
Two-way Replacement Selection⋆

Xavier Martinez-Palau, David Dominguez-Sal, Josep Lluis Larriba-Pey

DAMA-UPC, Departament d’Arquitectura de Computadors
Universitat Politècnica de Catalunya
{xmartine,ddomings,larri}@ac.upc.edu

Sorting is in the heart of many high performance processes, in particular
those of a database management system. Since inputs are typically large and
the memory available to a sort process is limited, a good out of core sorting
algorithm has an important impact on the performance of the final application.

Replacement Selection (RS) is one of the most commonly used run generation
strategies. The objective of RS is to sort a stream of records as they come,
producing another stream of released data records called “run”, which is sorted.
The algorithm uses a heap: upon the arrival of a new record, RS releases the
first record in the heap, and stores the new record in it. The runs generated are
merged in a second phase. This second phase is faster when there is a smaller
number of runs. Thus, it is important to generate long runs.

RS has played a prominent role in external sorting situations because it
fulfills most of the desirable features. First, unlike other sorting methods, it is
able to sort data in a streamed fashion, using one heap to perform the job.
Second, it generates runs which double the size of the memory available for
random data, and infinite runs for already sorted data. This reduces the number
of runs, allowing the merge process to reduce its fan in, and the chances to
perform multiple I/O passes during the merge phase. Finally, although it is not
the fastest in-memory sorting strategy, it offers a good trade off for its value: it
generates smaller I/O by creating larger runs at the cost of possibly more in-core
computational effort, compared to other faster in-core methods.

However, for input data with certain characteristics, like inputs sorted in-
versely with respect to the desired output order, the length of the runs generated
by RS is downsized, being only as large as the available memory. We solve this
problem, proposing Two-way Replacement Selection, a general strategy that al-
lows to obtain runs which are at least the size of those generated by RS and, in
many cases, more than double the size of the memory available for sorting no
matter the dataset, improving the good features mentioned above for RS.

In our paper, we present Two-Way Replacement Selection (2WRS), which
is a generalization of RS obtained by implementing two heaps instead of the
single heap used by RS, and adding two optional buffers, called input and victim
buffers. The heaps of 2WRS adapt to the data characteristics, one intends to
capture the growing values and the other one intends to capture the decreasing
values. The strategy is to place each newly arrived record in the correct heap.
Also, the heaps grow or shrink depending on the nature of the data. So, in
case there are more growing than decreasing data, it grows the growing data

⋆ This is an extended abstract of [1]



heap, and shrinks the decreasing data heap, and conversely. The appropriate
management of these two heaps allows generating runs at least as large as twice
the available memory in a stable way, i.e. independent from the datasets.

The input buffer of 2WRS is filled with records from the input. At each
step, the algorithm outputs the top record of one of the two heaps (selected
at random), and then inserts the next record into one heap. This second heap
selection is done by an input heuristic that uses the contents of the input buffer
to choose which heap holds the next record. Due to the restrictions on the values
allowed for records in each heap, it is possible that a new recors cannot be stored
in either heap. In this case the new record is stored in the victim buffer.

We prove that the runs generated by 2WRS are at least as large as the runs
generated by RS and, for several structured inputs larger. This means that the
run length of 2WRS is always equal or better than that of RS.

We performed a statistical analysis of 2WRS, using the analysis of variance
(ANOVA) methods with five different sets of input data. A configuration of
2WRS sets the input heuristic used, which buffers are used, and the percentage
of available memory dedicated to buffers. From this analysis we extract several
conclusions. First, the use of a second heap is beneficial, as it allows the gener-
ation of large runs independently of the distribution of the input data. Second,
having slightly smaller heaps in exchange for buffers is beneficial performance-
wise. Finally, the analysis shows that 2WRS generates runs at least as large as
those generated by RS, and larger with some input data, which confirms the
theoretical analysis. The statistical analysis also allows finding the best input
heuristic, buffer configuration and the optimal buffer size.

We also tested experimentally the time performance of 2WRS with respect to
RS. The results show that 2WRS is only 10% slower than RS when the input data
is randomly distributed, but with structured inputs, 2WRS achieves speedups of
almost 3, thanks to the generation of longer runs. These experiments also show
the usefulness of using both buffers. The experiments have been repeated for
different input sizes and memory dedicated to the sorting operation. We have
been able to sort datasets with strong memory limitations (6 orders of magnitude
larger) three times faster than the regular RS. Furthermore, we obtain similar
speedups with different scaleups of the input.

Finally, 2WRS maintains the heap and run generation architecture of RS
that allows for improvements already proposed in the literature for RS, which
include variable key support, read ahead strategies or hierarchical data sorting
among others.

Acknowledgments The members of DAMA-UPC thank the Ministry of Sci-
ence and Innovation of Spain and Generalitat de Catalunya, for grant numbers
TIN2009-14560-C03-03 and SGR-1187 respectively.

References

[1] X. Martinez-Palau, D. Dominguez-Sal, J.L. Larriba-Pey. Two-way replacement se-

lection, PVLDB, 3(1): 871-881 (2010)


