
Optimising FOIL by new scoring functions?

P. Jiménez, J.L. Arjona, and J.L. Álvarez

University of Huelva, Department of Information Technology,
Escuela Politécnica Superior. Crta. Huelva - La Rábida. Palos de la Frontera 21071

patricia.jimenez@dti.uhu.es, arjona@dti.uhu.es, alvarez@uhu.es,
WWW home page: http://www.tdg-seville.info/

Abstract. FOIL is an Inductive Logic Programming Algorithm to dis-
cover first order rules to explain the patterns involved in a domain of
knowledge. Domains with a huge amount of information are handicaps
for FOIL due to the explosion of the search of space to devise the rules.
Current solutions to problems in these domains are restricted to devising
ad hoc domain dependent inductive algorithms that use a less-expressive
formalism to code rules.
We work on optimising FOIL learning process to deal with such complex
domain problems while retaining expressiveness. Our hypothesis is that
changing the Information Gain scoring function, used by FOIL to de-
cide how rules are learnt, can reduce the number of steps the algorithm
performs. We have analysed 15 scoring functions, normalised them into
a common notation and checked a test in which they are computed.
The learning process will be evaluated according to its efficiency, and
the quality of the rules according to their precision, recall, complexity
and specificity. The results reinforce our hypothesis, demonstrating that
replacing the Information Gain can optimise both the FOIL algorithm
execution and the learnt rules.

Keywords: ILP, FOIL, scoring functions

1 Introduction

Machine learning systems aim to automatically learn to recognize complex pat-
terns based on data from some background knowledge and to make intelligent
decisions on new data. Many of these systems have their focus on Inductive
Logic Programming (ILP), a subfield of machine learning which investigates the
construction of first-order logic rules. This kind of systems include FOIL [19],
GOLEM [12], PROGOL [11] with Shapiro’s program MIS as one of their early
predecessors [10].

However, a major problem of ILP systems arises when the set of training data
is too large. The process of learning the hypothesis that best fits the available
? Supported by the European Commission (FEDER), the Spanish and the Andalu-

sian R&D&I programmes (grants TIN2007-64119, P07-TIC-2602, P08-TIC-4100,
and TIN2008-04718-E).



knowledge, becomes inefficient or ineffective. This weakness is due to the explo-
sion of the search space caused by the large number of rules it needs to evaluate.
In domains like Information Extraction, it becomes an intractable task as was
stated in SRV system [27]. An alternative choice is propositional logic systems,
which have demonstrate their worth in real world applications, although they
produce rules quite less expressive and consequently, they are restricted to be
applied to simpler domains problems.

We wish to use FOIL algorithm to deal with such complex real-world do-
mains. To apply FOIL to any domain efficiently, we suggest using different scor-
ing functions instead of the Information Gain, which is employed by the original
FOIL to select the best candidate rules. These scoring functions come from
statistics, machine learning, and data mining literature. We wish to prove that
using some of these scoring functions may find out best rules or find them out
faster.

We bet on FOIL algorithm because of the amount of successors systems
developed like FOCL [24], AUDREYII [17], mFOIL [16], HYDRA [15], FOS-
SIL [14], FFOIL [13], FZFOIL [26] and FOIDL [9]. They follow FOIL approach
to devise the rules and have even tried to improve them. Some of these systems
propose to use likelihood ratio, correlation criterion and estimated accuracy as
alternatives to the Information Gain. In many cases, their results were better
than FOIL ones but restricted to domain dependent tasks. So that the problem
has not been solved yet. However, these systems and their results suggest that
FOIL can be optimised in many ways.

The paper is organised as follows: first, we introduce an overview of FOIL
algorithm and we propose to use new scoring functions in order to solve the men-
tioned problems. Next section a common notation and a set of scoring functions
are explained. Then, we show a test where FOIL algorithm was applied and the
results obtained. Conclusion section discuss these results and Future Research
gives some tips to address our future work.

2 FOIL

In first order learning, training data comprises a target predicate, which is defined
by a collection of positives and negatives examples according to whether they
satisfy the target predicate or not. Therefore, a set of support predicates is
defined either extensionally, similarly to what was previously made with the
target predicate or intensionally, by means of a set of rules. The goal is to learn
a set of logic rules that explain the target predicate in terms of itself and the
support predicates.

FOIL is an algorithm of machine learning that induces first order rules. It
uses separate-and-conquer method rather than divide-and conquer, focusing on
creating a single rule at a time and removing any positive examples covered by
each learnt rule. Then, it is invoked again to learn a second rule based on the
remaining training examples. It is called a sequential covering algorithm because



it sequentially learns a set of rules that together cover the full set of positive
examples.

In order to learn each rule, it follows a top-down approach, starting with the
most general header rule, and guided by a greedy search, is adding new literals
to the rule, until it does not satisfy any negative example belonging to the target
predicate. The set of rules is ready when none positive examples of the target
predicate remain to be satisfied.

Each learnt rule is of the form H ← B where H is the head and B is the body
of the rule. H is a literal of the form R(X0, X1, . . . , Xn) where R is the target
predicate and X0, X1, . . . , Xn are the variables. Similarly, B is a set of literals, for
instance P1(X0, X2), P2(X3, X1), . . ., where Pi represents any predicate defined
in the knowledge base and X0, X1, . . . , Xn are the variables of the predicate Pi.

To add a new literal to the current rule, a list of candidate literals is gener-
ated. Each one is added to the current rule giving rise to a new candidate rule.
The candidate rules are weighted based on Information Gain scoring function. It
measures the benefit of replacing the current rule with a specific candidate rule.
To compute this score, the Information Gain relies on the number of positive
and negative examples that are satisfied before and after this replacement. The
candidate rule with higher score is selected to keep growing.

Let tp be the number of positive examples and fp the number of negative
examples that are satisfied by the current rule. The information conveyed by the
knowledge that an example satisfied by the current rule is positive is given by

I(H ← B) = −log
tp

tp + fp
(1)

Similarly, for each new candidate rule Ik(H ← B′), built from adding a
new literal generated Pk(X1, .., Xn) to the current rule. Being t the number of
positive examples satisfied by both the current and a new candidate rule, the
Information Gain has a straightforward interpretation in terms of information
theory and is given by the formula:

Gain(H ← B′) = t× (Ik(H ← B′)− I(H ← B)) (2)

In FZFOIL [26] some deficiencies in the Information Gain have been iden-
tified. Presumably, it may be due to the fact that Information Gain only take
into account the number of positive and negative examples a new candidate rule
satisfies, forgetting other parameters as the number of positive and negative
examples this candidate rule discards.

For the purpose of improving the learning process, we analyse other scor-
ing functions from the literature, trying to solve the Information Gain problem
stated. They weigh up the candidate rules according to the existing correlation
between each one and the current rule. Therefore, the gain of these scoring func-
tions will measure the amount of correlation gained if the current rule is replaced
with a new specific candidate rule.



3 Comparison Framework

The proposed scoring functions will be defined in terms of the well-known con-
tingency table. For evaluating any first order candidate rule H ← B′, we rely on
a contingency table as the one below in table 1.

Predicted Class

Original Class

Rk ¬Rk

Positive tp fn
true positives false negatives

Negative fp tn
false positives true negatives

N

Table 1. Contingency Table

Original class represents all starting training examples both positive and
negative (i.e., all training examples defined in the knowledge base for the target
predicate and covered by the initial empty rule, which only has the header rule
H). Predicted class are those examples satisfied by a specific candidate rule
Rk = H ← B′ and those satisfied denying this rule (i.e., ¬Rk = H ← ¬B′).
Thus, tp denotes the number of positive examples and fp denotes the number of
negative examples that are satisfied by this candidate rule. Similarly, fn denotes
the number of positive examples and tn denotes the number of negative examples
discarded by this candidate rule. N is the total number of positive and negative
training examples.

We have implemented and evaluated a subset of scoring functions proposed
in [23] as objective measures and in [18] as measures for predictive and descrip-
tive induction. Moreover, we have selected other scoring functions for being quite
traditional. The set of scoring functions adapted to the previous contingency ta-
ble is showed in table 4.

A summary description for each scoring function:

• Coverage is a measure of generality of a rule. If a rule characterizes more informa-
tion in the data set, it tends to be more interesting.

• Laplace Accuracy [22] is an approximate measure to estimate the expected accu-
racy directly. General rules tend to be favored.

• Piatetski-Shapiro’s [21] is one of the most frequently measure used in the evaluation
of rules. It is also known as Leverage. It trades off generality and relative accuracy.

• φ−coefficient [20] is a statistical measure analogous to Pearson’s product-moment
correlation coefficient. It measures the degree of association between two binary
variables (e.g., two rules, initial empty rule and a candidate rule). It is closely

related to the χ2 statistic since φ2 = χ2

N
.

• Support [8] is a measure known from association rule learning, also called frequency.
It is used for specifying if a rule is observed frequent enough in a data set.



• Rule Accuracy is also known as confidence [8]. It is related to the reliability. A rule
is reliable if its predictions are highly accurate.

• Satisfaction [18] is similar to rule accuracy e.g., Sat(H ← B) = 1 if RAcc(H ←
B) = 1, but, unlike Rule Accuracy, it takes the entire contingency table into
account and is thus more suited towards knowledge discovery.

• Confirmation [7] is defined in terms of a modified χ2 statistic. It trades off satis-
faction and Leverage measures.

• F-measure is other statistic measure of a test accuracy. It considers both the pre-
cision and the recall of the test to compute the score. We compute F1-score which
is the harmonic mean of precision and recall.

• kappa (κ) [6] captures the degree of agreement between a pair of variables (e.g.,
the initial empty rule and a candidate rule). If both variable are highly agree with
each other, then the values for κ will result higher.

• Odds-ratio [4] represents the strength of association or non-independence between
two binary data values. Unlike other measures of association for paired binary
data, the comparison between the two variables is symmetrical.

• Yule’s Q coefficient [5] is a normalized variant of the odds ratio.
• Lift (Interest) [2] is used quite extensively in data mining for measuring deviation

from statistical independence. It gives an indication of rule significance or interest.
• Collective Strength [3] is other measure of correlation variant of Lift measure.

It compares between actual and expected values. Higher values indicate perfectly
positive correlation.

• Jaccard(ζ) [1] is a statistic used for comparing the similarity and diversity of

sample sets. It is used extensively in information retrieval to measure the similarity

between documents. We measure the similarity between two rules.

We have defined some measures to help us to decide which scoring function
is more promising. The set of measures taking into account are:

1. Efficiency . This is defined as the amount of useful work in relation to time
and resources used. The resources are memory and space required.

2. Precision , which measures the number of examples correctly satisfied by
the set of rules against all examples satisfied, although so far, we only search
for 100% accuracy rules, i.e., we do not allow rules that satisfy any negative
example.

3. Recall , which determines if a set of rules is complete, i.e., if it satisfies all
positive examples belonging to the target predicate.

4. Complexity of the induced set of rules. It is computed in terms of bits from
Minimum Description Length Principle [25].

5. Specificity/Generality of the induced set of rules. A rule is general if it
satisfies most of positive examples belonging to the target predicate. It will
be too specific when it only satisfies a few number of positive examples.
Much more number of general rules, fewer rules in the set.

However, there are measures that can not be estimated objectively because
they depend on other measures which we call secondary measures. For instance,
secondary measures that may affect efficiency directly may be the number of
backtracking performed or the number of candidate rules that were evaluated,
which is one of the most expensive step in the algorithm. The number of different



predicates used in the induced set of rules could also affect the efficiency of the
learning process because it gives an idea about how well the knowledge base was
built and therefore, how useful the support predicates defined are.

Secondary measures that may affect to generality/specificity of a rule are the
number of variables used and the deep of the learnt rules, measured in terms of
the number of literals in each rule. If these numbers are small it will mean that
the rules are quite general, which is a desirable property.

Intuitively, the total number of induced rules will affect both, efficiency and
generality/specificity. Fewer number of rules will make the process more efficient
and the final set of rules more general. Note the former is true as long as the
rule are not too complex and the latter is true as long as the set of rules has a
good recall.

4 On Going Work

The example tested was first showed in [26]. Although it is a very simple prob-
lem with a negligible computational cost, it highlights the shortcomings of the
Information Gain when selecting the best literal to add to the current rule. It
tries to explain when somebody is sick. To carry out this task we rely on a
set of seventeen individuals among which eight are sick, and the rest are not.
The target predicate will be sick(X0), which means the individual X0 is sick.
The support predicates defined to induce a set of rules that explain the target
predicate sick(X0) are:

• bearded(Xi), which means the individual Xi is bearded.
• smoker(Xi), which means the individual Xi is a smoker.
• father(Xi, Xj), which means Xi is Xj ’s father.
• boss(Xi, Xj), which means Xi is Xj ’s boss.

In the knowledge base, the positive examples belonging to the target predi-
cate are all individuals who are sick. The rest are the negative examples and they
can be defined explicitly or to be induced by Closed World Assumption. Simi-
larly, we have to define the positive examples satisfied by each support predicate
but there is no need to define the negative ones explicitly.

Our knowledge base would be a Prolog program as in table 5 and the set of
learnt rules for this example is showed in table 3. The values obtained for the
evaluation measures explained previously, are presented in table 21

1 where: Prec.: Precision, C: complexity (bits), T: time (milliseconds), N: number of
candidates rules evaluated, B: number of backtracking, L: total number of unground
literals, V: total number of variables, P: total number of different predicates, S:
number of learnt rules.



Scoring Function Prec. Recall C T N B L V P S
Information Gain 1 1 23.75 6257 116 0 8 3 4 3

Coverage 1 0.5 12.17 138275 694 51 3 3 3 2

Laplace Accuracy 1 1 30.66 22317 408 0 13 6 6 3

Piatetski-Shapiro 1 1 22.34 5400 95 0 6 3 3 2

φ-coefficient 1 1 37.09 34200 183 1 9 4 3 3

Support 1 1 26.77 43759 191 8 7 4 5 2

Rule Accuracy 1 1 23.08 19017 375 0 11 6 5 3

Satisfaction 1 1 20.17 3512 68 0 6 2 5 3

Confirmation 1 1 20.17 3705 68 0 6 2 5 3

F-measure 0 0 0 58147 242 20 0 0 0 0

kappa (κ) 1 1 22.34 4983 95 0 6 3 3 2

Odds ratio 1 1 25.92 10470 158 3 8 3 4 3

Yule’s Q 1 1 56.85 25701 267 4 14 4 5 6

Lift 1 1 23.08 17249 375 0 11 6 5 3

Collective Strength 1 1 22.34 4745 95 0 6 3 3 2

Jaccard(ζ) 0 0 0 57480 242 20 0 0 0 0

Table 2: table of results

5 Conclusions

As well as in other analysis of measures or scoring functions, we can not conclude
saying there is a scoring function consistently better than the rest in all appli-
cations domains, although we have found some scoring functions that perform
better than Information Gain in our running example.

The goal is to get the most reduced set of 100% accurate rules with the largest
recall in the shortest time possible. To measure the quality of the rule, we need a
balance among precision, recall, efficiency, complexity and specificity/generality
to decide which is the most promising scoring function to achieve our goal but
being the efficiency the most relevant factor. The ease of understanding the
learnt rules is not an aspect to keep in mind because we do not yet who is going
to interpret these output rules. It can be an expert user or a computer program.

Taking these factors into account, we consider that Collective Strength,
Kappa and Piatetski-Shapiro’s scoring function, maintaining the full recall, per-
formed better. They evaluated only 95 candidate rules and the set of rules were
more general (i.e., fewer number of learnt rules and fewer number of literals in
the set of rules) and less complex in terms of bits. Satisfaction and Confirmation
scoring functions are even better than the previous one. They evaluated fewer
number of candidate rules and, although they had one rule more, the set of rules
has a complexity still lower.

Support scoring function is quite similar to the Information Gain. It spent
more time evaluating many candidate rules (i.e., a total number of 191 candidate
rules were evaluated) and the rules are more complex but more general. As



we consider efficiency the most relevant factor, we opt for Information Gain.
However, Laplace accuracy, Odds-ratio, φ-coefficient, Rule Accuracy and Lift
behaved worse than Information Gain, wasting time searching for more specific
rules. Yule’s Q is the worst scoring function within the group of functions that
have full coverage.

Finally, Coverage, F-Measure and Jaccard scoring functions did not find out
a set of rules with full coverage, they covers only a portion of positive examples
defined in the knowledge base. The last two were unable to find out a single
rule and they evaluated a huge amount of candidate rules caused, among other
factors, by the backtracking performed. Note F-Measure and Jaccard scoring
function has very similar formulae so they behaved in an identical way.

Despite of a single example is not reliable to get firm conclusions, it seems that
scoring functions like Piatetski-Shapiro’s, Confirmation, Satisfaction, Kappa and
Collective Strength may be more promising than the Information Gain because
they improve efficiency and quality of the rules obtained by the Information
Gain, solving some shortcomings of this scoring function states. However, we
need to perform an exhaustive comparative study and to establish a ranking
among all of these scoring functions.

The application of this kind of systems is usually better than with any other
known approach, so it needs to find more training sets to be tested, to define more
additional measures if that would be necessary and to perform an exhaustive
evaluation to get a reliable ranking. All this in order to apply FOIL satisfactorily
to domains with a huge amount of information.

6 Future Research

We are working on collecting a set of training examples large enough to perform
a reliable comparative study of these scoring functions and our own proposals
of scoring functions. Furthermore, we intent to use the methodology explained
in [23] to select the most fitting scoring function according to each problem.

Firstly, we will start with a set of training examples from Inductive Logic
Programming and Association Rules domain to get an approximation of the
behaviour of such scoring functions and compare our algorithm to other in-
ductive logic programming algorithms, both recent and traditional. If we get
improvements and its application is feasible in practical terms of efficiency, we
shall collect new complex training examples especially from Information Extrac-
tion domain where currently, its application is intractable task both from the
standpoint of computational cost as the user’s point of view, who has to an-
notate each instance of an attribute (i.e., target predicate) that it wants to be
extracted, which is a tedious and error-prone task.

Other proposals to improve FOIL algorithm also are considered. They are
classified in optimisations and heuristics. Some optimisations consist of:

1. Parallelising the algorithm, i.e., guiding the search of each single rule in par-
allel avoiding overlapping amongst the rules being learnt. Overlap can be



avoided successfully by means of clustering or using the paired T-Students
Test, which reduces the set of candidate rules into equivalence classes ac-
cording to their similarity from statistical point of view.

2. Performing the exploration of the candidate rules incrementally, i.e., a single
candidate rule is generated and checked. If it is good enough, the rest of
candidate rules shall not be generated and checked, which shall reduce the
entire search space. If the candidate rule being evaluated does not exceed
the threshold of goodness defined, the next candidate rule shall be generated
and checked, and so on until we find an acceptable candidate rule to add to
the final set of learnt rules.Tuning this threshold of goodness is the key to
take advantage of this optimisation.

3. Defining support predicates and/or semantic restrictions by means of a set
of rules processed by a Prolog interpreter. The goal is to avoid the evaluation
of certain candidate rules that present inconsistences amongst its predicates.
For instance, since the algorithm makes a greedy search it can generate a
rule like title(X):-previous(X,Y), EQUAL(X,Y), which means that a piece
of text is a title when it is preceded by itself, which obviously does not make
sense. Furthermore, defining support predicates by means of a set of rules
can also reduce the time spent by a user on building the knowledge base.

4. Translating output rules into regular expressions in order to improve the effi-
ciency of the extraction process. Note that this optimisation is not generally
applicable, but only to a subset of predicates on specific domains.

5. Incorporating fuzzification capabilities in the learning process of rules in
order to relax the concept of inclusion or exclusion of a rule.

Next, we report on the heuristics we shall design. Note that the optimisations
are intended to make inferring rules more efficient; heuristics, on the contrary,
are designed to help guide the search process, i.e., in the worst case, they do not
lead to an improvement.

1. Defining new criteria to rank the set of candidate rules; currently the top
positions in the ranking are for those candidate rules that exceed a threshold,
but if they do not exceed that threshold, the ranking is performed according
to other properties as the number of new variables a rule contains, which are
variables that are not present at the head of the rule, or properties related to
their coverage. We think that alter the priority of these properties or taking,
e.g., the distance to a goal rule, into account might help improve the search
process of the rules.

2. When a rule becomes too complex, the system returns to a save point and re-
starts the search from it. A candidate rule is stored as a save point if its score
is close to the score of the selected rule. We suggest defining new criteria to
decide when a candidate rule can be stored as a save point. An alternative
to the currently heuristic used is to store all candidate rules whose score
exceeds Cantelli’s threshold.



A Appendix

Scoring Function Rules23

Information Gain
sick(X0)← smoker(X0).

sick(X0)← boss(X1,X0), sick(X1), ¬father(X0, X2).

sick(X0)← boss(X1,X0), sick(X1), father(X2, X0), sick(X2).

Coverage sick(X0)← smoker(X0).

sick(X0)← boss(X0,X1), father(X0, X2).

Laplace Accuracy

sick(X0)← father(X1,X0), bearded(X1), smoker(X0).

sick(X0)← boss(X1,X0), sick(X1), father(X2,X0), sick(X2).

sick(X0)← ¬father(X0,X1), boss(X1,X2), boss(X2,X3), boss(X4,X1),

father(X5,X2), X0 6= X3.

Piatetski-Shapiro sick(X0)← father(X1,X0), bearded(X1), boss(X0,X2).

sick(X0)← ¬father(X0,X1), boss(X1,X2), ¬boss(X2,X0).

φ-coefficient
sick(X0)← ¬boss(X0,X1), boss(X1,X2), ¬boss(X2,X0).

sick(X0)← father(X1,X0), boss(X0,X2), ¬father(X0,X3).

sick(X0)← father(X1,X0), bearded(X1), boss(X0,X2).

Support
sick(X0)← boss(X0,X1), smoker(X0).

sick(X0)← father(X1,X0), boss(X1,X2), X1 6= X2, boss(X1, X3), sick(X1).

Rule Accuracy

sick(X0)← smoker(X0).

sick(X0)← boss(X1,X0), sick(X1), father(X2,X0), sick(X2).

sick(X0)← ¬father(X0,X1), boss(X1,X2), boss(X2,X3), boss(X4,X1),

father(X5,X2), X0 6= X3.

Satisfaction
sick(X0)← smoker(X0).

sick(X0)← ¬father(X0,X1), ¬bearded(X0).

sick(X0)← boss(X1,X0), sick(X1), bearded(X1).

Confirmation
sick(X0)← smoker(X0).

sick(X0)← ¬father(X0,X1), ¬bearded(X0).

sick(X0)← boss(X1, X0), sick(X1), bearded(X1).

kappa (κ) sick(X0)← father(X1,X0), bearded(X1), boss(X0,X2).

sick(X0)← ¬father(X0,X1), boss(X1,X2), ¬boss(X2,X0).

Odds-ratio
sick(X0)← smoker(X0).

sick(X0)← boss(X1,X0), boss(X0,X2), sick(X2), sick(X1).

sick(X0)← ¬boss(X0,X1), boss(X1,X2), ¬bearded(X0).

Yule’s Q

sick(X0)← ¬bearded(X0), boss(X1,X0), sick(X1).

sick(X0)← boss(X1,X0), ¬father(X1,X2).

sick(X0)← smoker(X0).

sick(X0)← father(X1,X0), ¬boss(X2,X0).

sick(X0)← boss(X0,X1), boss(X2,X0), smoker(X1).

sick(X0)← boss(X0,X1), boss(X2,X0), ¬father(X0,X3).

2 Note that FOIL relies on predefined predicates which are of the form Xi = Xj or
Xi = cj , where Xi and Xj are variables and cj is a constant (e.g., cj can be any
specific individual).

3 Note that F-Measure and Jaccard scoring function did not get a set of rules.



Lift (Interest)

sick(X0)← smoker(X0).

sick(X0)← boss(X1,X0), sick(X1), father(X2,X0), sick(X2).

sick(X0)← ¬father(X0,X1), boss(X1,X2), boss(X2,X3), boss(X4,X1),

father(X5,X2), X0 6= X3.

Collective Strength sick(X0)← father(X1,X0), bearded(X1), boss(X0,X2).

sick(X0)← ¬father(X0,X1), boss(X1,X2), ¬boss(X2,X0).

Table 3: Set of rules

Scoring Function Formula

1 Coverage tp+fp
N

2 Laplace Accuracy tp+1
tp+fp+2

3 Piatetski-Shapiro’s tp·tn−fn·fp
N2

4 φ-coefficient tp·tn−fn·fp√
(tp+fn)·(tp+fp)·(fp+tn)·(fn+tn)

5 Support tp
N

6 Rule Accuracy tp
tp+fp

7 Satisfaction tp·tn−fp·fn
N·(tp+fp)·(tn+fp)

8 Confirmation (tp·tn−fp·fn)2

N3·(tp+fp)·(tn+fp)

9 F-measure 2 · tp
2·tp+fn+fp

10 kappa (κ) 2·(tp·tn−fp·fn)

N2−(tp+fn)·(tp+fp)−(fp+tn)·(tn+fn)

11 Odds-ratio tp·tn
fp·fn

12 Yule’s Q coefficient (Q) tp·tn−fp·fn
tp·tn+fp·fn

13 Lift (Interest) N·tp
(tp+fp)·(tp+fn)

14 Collective Strength tp+tn
(tp+fp)·(tp+fn)+(fn+tn)·(fp+tn)

· N2−(tp+fp)·(tp+fn)−(fn+tn)·(fp+tn)
N−tp−tn

15 Jaccard(ζ) tp
tp+fp+fn

Table 4. List of Scoring functions

Table 5. Knowledge Base



References

1. van Rijsbergen C.J.: Information Retrieval. Butterworth, (1979)

2. Brin, S., Motwani, R., Silverstein, C.: Beyond Market Baskets: Generalizing Asso-
ciation Rules to Correlations. SIGMOD Conference. 265-276 (1997)

3. Aggarwal, C.C. Yu, P.S.: A New Framework For Itemset Generation. PODS 98,
Symposium on Principles of Database Systems. 18–24 (1998)

4. Mosteller, F.: Association and Estimation in Contingency Tables. Journal of the
American Statistical Association. 63, 1–28 (1968)

5. Yule, G.U.: On the Association of Attributes in Statistics. Philosophical Transac-
tions of the R.Society, Ser. A. 194, 257–319 (1900)

6. Cohen, J.: A Coefficient of Agreement for Nominal Scales. Educational and Psycho-
logical Measurement. 20, 37–46 (1960)

7. Flach, P., Lachiche, N.: A First-Order Approach to Unsupervised Learning (1999)

8. Agrawal, R., Imielinski, T., Swami, A.N.: Mining Association Rules between Sets of
Items in Large Databases. SIGMOD Conference. 207–216 (1993)

9. Mooney, R.J., Califf, M.E.: Induction of First-Order Decision Lists: Results on
Learning the Past Tense of English Verbs. JAIR. 3, 1–24 (1995)

10. Shapiro, E.Y.: Algorithmix Program Debudding. Cambridge, MA: MIT Press
(1983)

11. Srinivasan, A., Muggleton, S.H., King, R.D., Sternberg, M.J.E.: Mutagenesis: ILP
experiments in a non-determinate biological domain. Proceedings of the 4th Inter-
national Workshop on Inductive Logic Programming. 237, 217–232 (1994)

12. Muggleton, S., Feng, C.: Efficient Induction of Logic Programs. Algorithmic Learn-
ing Theory. 368-381 (1990)

13. Quinlan, J.R.: Learning First-Order Definitions of Functions. JAIR. 5, 139–161
(1996)

14. Fürnkranz, J.: FOSSIL: A Robust Relational Learner. European Conference on
Machine Learning. 122–137 (1994)

15. Ali, K.M., Pazzani, M.J.: HYDRA: A Noise-tolerant Relational Concept Learning
Algorithm. IJCAI. 1064–1071 (1993)

16. Lavrac, N., Dzeroski, S.: Inductive Logic Programming: Techniques and Applica-
tions. Ellis Horwood. (1994)

17. Wogulis, J., Pazzani, M.J.: A Methodology for Evaluating Theory Revision Sys-
tems: Results with Audrey II. IJCAI. 1128–1134 (1993)

18. Lavrac. N, Flach, P.A., Zupan, B.: Rule Evaluation Measures: A Unifying View.
International Workshop on Inductive Logic Programming. 174–185 (1999)

19. Quinlan, J.R.: FOIL: A Midterm Report. European Conference on Machine Learn-
ing. 3–20 (1993)

20. Agresti, A.: Categorical Data Analysis. Wiley-Interscience. (1990)

21. Piatetsky-Shapiro, G.: Discovery, Analysis, and Presentation of Strong Rules. 229–
248 (1991)

22. Clark, P., Boswell, R.: Rule Induction with CN2: Some Recent Improvements.
EWSL, 151–163 (1991)

23. Tan, P., Kumar, V., Srivastava, J.: Selecting the right objective measure for asso-
ciation analysis. Inf. Syst. 4, 293–313 (2004)

24. Pazzani, M.J., Brunk, C., Silverstein, G.: A Knowledge-intensive Approach to
Learning Relational Concepts. ICML. 432–436 (1991)

25. Rissanen J.: Modeling by Shortest Data Description. Automatica, 14, (1978)



26. GÓMEZ, A.J. y FERNANDEZ, G. : Inducción de definiciones lógicas a partir de
relaciones: mejoras en los heuŕısticos del sistema FOIL. PRODE, 292–302 (1992)

27. Freitag, D. : Information Extraction from HTML: Application of a General Ma-
chine Learning Approach. AAAI, 517–523 (1998)


