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Abstract. Information retrieval’s basic problem is retrieving a set of documents
relevant for a given query. Here, we present three classes of methods that ap-
peared in the liteature, as well as a new one, which is an improvement of the one
the three, to retrieve result sets that, in addition to relevance, try to maximize di-
versity and novelty. We analyze the complexity of these problems and show that
whenever relevance, diversity, and novelty are considered together, the methods
are all NP-complete.

1 Introduction

In information retrieval, a user expresses certain information needs through a query,
which normally consists of a collection of keywords, and wants to retrieve, from a
generally large collection of documents, a sub-set relevant to the query. Traditionally,
this has been done by evaluating, through opportune algorithms, the estimated relevance
of each document for the query expressed by the user. The optimal result of size n will
then consist of a list of the n document with the highest relevance value, presented in
decreasing order of relevance [9]. As neutral and objective as it might seem, this model
is based on some fairly strong assumptions regarding relevance and its estimates [10].
Namely the model assumes that relevance is:

i) topical—relevant documents are about the same topic as the query;
ii) independent—the relevance of a document does not depend on the relevance of the

other documents in the collection;
iii) stable—relevance does not change over time;
iv) consistent—relevance judgments do not depend on who expressed them, that is,

different people will agree on which documents are relevant for which query;
v) complete—all the documents have a relevance judgment.

Starting towards the end of the 1990s, these assumptions have been questioned, and
different models of information retrieval based on the rejection of some of them have
been proposed (we call these: non-Robertsonian information retrieval models). In par-
ticular, topicality has been amended with the introduction of sub-topics that are judged
independently, thereby introducing a structure into the simple notion of topicality [14],
the completeness assumption has been relaxed by inferring the relevance of missing
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documents in various ways, as done by [3], or by carefully selecting for which docu-
ments a judgment should be obtained, as in [5].

In this paper, we are interested in non-Robertsonian information retrieval systems
and evaluation metrics that dispense of the independence assumptions, specifically in
metrics that assume that the relevance of a document depends on that of the documents
that are shown together with it.

The general idea is the following. Suppose we are entering a fairly generic query, for
instance, we simply introduce the word manhattan. From the query alone, it is not quite
clear what we refer to: the island in New York, the cocktail with the same name, the
film by Woody Allen, or the native tribe from which the Dutch claimed to have bought
the island. The query is ambiguous in that it has several mutually exclusive interpreta-
tions. The interpretations are mutually exclusive because, in general, a user interested
in information about New York, will not be interested in information about the indian
tribe or the cocktail, and vice versa. Let us now fix our attention on an interpretation,
for example in the part of New York. It is still not completely clear what we are after:
Manhattan is a pretty broad subject, and there are many different aspects of it in which
we might be interested. We might be interested in the history of Manhattan, or in its
urban planning. We might be interested in its buildings, or in how to get around it by
bus. The query is, in other words, underspecified, that is, it has a number of possible as-
pects of interest. Unlike interpretations, aspects are not necessarily mutually exclusive:
documents about urban planning may be deemed interesting also by a person interested
mostly in the history of Manhattan.

To cope with ambiguity, the results of a query should be diverse, that is, they should
cover more that one interpretation of the query, so as to give all users some useful
results. In order to cope with underspecification, each results in the list should be, at
least in part, novel, that is, it should give the user some information that the previous
documents did not give.

Despite being often cited together, diversity and novelty are quite different concepts,
as one of them deals with ambiguity (the same words can refer to different, unrelated
areas), the second with underspecification (a query, by its very nature, never specifies
completely and exactly what document does the user want—if it did, we wouldn’t be
doing information retrieval but data bases).

In the last few years, several methods have been proposed to maximize the diversity
and novelty of result sets in information retrieval, based on formal definitions of these
two concepts. Despite the great interest of these methods, the complexty of the resulting
optimization problem has rarely been studied. To the best of our knowledge, the only
available result is the NP-completeness of the DIVERSIFY(n) problem defined in [1].

Our purpose in this paper is twofold. First, we present a general overview of retrieval
techniques that optimize diversity and/or novelty in information retrieval. In so doing,
we shall also propose a new technique that improves on those presented in the literature.
Second, we show that all these problems are NP-complete, that is, intractable. The result
might at first look disappointing but, as we shall argue in the conclusions, it opens a
plethora of interesting problems for researchers to study.



2 The Portfolio theory

The portfolio theory of information retrieval, introduced by [11] is a very recent ap-
proach to diversity, based on ideas from the portfolio theory of investment of [6].

Suppose we have a set of documents returned by a query, D = {d1, . . . , dn} with a
relevance score ri associated to each document. The result of a query is an ordered list
of documents. We might want to associate a weight to each position of the list, to model
the fact that the first positions are more desirable than the last ones. So we define a set
of descreasing normalized weights w1 > w2 > · · · > wn with

∑n
i=1 wi = 1. We can

define the relevance score of the list as

Rn =

n∑
i=1

wiri (1)

It is easy to show that the weight ordering entails that Rn is maximum when r1 > r2 >
· · · > rn. Relevance, however, is subject to uncertainty, since different users might
grade the same document differently (due to the ambiguity of the query). We can then
model relevance scores as stochastic variables.

Define E[ri] as the mean of ri, and Σ[Rn] as the covariance matrix of the ranking
Rn, where σi,i is the variance of ri and σi,j the covariance of ri and rj . With these
definitions, we can introduce the expected value and the variance of the relevance score
of the list as:

E[Rn] =

n∑
i=1

wiE[ri] (2)

σ[Rn] =

n∑
i=1

n∑
j=1

wiwjσi,j (3)

We do, of course, want a result set with a high value of E[Rn], since we want something
that, on average, will be relevant. However, if the variance σ[Rn] is high, we are assum-
ing a certain amount of risk: on average, the ranking Rn will give us a good result, but
the high variance tells us that the score of the result will be very spread so, if on average
the results are good, there is a significant fraction of users that will consider them poor.

So, while we maximize the mean relevance, we’d better keep an eye on the variance
of the results, and try to keep it small. One standard way of doing this is by minimizing
a linear combination of mean and variance:

On = E[Rn]− bσ[Rn] (4)

Where b is positive a weight parameter. Mathemathically, the minimization problem (4)
is equivalent to the following [2]:

PORTFOLIO(K): given a set D of n documents and the random variables ri,
find a subset S ⊆ D with |S| = k that solves

min σ[Rn] subject to E[Rn] = m (5)



where
Rn =

∑
S

wiri (6)

With regard to this, we can prove the following:

Theorem 1. The optimization problem PORTFOLIO(N) is NP-hard.

Proof. We prove that the corresponding decision problem is NP-complete: given a set
of relevance values R = {r1, . . . , rn} and values m, q, determine whethere there exists
a subset Rn ⊆ R, of size n such that σ[Rn] ≤ q and E[Rn] = m.

We will prove that the decision problem is NP-complete by reduction from a mod-
ified form of MAXIMUM 2SAT. We are given a set U = {u1, . . . , un}. The literal li is
either the variable ui or its negation ūi. We are also given a set of disjunctive clauses
C = {c1, . . . , cm}. Each clause is of the form ck = lk1

∨ lk2
. Given a number K ′ ≤ m

the problem is to determine whether there is a truth assignment to the variables of U that
satisfies at least K clauses. The problem is NP-complete unless K ′ = m. We consider
an alternative form of the same problem. Using De Morgan’s theorem, we can write
ck = ¬(l̄k1

∧ l̄k2
). Defining the set of clauses C̃ = {c̃1, . . . , c̃m} with c̃k = l̄k1

∧ l̄k2
,

the problem is equivalent, given a number K (K = m − K ′) to determine a truth
asssignment to the variables of U such that at most K clauses in C̃ are true.

Given a problem in this modified form, we define a set of documentsD = {d1, . . . , dm, dm+1, . . . , d2m}.
The documents d1, . . . , dm correspond to the positive literals of the m variables, the
documents dm+1, . . . , d2m to the negated literals. We give a relevance ri = 1 to each
document. We then set the correlation coefficients cij = n if the conjunction of literals
li and lj makes n formulas true1, and ci,i+m = M > 2(n+m). All the weights wi are
set to 1. Now we solve the optimization problem

min σ[Rn] subject to E[Rn] = n (7)

If min σ[Rn] < K then the decision problem has a solution. Note that the condition
ci,i+m = M > 2(n + m) prevents us to find a solution in which the same variable
is given two different truth values so that, for instance, if the literal li is part of the
solution, the literal li+m can’t be.

A model more or less along the same lines was used by [8] for diversifying the
results of web searches. One difference, not a terribly relevant one, is that [8] use the
form (5) of the optimization problem. A much more interesting difference is that for
Rafiei et al. the set of documents is fixed, and the unknown in the optimization problem
(5) are the (real) values of the weights wi, a difference that simplifies the problem
transforming it from a discrete optimization to a continuous one that can be solved
using standard numerical algorithms.

1 In this formulation, we assume that the coefficients can take arbitrary values, while in reality
they are constrained to be in the interval [−1, 1]. It is easy to normalize them in such a way
that they will satisfy the constraint, but we will not consider the normalization to work with
more intuitive values.



3 Diversity with categories

In [1], a more structured problem is considered, in which documents are assumed to
belong to one or more categories (a better name for these entities would be topics, but
here we shall retain the nomenclature of the original paper), and that queries are also
about categories.

Let C(q) be the set of categories to which query q belongs, and C(d) the categories
of document d. The two may or may not overlap. The user intent upon issuing query q
is represented as a probability distribution over the categories, conditioned by the text
of the query. That is, P (c|q) is the probability that, having issued the query q, the user
will be interested in documents of category c. We assume complete knowledge, that is,∑

c∈C(q) P (c|q) = 1.
The relevance of a document d, is a function not only of the query, but of the cat-

egory as well. If a query is “about” several categories, the same document d can be
relevant for some of them and irrelevant for some others. Relevance is modeled as a
probability, and V (d|c, q) is the likelihood that document d be relevant for category
c given the query q, that is, given the user intent (q, c). An independence assumption
is made: the likelihood that two documents satisfy the same user intent is simply the
product of their individual likelihoods.

The basic idea of the paper is to develop a sorting criterion that tries to satisfy
categories depending on their probability of being the category of interest for a given
query but that also “discounts away” a category if it has been adequately satisfied. If a
very relevant document about a given category has already been retrieved, there is not
much to be gained from retrieving more documents about the same category.

The gain that we obtain by adding a new document to the list of results decreases
when the categories covered by that documents have already been covered by other
documents in the set. The retrieval process should maximize the probability that the
average user will find at least one interesting document in the result set. Suppose we
have a query q, and we fix a category c related to the query. We are given a set S of doc-
uments; the independence assumption entails that the probability that no document in
S be relevant for category c (given query q) is

∏
d∈S(1−V (d|c, q)) and the probability

that at least one document be relevant is 1 −
∏

d∈S(1 − V (d|c, q)). In order to satisfy
the average user, we weight these values with the probability that category c be relevant
given query q, and sum over all categories (we can do this because of our hypothesis of
complete knowledge). So, we have to determine the set S that maximizes

P (S|q) =
∑
c

P (c|q)

[
1−

∏
d∈S

(1− V (d|c, q))

]
(8)

If, for a given category, there is a document d̂ for which V (d̂|c, q) is very high, adding
more documents of the same category will not increase the objective function by much,
because every increase will be multiplied by the factor 1−V (d̂|c, q), which is small. In
the extreme case of V (d̂|c, q) = 1, we have 1 −

∏
d∈S(1 − V (d̂|c, q)) = 1 regardless

of the characteristics of the other documents, so, once we have retrieved the perfect
document for a category, there is no advantage in retrieving more documents for the
same category: we can move on to other topics.



Categories are weighted through their probability P (c|q), entailing that it will be
more convenient to spend more of our document budget (the size of S) to serve well a
common category, even if this comes at the expense of a less common category. In this
sense, the quantity P (S|q) is the probability that the average user entering the query
q will find at least a relevant document in the set S. The problem that the authors call
DIVERSIFY(K) requires, given a query q, finding the set S with |S| = k that maximizes
P (S|q). Unfortunately for us [1] proves the following result:

Theorem 2. DIVERSIFY(K) is NP-complete

The proof is based on a reduction from MAX COVERAGE, and the interested reader
can find it in [1].

Note that DIVERSIFY(K) does not assume aby ordering of the documents, since S
is a set. This is a consequence of the lack of a user model in the problem: we assume
that, upon receiving the set of k documents, a user is equally likely to look at any one
of them.

* * *

It is not too hard to improve the method by using one of the standard user models.
The simplest one considers a user that, after having looked at a document in position
k that doesn’t satisfy her needs, gives up the search with probability 1 − β, and sets
to analyze the next document in a list with probability β. We’ll call this the geometric
user model. In this model, the probability that the user will not be bored before reaching
the kth document (independently of the interest in the documents) is βk−1. Given an
(ordered) list of documents S = [d1, . . . , dn], we are then interested in the probability
that the first interesting document for category c be found in the kth position of the list.
This probability is given by

V (dk|c, q)
k∏

j=1

(1− V (dj |c, q)) (9)

So, a user interested in category c, will find this document with probability

n∑
k=1

βkV (dk|c, q)
k∏

j=1

(1− V (dj |c, q)) (10)

and the average user will find an interesting document with probability

P ′(S|q) =
∑
c

P (c|q)
n∑

k=1

βkV (dk|c, q)
k∏

j=1

(1− V (dj |c, q)) (11)

The problem RANKED-DIVERSIFY(K) is then defined as follows:

Given a set of n documents D, a query q and a set of categories C, determine
the list S of elements of D, with |S| = k that maximizes the value P ′(S|q) as
given in (11).



Given the way we have derived the problem, it seems obvious that there should be
a relation between DIVERSIFY(K) and RANKED-DIVERSIFY(K), and that RANKED-
DIVERSIFY(K) should be something of a harder version of DIVERSIFY(K). This is
indeed the case, as we shall see shortly. Before doing so, however, we need a technical
lemma.

Lemma 1. Let [v1, . . . , vn] a list of values, vi ∈ R. Then for all k ≤ n it is

k∑
u=1

vu

u−1∏
j=1

(1− vj) = 1−
k∏

u=1

(1− vu) (12)

Proof. We prove the lemma by induction on k. For k = 1 the lemma reduces to v1 =
1− (1− v1), which is obvious.

Suppose now the lemma is true for k − 1 and write (12) as

k−1∑
u=1

vu

u−1∏
j=1

(1− vj) + vk

k−1∏
j=1

(1− vj) = 1−
k−1∏
u=1

(1− vu)(1− vk) (13)

Set

A =

k−1∑
u=1

vu

u−1∏
j=1

(1− vj) = 1−
k−1∏
j=1

(1− vj) (14)

(the two are equal because of the inductive hypothesis), so that (12) becomes

A+ vk(1−A) = 1− (1−A)(1− vk) (15)

which is trivially true.

We show the relation between the two problems while proving the following theo-
rem:

Theorem 3. RANKED-DIVERSIFY(K) is NP-complete.

Proof. We prove the theorem by reducing DIVERSIFY(K) to RANKED-DIVERSIFY(K).
Let an instance of DIVERSIFY(K) be given with the values P (c|q) and V (d|c, q),

the size of the data base n, and the target set size k. We build a corresponding instance
of RANKED-DIVERSIFY(K) by setting β = 1. In this case, the objective function of
RANKED-DIVERSIFY(K) becomes

P ′(S|q) =
∑
c

P (c|q)
k∑

u=1

V (du|c, q)
u∏

j=1

(1− V (dj |c, q)) (16)

because of lemma 1, we can rewrite this function as

∑
c

P (c|q)(1−
k∏

j=1

(1− V (dj |c, q))) (17)

which is the objective function of DIVERSIFY(K), so solving RANKED-DIVERSIFY(K)
will solve DIVERSIFY(K).



* * *

It seems intuitively plausible that there should be some connection between DI-
VERSIFY(K) and PORTFOLIO(K) since both start with the same idea: minimize the
probability that the average user will find nothing interesting in the result set. Despite
this common idea, the two methods are based on different assumptions, which are re-
flected in the difference between the functions that are being maximized in the two
cases. In the case of PORTFOLIO(K) there is no concept of categories, so we should
take a special case of (8) in whcih there is only one category. In this case (8) becomes
P ′(S|q) = 1−

∏
d∈S(1− V (d|q)), and the problem DIVERSIFY(K) is solved by max-

imizing P ′ or, equivalently, by minimizing

P ′′(S|q) =
∏
d∈S

(1− V (d|q)) (18)

We must note, however, that with this change the character of the two problems has
changed quite drastically. While PORTFOLIO(K) is still concerned with diversity (trying
to reduce the probability that the average user be dissatisfied), DIVERSIFY(K) is now
concerned with the full exploration of a single topic. The value V (di|q) is the likelihood
that document di be considered relevant for q. In the portfolio theory, this likelihood
corresponds to the average E[ri], so we can rewrite P ′′ as

P ′′(S|q) =
∏
di∈S

(1− E[ri]) (19)

We can approximate this product using the equality:
n∏

i=1

(1−xi) = 1−
n∑

i=1

xi+
∑
j>i

xixj+o(x3i ) = 1−
n∑

i=1

xi+
1

2

∑
i,j

xixj−
1

2

n∑
i=1

x2i +o(x3i )

(20)
So, we can formulate DIVERSIFY as the minimization of (20) or, equivalently, as

maxOA = max

 n∑
i=1

E[ri]−
1

2

n∑
i,j=1

E[ri]E[ri] +
1

2

n∑
i=1

E2[ri]

 (21)

On the other hand, PORTFOLIO(K) minimizes (4), that is, setting wi = 1, it solves

maxOB = max

 n∑
i=1

E[ri]− b
n∑

i,j=1

E[rirj ] + b

n∑
i,j=1

E[ri]E[rj ]

 (22)

The reason to set wi = 1 is that DIVERSIFY(K) works on sets, not on ordered lists, so
there is no reason to distinguish between positions in the output, and all the weights can
be given the same value. We want to analyze the difference OB − OA. The two values
are most similar when b = −1/2, in which case

OB −OA = −1

2

n∑
i=1

E2[ri] +
1

2

n∑
i,j=1

E[rirj ] =
1

2

 n∑
i=1

σ2
i +

∑
i6=j

E[rirj ]

 (23)



Two interesting considerations can be drawn from this comparison. The first is that,
since b < 0, DIVERSIFY(K) adopt a risk-loving strategy [11]. This is consistent with
the different assumptions of the two methods. In DIVERSIFY(K), at least in this case,
we are considering a single category, that is, all documents are considered on topic, and
the interest of the method is to maximize the “spread” of the documents, to explore
the different aspects of this topic. Second, PORTFOLIO(K) seems, coeteris paribus to
favor documents with high variance (high variances make the term OB − OA larger)
over documents with high correlation. This is also consistent with the assumptions of
the two methods: DIVERSIFY(K) assumes high correlations (after all, all documents are
about the same topic) as long as every document carries some new information, while
in the case of PORTFOLIO(K) low correlation is preferred to cover a larger number of
topics and so minimize risk.

4 Considering interaction

The systems considered so far have worked with one shot queries so that they had
to consider diversity and novelty together, blurring somehow the difference between
the two and resorting to statistical considerations to satisfy the “average” user. This is
a natural way to pose the problem from the point of view of the server, which must
balance the answer considering the different needs of different users.

Interaction offers a way to take the single person’s perspective into account. Xu and
Yin, in [13], systemathize the rôle of interaction in the light of the recent developments
in novelty and diversity.

They operate a quadripartite division of possible systems along two axes. The first
axis is presentation, and systems are divided as having compensatory or step presenta-
tion. In a compensatory presentation, topicality and novelty are considered together in
order to provide a composite relevance score, and the result list is then created based on
this score. In a step system, topicality is considered first as a gauge: only documents that
score above a certain edge of topicality are retained. Novelty is considered next, and is
used to reorder (and, possibly, to filter again) the set of documents that have passed the
gauge of topicality.

The second axis deals with interaction, and distinguishes between undirected and
directed systems. Undirected systems are those that we have called “one shot:” they
receive a query and return a list of results, returning at each position documents that
minimize redundancy with those already returned. Directed systems receive an input
from the user indicating in which areas she wants the search to continue.

Users have several criteria in mind when they talk about quality of results, among
which the most prominent are topicality, novelty, ease of understanding, reliability, and
scope, although topicality seems to be the most relevant [7]. These findings form the
foundations of the methodological division operated by [13]. For example, if a docu-
ment is off-topic, all other factors are irrelevant for judgment [12]. This property justi-
fies the study of step systems, in which documents are ranked only if they are beyond
a certain threshold of topicality. On the other hand, computing practicioners don’t like
arbitraty thresholds, especially when the sensitivity of the system with respect to their
value is not easily evaluated, a circumstance that makes it sensible to evaluate compen-



satory system as a more practical and robust solution. As we shall see, this practicality
comes with a price: undirected system use less information about the user and the prob-
lems they involve are computationally harder.

4.1 User profiles and similarity

A user is characterized by two profiles: the topicality profile and the novelty profile.
Both profiles are dyamic, and are updated as part of a person’s interaction with the sys-
tem. The overall document model is that of a vector space: a document d is a vector in
a suitable Euclidean space W whose axes represent words or combinations of words.
Each query, indexed by the query order t, is a round during which the results are re-
turned and analyzed (by the user), and the profiles are updated. Let Dt be the set of
documents examined at time t. Suppose that, to each d ∈ Dt, the user has assigned a
topicality score T [d] ∈ [0, 1] If PT

t−1 ∈ W was the topicality profile of the user before
round t, then the topicality profile after round t is

PT
t = PT

t−1 +
1

|Dt|
∑
d∈Dt

d · T [d]. (24)

Note that, formally, the topicality profile is a (virtual) document that contains all the
topics of interest for the user.

Directed (viz. interactive) systems add to this a novelty profile. Here we assume that
at iteration t the user will mark some documents as “novel”, and these documents are
combined to form a term vector PN

t , which constitutes the novelty profile, at time t, for
the user.

Suppose that the user has marked a sample set of documents Qt as either novel or
not novel. We want to use these documents to build an instantaneous novelty profile.
Our problem is how to go from the set of judged documents Qt to the term vector PN

Qt
.

For this, we need a weighting scheme that assigns a weight to each word in Qt. Xu and
Yin reject for this purpose the use of the common TF-IDF, as they consider it better
at differentiating topics than at differentiating between documents on the same topic.
Rather, they use the probabilittic measure F4 of [9]. The reader is referred to [13] for
details.

The novelty profile that is actually used in the systems that we shall consider is a
smoothed version pf PN

Qt
defined as

PN
t = (1− ν)PN

t−1 + νPN
Qt

(25)

where ν ∈ [0, 1] is the smoothing parameter that determines the dynamics of the profile.

4.2 Undirected-compensatory systems

The first class of systems that we consider is that of undirected, compensatory systems.
In these systems, topicality and novelty are combined in a single measure that is used
to order the documents. Novelty is undirected, so the user gives no indication on which
documents are novel and which are not, and the system increases novelty simply by



trying to reduce redundacy. The topicality of a document d, here as in other systems,
is estimated simply as the similarity between the topicality profile and di, given by
a suitable similarity measure s(di, PT ). Measuring novelty in an undirected context
requires a measure of the redundancy of a document d placed in a set of documents
D, which the authors characterize as the maximum similarity between d and any other
document in the set:

Rd(di|D) = max
d′∈D

s(d, d′) (26)

The relevance of a document is then a weighted sum of its topicality discounted by its
redundancy:

r(d|D) = αs(d, PT )− (1− α)Rd(d|D) (27)

with 0 ≤ α ≤ 1. The problem is then to find the set of documentsD with the largest val-
ues of r. Note that this formulation of the problem is a simple modification of the MMR
model of [4] in which the topicality profile PT replaces the original query. Formally,
the problem UC(K) can be defined as:

UC(K): given a set of documents D with |D| = n, and a topicality profile PT ,
find a subset S ⊆ D, with |S| = k such that

∑
d∈S r(d|S) is maximal.

4.3 Undirected-step systems

Adapting the previous system to step-wise relevance judgment is quite easy: one has
simply to define a relevance measure that filters the documents by topicality before
ordering them by decreasing redundancy. The relevence r(d|D) is then defined as

r′(d|D) =

{
0 if s(d, PT ) ≤ s∗
1− Rd(d|D) if s(d, PT ) > s∗

(28)

where s∗ is a suitable relevance threshold. Setting the threshold s∗ might be a problem,
and it might result in results sets of widely varying size depending on the query. [13]
discuss the possbility of replacing the cut-off based on the degree of topicality with
one based on the number of results, for instance consiering always the 20 most topical
documents and apply the redundancy measure to them. The resulting problem can be
formalized as

US(K): given a set of documents D with |D| = n, and a topicality profile PT ,
find a subset S ⊆ D, with |S| = k such that

∑
d∈S r

′(d|S) is maximal.

4.4 Directed-compensatory systems

Directed systems use the novelty profile built by the user during the interaction with the
system. We must note that, in spite of its superficial resemblance, the dynamics of the
novelty profile (25) is of a different nature than the dynamics of the topicality profile
(24). The latter is built historically, through a number of interactions with the system,
while the former is created through selections done while answering a single query.
The dynamics (25) is therefore a rapid one (it is–or may be–restarted with every query),



while (24) is a slow one, updated as a result of various interactions with the system. In a
compensatory system, the interactive relevance of a document d (i(d)) after t iterations
is simply a weighted sum of its topicality (similarity with the topicality profile of the
user) and its novelty (similarity with the novelty profile):

it(d) = γs(d, PT ) + (1− γ)s(d, PN
t ) (29)

The corresponding optimization problem is

DC(K): given a set of documents D with |D| = n, a topicality profile PT , and
a novelty profile PN

t , find a subset S ⊆ D, with |S| = k such that
∑

d∈S i(d)
is maximal.

4.5 Directed-step problems

The corresponding stepwise problem is obtained as in the case of undirected methods:
we first filter by topicality, retaining only the documents whoe topicality is beyond a
certain threshold, and then order them by novelty. This entails using a relevance score
equal to

i′t(d) =

{
0 if s(d, PT ) ≤ s∗
s(d, PN

t ) if s(d, PT ) > s∗
(30)

The corresponding optimization problem is

DS(K): given a set of documents D with |D| = n, a topicality profile PT , and
a novelty profile PN

t , find a subset S ⊆ D, with |S| = k such that
∑

d∈S i
′
t(d)

is maximal.

4.6 Complexity of the problems

Two of the four problems presented so far can be solved efficiently. In the problems
DC(K) and DS(K), the relevance of a document is independent of the presence of the
other documents, so all these problems can be solved quite easily by sorting the set D
by relevance and taking the k most relevant documents. That is, these two problems
have complexity O(n log k).

In the case of UC(K), things are more complicated due to the presence of the term
maxi s(d, di), which causes the relevance of a document to depend on the relevance
of the other documents in the set. This, it turns out, is enough to make the problem
intractable:

Theorem 4. UC(K) is NP-complete.

Proof. We prove the theorem with a reduction from EXACT COVER BY 3-SETS. The
problem is as follows: given a set X , with |X| = n = 3q, and a collection C of subsets
Ck ⊆ X with |C| = 3, find a sub-collection C ′ ⊆ C such that each element of X
occurs in exactly one member of C ′.

Given an instance of EXACT COVER BY 3-SETS, we reduce it to UC as follows. We
order arbitrarily the elements of X as [u1, . . . , un] and, for every Ck = {uk1, uk2, uk3}



we create a document dk with the weights in the dimensions k1, k2, and k3 equal to 1
and all the other weights equal to 0. The profile PT is set to a vector with all 1’s, and α
is set to 1/n. We show that EXACT COVER BY 3-SETS is solvable if and only if UC(Q)
has a solution with

∑
r(d|D) = 1.

In order to prove this, we shall write the objective function as

q∑
k=1

r(dk|C ′) = α

q∑
k=1

s(dk|PT )− (1− α)

q∑
k=1

max
d∈C′

s(dk, d) = A−B (31)

where C ′ is the set of q documents that we are considering. Note that each one of the q
documents has exactly three non-zero weights, and that the value of these weights is 1,
so

A = α

q∑
k=1

s(dk|PT ) =
1

n

q∑
k=1

3 = 1 (32)

independently of the set C ′.
Suppose now that there is a set C ′ of q sets {C1, . . . , Cq} that constitutes a solution

of EXACT COVER BY 3-SETS. Let the q associated documents be {d1, . . . , dq}. For
each pair Ck, Ch it is Ck ∩ Ch = ∅, so s(dk, dh) = 0. Therefore, all terms in B are
zero and

∑q
k=1 r(dk|C ′) = A = 1.

Conversely, if a solution with
∑q

k=1 r(dk|C ′) = 1 exists, it must be B = 0, so
the documents d1, . . . , dq have no axis in common. The sets C1, . . . , Cq correspond-
ing to the documents are therefore disjoint. Moreover, since A = 1, for each dk, it is
s(dk|PT ) = 3 and since all the dk are disjoint, no axis is counted more than once so in
order to be A = 1 there must be a document dk with a 1 on each axis, proving that the
Ck cover X .

A similar reduction proves the following:

Theorem 5. US(K) is NP-complete.

We omit the proof, which is almost identical to that of the previous theorem. Note
that the first summation on the left-hand side of (31) is always 1, so every value of
s∗ less than one will make all the documents pass to the following evaluation and the
second term of (31), which is the one we are really optimizing, is essentially equal to
the second line of (28).

5 Conclusions

Diversity and novelty are desirable properties of a result set in information retrieval.
Diversity is an useful property to deal with ambiguous queries, in which there are sev-
eral mutually incompatible interpretations; novelty is useful for underspecified queries,
which present several different aspects of potential interest to the user. If we aim at in-
creasing novelty and/or diversity in a result set, then the result of a query is no longer a
list of the document with the highest score, where the score is computed independently
for each document: the score of a document will depend on which other documents are



in the result est. This dependence makes the problem harder. Here, we have proved that
all the major rpproaches to the retrieval of novel and diverse result sets are NP-complete.
A new method that we have developed in the paper (RANKED-DIVERSITY(n)) also
gives rise to an NP-complete problem.

The diverse nature of these methods hints strongly at the fact that virtually all such
methods (at least those that in [13] are called continuous) may be intractable. This is
an important conclusion, and it entails that researchers should focus on the study of
approximate, fast methods rather than trying to solve the optimization problem. The
result, after all, does not eliminate the possibility of going very close to the optimum
with a polynomial method.
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3. S. Büttcher, C. L. Clarke, P. C. Yeung, and I. Soboroff. Reliable information retrieval evalu-

ation with incomplete and biased judgments. In Proceedings of the 30th International ACM
SIGIR Conference in Research and Developmens in Information Retrieval, pages 63–70.
ACM, 2007.

4. J. Carbonell and J. Goldstein. The use of MMR, diversity-based reranking for reordeing
documents and producing summaries. In Proceedings of the 21th International ACM SIGIR
Conference in Research and Developmens in Information Retrieval. ACM, 1998.

5. B. Carterette, J. Allan, and R. Sitaraman. Minimal test collections for retrieval evaluation. In
Proceedings of the 29th International ACM SIGIR Conference in Research and Developmens
in Information Retrieval, pages 268–75. ACM, 2006.

6. H. Markowitz. Portfolio selection. Journal of Finance, 1952.
7. S. Mizzaro. Relevance: the whole history. Journal of the American Society for Information

Science and Technology, 48(9):810–32, 1997.
8. Davood Rafiei, Krishna Bharat, and Anand Shukla. Diversifying web search results. In

Proceedings of WWW 2010, the International Conference on the World Wide Web. ACM,
2010.

9. S. E. Robertson and K. Spark-Jones. Relevance weighting of search terms. Journal of the
American Society for Information Science, 27:129–46, 1976.

10. T. Saracevic. Relevance: a review of the literature and a framework for thinking on the
notion of information science. Journal of the American Sociery of Information Science and
Technology, 58(13):2126–44, 2007.

11. J. Wang and J. Zhu. Portfolio theory of information retrieval. In Proceedings of the 32nd In-
ternational ACM SIGIR Conference in Research and Developmens in Information Retrieval.
ACM, 2009.

12. P. Wang and D. Soergel. A cognitive model of document use during a research project.
study I: document selection. Journal of the American Society for Information Science and
Technology, 49(2):445–63, 1998.

13. Yunjie Xu and Hainan Yin. Novelty and topicality in interactive information retrrieval. Jour-
nal of the American Society for Information Science and Technology, 59(2):201–15, 2008.

14. C. X. Zhai, W. W. Cohen, and J. Lafferty. Beyond independent relevance: methods and
evaluation metric for subtopic retrieval. In Proceedings of the 26th International ACM SIGIR
Conference in Research and Developmens in Information Retrieval, pages 10–7. ACM, 2003.

Madrid, April 2011


