the database; so, if there are
more rules already defined with the same name and arity of the rule head, the
evaluation of the view will return its answer considering the database already
loaded. For instance, the temporary view s(X,Y) :- q(X,Y) is equivalent
to the former statements as it computes the union of s and q. This rule is a
tuple source from the data in q, which will form part of the answer together
with the tuples defined by the already defined facts of s. This is no longer
true in the relational case because of the isolation of the extensional and
intensional parts of the database (a view cannot be created with the same
name as a table).

– s\q: Set difference of relations s and q

s(X,Y), not(q(X,Y))
SELECT * FROM s EXCEPT SELECT * FROM q

What follows from these pretty small examples is that it can be argued
that SQL syntax was chosen to better follow a natural speech, whereas Datalog
is more related to mathematical notation and therefore more concise in some
cases, a point further emphasized in next subsections.



3.4 Outer Joins

DES provides the three outer join operations: left, right and full outer joins.
The left (resp. right, and full) outer join corresponds to the built-in lj(A,B,C)
(resp. rj(A,B,C), and fj(A,B,C)), with A, B, basic literals, and C a literal. Built-
in lj(A,B,C) computes the cross-product of tuples in the meaning of A and B
that satisfy literal C, extended with those tuples in the meaning of A for which
C is not true, so that they include nulls for B’s arguments. So, next inputs are
equivalent:

lj(s(X,Y),sp(U,V),X=U)
SELECT * FROM s LEFT JOIN sp ON s.sno=sp.sno

Compared to current RDBMS implementations, there are no restrictions at
all on what form the condition (here, literal C) can take.

A join condition has not to be missed with a where condition. The above
query lj query is not equivalent to lj(s(X,Y),sp(X,V),true) (Notice that the
variable X is shared for relations s and sp.) This query could be written in SQL
as follows: SELECT * FROM s LEFT JOIN sp WHERE s.sno=sp.sno

But note that Datalog admits a more neat formulation if both conditions are
needed, say2:

lj(s(X,Y),sp(U,Y),X=U)
SELECT * FROM s LEFT JOIN sp ON s.sno=sp.sno WHERE name=pno

Outer join relations can be nested as well, as: 3:

lj(s(X,Y),rj(q(U,V),sp(Z,W),U=Z),X=U)
SELECT * FROM s LEFT JOIN (q RIGHT JOIN sp ON q.sno=sp.sno)
ON s.sno=q.sno

Further, some RDBMS’s as DB2 does not allow the above and otherwise
need a longer formulation. In Datalog, variables are scoped all way long, so that
where conditions can refer to any nested relation (note the multiple occurrences
of variable Y).

lj(s(X,Y),rj(q(U,Y),sp(Z,Y),U=Z),X=U)
SELECT * FROM s LEFT JOIN
(SELECT * FROM q RIGHT JOIN sp ON q.sno=sp.sno WHERE q.name=sp.pno)
ON s.sno=q.sno WHERE s.name=q.name

3.5 Queries with Aggregates

DES provides aggregate functions to be used in a similar way as in SQL. In
addition, aggregate predicates and a group by predicate are also provided. No-
ticeably, a group by operation can be constructed automatically without the need
of specifying a group by predicate, as will be shown below. Again, for the sake
of comparison, SQL formulations also accompany to Datalog ones.
2 Up to meaningfulness and type correctness.
3 Incidentally, MS Access neither allows this combination of outer joins nor full joins.



Aggregate Functions An aggregate function can occur in expressions and
returns a value, as in R=1+sum(X), where sum is expected to compute the cumu-
lative sum of possible values for X, and X has to be bound in the context of a
group by predicate (cf. next paragraph), wherein the expression also occurs.

Predicate group by This predicate encloses a query for which a given list of
variables builds answer sets (groups) for all possible values of these variables. If
we consider the relation employee(Name,Department,Salary), the number of
employees for each department can be counted with the query:

group_by(employee(N,D,S), [D], R=count)
SELECT Department,COUNT(*) FROM employee GROUP BY Department

If employees are not yet assigned to a department (i.e., a null value in Department),
then this query behaves as a SQL user would expect: excluding those employees
from the count outcome. If we rather want to count active employees (those with
assigned salaries), we can use the query:

group_by(employee(N,D,S), [D], R=count(S))
SELECT Department,COUNT(Salary) FROM employee GROUP BY Department

Conditions including aggregates on groups (cf. HAVING conditions in SQL)
can be stated as well. E.g., for retrieving departments with more than one active
employee:

group_by(employee(N,D,S), [D], count(S)>1)
SELECT Department FROM employee GROUP BY Department
HAVING COUNT(Salary)>1

Conditions including no aggregates on tuples (cf. WHERE conditions in SQL)
of the input relation (cf. SQL FROM clause) can also be used. For instance, the
following query computes the number of employees and the average salary by
department, for salaries greater than 1,000:

group_by((employee(N,D,S),S>1000), [D], (C=count(S),A=avg(S)))
SELECT Department,COUNT(Salary),AVG(Salary) FROM employee
WHERE Salary>1000 GROUP BY Department

Observe that the following query is not equivalent to the last one, since
variables in the input relation are not expected to be bound after a grouping
computation, and it raises a run-time exception upon execution:

group_by(employee(N,D,S), [D], (C=count(S),A=avg(S))), S>1000

The following example shows predicate group by really admits a more com-
pact representation than its SQL counterpart:

group_by(employee(N,D,S),[D],(C=count(S);C=sum(S)))
SELECT Department,COUNT(Salary) FROM employee GROUP BY Department
UNION

SELECT Department,SUM(Salary) FROM employee GROUP BY Department



Aggregate Predicates An aggregate predicate returns its result in its last
argument position, as in sum(P,X,R), which binds R to the cumulative sum
of values for X, provided by the input relation P which in particular explicitly
includes variable X. These aggregate predicates simply allow another way of
expressing aggregates, in addition to the way explained just above. For instance,
for counting active employees, the following query is possible:

count(employee(N,D,S),S,T)
SELECT COUNT(Salary) FROM employee

If we rather omit the second argument of count, this predicate behaves as
COUNT(*) in SQL. (In this example, it would count all the employees, not only
those with assigned salary.)

A group by operation is simply specified by including the grouping vari-
able(s) in the head of a clause, as in the following view, which computes the
number of active employees by department:

v(D,C) :- count(employee(N,D,S),S,C)
SELECT Department,COUNT(Salary) FROM employee GROUP BY Department

Correlated aggregates are also allowed, including them as another goal of the
first argument of the aggregate predicate as, e.g., in the following view, which
computes the number of employees that earn more than the average company
salary:

v(D,C) :- count((employee(N,D,S),avg(employee(N1,D1,S1),S1,A),S>A),C)
SELECT Department,COUNT(Salary) FROM employee
WHERE Salary > (SELECT AVG(Salary) FROM employee)
GROUP BY Department

Note that last Datalog query uses different variables in the same argument
positions for the two occurrences of the relation employee. Compare this to the
following query, which computes the number of employees so that each one of
them earns more than the average salary of his corresponding department. Here,
the same variable name D has been used to refer to the department for which
the counting and average are computed:

v(D,C) :- count((employee(N,D,S),avg(employee(N1,D,S1),S1,A),S>A),C)
SELECT Department,COUNT(*) FROM employee e1
WHERE e1.Salary > (SELECT AVG(Salary) FROM employee e2

WHERE e1.Department=e2.Department)
GROUP BY Department

3.6 Recursive Queries

Let’s consider a classical transitive closure problem: Given a graph defined by
the relation edge(Origin,Destination), find the minimum path between any
pair of reachable nodes assuming that the length of an edge is 1. A possible
recursive SQL formulation follows:



CREATE OR REPLACE VIEW
shortest_paths(Origin,Destination,Length) AS

WITH RECURSIVE path(Origin,Destination,Length) AS
(SELECT edge.*,1 FROM edge)

UNION
(SELECT path.Origin,edge.Destination,path.Length+1
FROM path,edge
WHERE path.Destination=edge.Origin AND

path.Length < (SELECT COUNT(*) FROM edge) )
SELECT Origin,Destination,MIN(Length)
FROM path
GROUP BY Origin,Destination;

-- Query:
SELECT * FROM shortest_paths;

But this formulation is not allowed in several RDBMS implementations (e.g.,
DB2 and SQL Server) because of several reasons, either because GROUP BY,
HAVING, duplicate elimination (as in UNION) or aggregates are not allowed in
the recursive part of queries (DES, though, does). The very same problem can
be formulated in Datalog as:

path(X,Y,1) :- edge(X,Y).
path(X,Y,L) :- path(X,Z,L0), edge(Z,Y),

count(edge(A,B),Max), L0<Max, L is L0+1.
% Query:
shortest_paths(X,Y,L) :- min(path(X,Y,Z),Z,L).

Current RDBMS’s following SQL:1999 require stratification w.r.t. negation
and aggregates to support recursion. Negation in SQL occurs for NOT EXIST and
EXCEPT clauses (note that conditions such as NOT(A>B) become A<=B and are not
considered therefore as negation). But stratification means that several graph
algorithms cannot be expressed in SQL [22]. Further, linear recursion in SQL
restricts to one the number of allowed recursive calls. For instance, Fibonacci
numbers cannot be computed.

Related also to linearity, isolating IDB and EDB in SQL also poses problems.
For instance, the basic transitive closure shown next is not possible in current
RDBMS’s implementations as nonlinear recursion is involved (DES, however,
does allow it).

WITH paths(Origin,Destination) AS
(SELECT 1,2)

UNION
(SELECT 2,3)

UNION
(SELECT p1.Origin,p2.Destination
FROM paths p1,paths p2
WHERE p1.Destination = p2.Origin)

SELECT Origin,Destination FROM paths;



An equivalent query in Datalog follows:

path(X,Y) :- (X=1,Y=2) ; (X=1,Y=3) ; (path(X,Z),path(Z,Y))

To end this subsection, let’s recall that one of the successful outcomes of
the Datalog community was the magic set transformation [4] which is used to
implement recursion in RDBMS’s (Starburst [16] was the first non-commercial
RDBMS to implement this whereas IBM DB2 was the first commercial one).

4 Conclusions

Under the risk of falling into subjectiveness, one might argue that this paper has
shown how SQL statements can be expressed with Datalog rules with more neat
and compact formulations. It is commonly acknowledged that shorter codings
improve readability and program maintenance, and examples do show the shorter
codings of Datalog w.r.t. SQL. In addition, its more mathematical syntax allows
more understandable programs. However, from another perspective, it could be
criticized that shorter codings amounts to a higher semantics/syntax ratio, that
is, a formula entails a heavier semantic load; but this is also rather a debate.

So, compared to the widely-used relational database language SQL, Data-
log adds two main advantages. First, its clean semantics allows to better reason
about problem specifications. Its more compact formulations, notably when us-
ing recursive predicates, allow better understanding and program maintenance.
Second, it provides more expressivity because the linear recursion limitation in
SQL is not imposed. In fact, multiple recursive calls can be found in a deduc-
tive rule body. Stratification also restricts expressiveness (think, for instance,
of how to formulate a two-people game defined by the single rule winning(X)
:- move(X,Y), not(winning(Y)) with stratified semantics). Although we have
used DES, a system implementing stratified negation, other engines relaxing this
restriction could be connected, as those implementing stable models (on which
DLV is founded) [14] and well-founded semantics (on which ASP is founded)
[21]. In addition, we have seen that this system does not impose any limitations
on SQL statements as current RDBMS’s do (as long as they can be expressed
in Datalog, too), so that users do not have to struggle about how to formulate
a given query trying to overcome such limitations by contrived reformulations.

References

1. Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.
Addison-Wesley, 1995.

2. Krzysztof R. Apt. Introduction to logic programming. Technical report, University
of Texas at Austin, Austin, TX, USA, 1988.

3. Faiz Arni, KayLiang Ong, Shalom Tsur, Haixun Wang, and Carlo Zaniolo. The
Deductive Database System LDL++. TPLP, 3(1):61–94, 2003.

4. François Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D. Ullman. Magic
sets and other strange ways to implement logic programs. In PODS, pages 1–15.
ACM, 1986.



5. Moritz Becker, Cedric Fournet, and Andrew Gordon. Design and Semantics of a
Decentralized Authorization Language. In CSF ’07: Proceedings of the 20th IEEE
Computer Security Foundations Symposium, pages 3–15, Washington, DC, USA,
2007. IEEE Computer Society.

6. R. Caballero, Y. Garćıa-Ruiz, and F. Sáenz-Pérez. A Theoretical Framework for
the Declarative Debugging of Datalog Programs. In International Workshop on
Semantics in Data and Knowledge Bases (SDKB), volume 4925 of Lecture Notes
in Computer Science, pages 143–159. Springer, 2008.

7. R. Caballero, Y. Garćıa-Ruiz, and F. Sáenz-Pérez. Applying Constraint Logic
Programming to SQL Test Case Generation. In Proc. International Symposium
on Functional and Logic Programming (FLOPS’10), volume 6009 of Lecture Notes
in Computer Science, 2010.

8. R. Caballero, Y. Garćıa-Ruiz, and F. Sáenz-Pérez. Algorithmic Debugging of SQL
Views. In Ershov Informatics Conference (PSI’11), Lecture Notes in Computer
Science. Springer, 2011. In Press.

9. Andrea Cal̀ı, Georg Gottlob, and Thomas Lukasiewicz. Datalog±: a unified ap-
proach to ontologies and integrity constraints. In ICDT ’09: Proceedings of the
12th International Conference on Database Theory, pages 14–30, New York, NY,
USA, 2009. ACM.

10. S. Ceri, G. Gottlob, and L. Tanca. What you always wanted to know about Dat-
alog (and never dared to ask). IEEE Tran. on Knowledge and Data Engineering,
1(1):146–166, 1989.

11. E.F. Codd. A Relational Model for Large Shared Databanks. Communications of
the ACM, 13(6):377–390, June 1970.

12. C J Date. SQL and relational theory: how to write accurate SQL code. O’Reilly,
Sebastopol, CA, 2009.

13. Richard Fikes, Patrick J. Hayes, and Ian Horrocks. OWL-QL - a language for
deductive query answering on the Semantic Web. J. Web Sem., 2(1):19–29, 2004.

14. Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic
programming. In ICLP/SLP, pages 1070–1080. MIT Press, 1988.

15. Sergio Greco, Irina Trubitsyna, and Ester Zumpano. NP Datalog: A Logic Lan-
guage for NP Search and Optimization Queries. Database Engineering and Appli-
cations Symposium, International, 0:344–353, 2005.

16. Inderpal Singh Mumick and Hamid Pirahesh. Implementation of magic-sets in a
relational database system. SIGMOD Rec., 23:103–114, May 1994.

17. Royi Ronen and Oded Shmueli. Evaluating very large Datalog queries on social
networks. In EDBT ’09: Proceedings of the 12th International Conference on Ex-
tending Database Technology, pages 577–587, New York, NY, USA, 2009. ACM.

18. Fernando Sáenz-Pérez. Datalog Educational System V2.3, May 2011. des.

sourceforge.net/.
19. Fernando Sáenz-Pérez. DES: A Deductive Database System. Electronic Notes on

Theoretical Computer Science, 271:63–78, March 2011.
20. Jeffrey D. Ullman. Database and Knowledge-Base Systems, Vols. I (Classical

Database Systems) and II (The New Technologies). Computer Science Press, 1988.
21. A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for

general logic programs. J. ACM, 38(3):619–649, 1991.
22. C. Zaniolo, S. Ceri, C. Faloutsos, R T. Snodgrass, V. S. Subrahmanian, and R. Zi-

cari. Advanced Database Systems. Morgan Kaufmann, 1997.


