
Software Design Guidelines for Usability

Laura Carvajal, Ana Moreno

Facultad de Informática - Universidad Politécnica de Madrid.

Campus de Montegancedo S/N, 28660. Madrid, Spain
lauraelena.carvajal@upm.es, ammoreno@fi.upm.es

Abstract. For years, the Human Computer Interaction (HCI) community has
defined the expected characteristics of usable software systems. However, from
a Software Engineering (SE) perspective, the process of incorporating usability
into software is not always straightforward, as many usability features have
strong implications in the underlying architecture. For example, successfully
including a “cancel” feature in an application may involve complex interrelated
data structures and functionalities. Our work is focused upon providing
developers with a set of guidelines to assist them in including such usability
features with high impact on software design into their developments effectively.

Keywords: Usability, software architecture, software design patterns

1 Introduction

For the better part of the last two decades, the HCI community has focused great
effort in defining what makes a good user interface. Many solutions to common
interaction problems have been proposed [1][2][3] yet, the SE community continues
to struggle to consistently transform these solutions into actual software code [4].

There is a well documented gap between the contributions of both communities,
namely the notions of what is expected of a usable application interface (HCI), and
how applications should be crafted to achieve such expected levels of usability (SE)
[4][5][6]. Works like [7][8][9][10][11] and [12] have attempted to bridge this gap,
proposing solutions to include usability into systems from a software architecture
point of view, yet the lack of traceability between them and each project’s specific
requirements is mostly overlooked. Furthermore, the proposed architectural solutions
proposed thus far have consistently been of a high abstraction level [13], leaving
another gap to be bridged between a general, high-level architectural solution and the
manner in which developers are expected to translate it into actual software designs.

Our work focuses on addressing the present shortcomings and proposing detailed
design solutions for a subset of HCI usability recommendations with proven impact
on software architecture [14]. While there are many more usability scenarios that
could be considered, we’ve chosen to focus our efforts on a set of usability features
whose effects go beyond the GUI: those most relevant to software developers while
always preserving the connection to the longstanding efforts and results of the HCI
community, from which the chosen features all have been derived [15].

2 Related Works

There’s been an extensive amount of research carried out in the past decade in regards
to understanding and quantifying the strong relationship that exists between software
architecture and usability. These results highlight the importance of that kind of a
relationship and the need to address usability concerns from a software architecture
perspective. Multiple approaches have been explored for addressing these concerns,
mainly proposing diverse forms of architectural frameworks, guidelines and patterns
in order to include usability into software systems correctly and effectively

The following studies represent the leading trend in the research area regarding
usability support in software design. They have delved into determining the nature of
the relationships that may exist between the usability needs of a software application
and its architecture and propose solutions to addressing usability concerns at design
time during application development.

Bass and John in [7] identify a set of usability scenarios that appear to have
architectural implications, determine their potential usability benefits and propose
software architectural (SA) patterns to help users realize those benefits.

In [8], Folmer et al. present an assessment technique, SLUTA, to assist software
architects in designing the architecture of their systems in a way that supports
usability. This technique promotes explicit evaluation of usability during architecture
design, with the purpose of discovering usability issues during this early stage of
development, as opposed to doing so during system maintenance to a higher cost.

In [9], Ferré et al. identify twenty usability patterns that, when present in a system,
improve its usability. For each of these patterns and through the inductive process
summarized below, the authors produce a possible design solution for incorporating
them into the architecture of software applications.

Following the same research line as their 2002 work, in this later study by Bass and
John [10] the authors introduce Usability Supporting Architectural Patterns (USAPs).
Each USAP describes a usability concern, provides a set of responsibilities to be
fulfilled, and describes an MVC-based sample solution for it, this time considering
the forces, as defined by Alexander et al. [16] exerted over each scenario.

Seffah et al. in [11] identify and model specific scenarios that illustrate how
internal software components may affect a system’s usability. For each of the
proposed scenarios, an existing or improved software design pattern is suggested as a
potential solution to the scenario. These scenario-pattern pairs are ultimately
documented and their application within a MVC architectural model is detailed.

In this most recent work by Bass and John [12] they alter the structure of the USAP
and propose a pattern language based on software responsibilities, alongside a web-
based tool for evaluating an architecture with respect to those patterns.

While the results obtained thus far are encouraging, there is still work to be done in
this field. For instance, in most of the aforementioned works no empirical validation
was performed, save for the three case studies carried out by Folmer, et al. [8].

Furthermore, the usability issues addressed in existing works as starting points are
identified mostly by heuristic-based approaches. Ideally, the usability concerns to
consider when proposing architectural and/or design patterns should be relevant from
an HCI perspective and have proven implications on software architecture and design.

Most of the previous works deal with solutions at a high-level architectural level,
which are not adequately validated. While architectural patterns can be very useful in
depicting how a system should behave as a whole, our work explores the option of
lower-level design patterns being more effective in detailing the responsibilities of its
components.

In addition, none of the works studied provide any means of traceability between
their proposed solutions and software requirements, which is of utmost importance for
validation and maintenance purposes.

Therefore, we are presented with an open research problem related to providing
users with efficient design and implementation artifacts to incorporate usability into a
software system, and we intend to address it within the scope of this paper.

3 The Usability Guideline

The aim of this research is to provide software developers with recommendations to
help them incorporate certain usability features into software systems. We have
named these recommendations Usability Guidelines, from which Usability Design
Guidelines are the main contribution of this work. These guidelines address the set of
11 usability issues with high implications on software functionality first identified in
[14], and their full structure is shown in Fig 1.

Our hypotheses for this work are the following:
1. The usability guidelines facilitate the inclusion of functional usability features into

software designs. This will be measured and contrasted in terms of over-all and by-
guideline design time (quantitative) and perceived ease of use of the guidelines
(qualitative).

2. The usability guidelines improve the quality of the designs, resulting in better
software. We will argue that the usage of the proposed guidelines produces designs
with higher levels of a closed set of quality design attributes when compared to
equivalent projects that do not make use of the proposed guidelines or that only use
it partially.

Fig 1 Structure of the Usability Guideline. Comprised of Usability Requirements Analysis
Guideline and Usability Design Guideline.

The Usability Requirements Analysis guideline is made up of the following three
components:
1. The Usability Elicitation Guideline (UEG), an existing contribution by [15]

extended for this work, whose aim is to help in eliciting usability requirements
2. The Usability Elicitation Clusters, a graphic representation of the Usability

Elicitation Guideline, designed partly to help analysts understand the flow of the
requirements discussion items

3. The Usability Use Cases Meta-model, a use case representation of the usability
needs covered by the UEG to help designers include them in their use case models.

The Usability Design Guideline is comprised of five parts, namely:
1. The System Responsibilities, or the main functionalities that the system should

accomplish in order to fulfill all of what has been elicited with the UEG.
2. The Usability Use Cases / System Responsibilities Mapper, to help determine

which System Responsibilities apply in relation to the Usability Use Cases.
3. The Generic Architectural Component Responsibilities, describe the System

Responsibilities at the lower abstraction level of generic architectural components.
4. The Specific Object Responsibilities (for MVC), which instantiates those

Architectural Component Responsibilities for a specific architecture (MVC).
5. The Software Design Meta-models, which are the graphic representation, as

class and sequence diagrams, of the Specific Object Responsibilities.
The core of the contribution of this work is represented by the Usability Design
Guideline as an answer to the need for supporting development teams in including
functional usability features during the design phase of their projects. However, the
Usability Requirements Analysis Guideline also embodies an important part of our
contribution in regards of complimenting the original UEGs and establishing a needed
‘bridge’ between the artifacts provided for both the analysis and design phases.

We have developed such guideless for the eleven usability mechanisms detailed in
[13]. The next section shows an example for one of the mechanisms.

4 Sample Usability Guideline: Abort

The Abort Functional Usability Feature covers providing the means to cancel tasks
and allowing exiting the application altogether. When tasks take a long time to
execute the user might want to abort them. They must also be allowed to exit the
application at any time, properly handling any on-going tasks.

Below is an overview of the two parts of the Usability Guideline for this feature:
the Usability Requirements Analysis Guideline and the Usability Design Guideline.

4.1 Usability Requirements Analysis Guideline

The Usability Requirements Guideline is made up of four artifacts: the Usability
Elicitation Guideline, the Usability Elicitation Clusters, the Usability Use Case Meta-
models and the Usability Use Case Dependencies Mapper. Reduced versions of each
of these artifacts are presented below for the Abort feature.

4.1.1 Usability Elicitation Guideline
The Usability Elicitation Guideline explains the basics of Abort functionality,
including which of the system’s actions need to be cancellable, what state the system
will return to after cancellation and how to handle on-going actions upon

Table 1 shows a partial view of this Usability Elicitation Guideline: one of the two
HCI recommendations that comprise it, namely the one titled “Cancelling
Commands”, which deals with aborting ongoing commands, and the effects this may
have on the application state and how to handle them.

Table 1. Usability Elicitation Guideline. Part 1 of 4 of the Usability Requirements Analysis
Guideline for the Abort feature.

Identification
Name Abort

Family Undo/Cancel
Intent
Providing the means to cancel an on-going task, or to allow for exiting the application altogether
Problem
Certain tasks might take a long time to execute. In such cases, the user will need to be at the liberty to cancel them. S/he
must also be allowed to exit an application at all times, regardless of any tasks that may be being executed.
Context
When the user needs to exit an application or a command quickly.
Interrelationships
When implementing the Abort feature, Undo functionality will be needed for the cancellation of commands, in order for
the application state to be properly reverted. Also, if implementing an application that prompts the user to save changes
upon exiting, parts of the Warning feature will be needed.

HCI Recommendation Elaboration Discussions with Stakeholders Usage Examples (opt)
A_HCI-1 Cancelling
Commands
If a command takes over 10
seconds to execute, a
‘cancel’ option must be
provided, interrupting
execution and correctly
handling the resulting
system state.

SBS_ELAB-1
Back and Cancel
A ‘command’ is
understood as an
indivisible unit of
execution. All longer
commands (>10s) must
be identified. The state
that the system must
revert to, if any, must be
determined for each.

U_HCI-1: Which commands
will require a cancel option?
U_HCI-2: For all cancelable
commands, how should the
cancel option be presented to the
user?
U_HCI-3: For all cancellable
commands, which state will the
system go to after the user
chooses the cancel option?

A_EX-1 Exporting Video File
In Apple’s Quicktime, when
choosing the option to ‘export’
a video file into a different
format, the application does so
presenting a progress bar with
a cancel button. Upon
cancellation, any portion of the
video that was exported is
automatically sent to the
‘Trash’.

4.1.2 Usability Elicitation Clusters
From the partial view of the Usability Elicitation Guidieline in Fig 1, two Elicitation
Clusters can be generated as shown in Fig 2; A_EC-1 and A_EC-2, which group all
the discussions related to cancelling commands and handling system state.

These elicitation clusters will give way to the System Responsibilities of the
Usability Design Guideline for the Abort Functional Usability Feature as seen below.

Fig 2 Usability Elicitation Clusters (partial view) Part 2 of 4 of the Usability Requirements Analysis Guideline

4.1.3 Usability Use Case Meta-model
The Use Case Meta-model for the Abort Functional Usability Feature is shown in Fig
3 in which eight use cases are identified. Four of these use cases are borrowed use
cases: W_UC_3 from the Warning feature, SPF_UC-1 from the Progress feature,
U_UC-1 and U_UC-6 from the Undo feature (dark gray, all outside of the scope of
this paper). The remaining four use cases are comprised of three concrete use cases
(light gray, to be used directly within the final use case model of a project) and one
template use case (white, to be instantiated by the appropriate, project-specific use
case), all solely belonging to the Abort mechanism itself.

Fig 3. Usability Use Case Meta-model. Part 3 of 4 of the Usability Requirements Analysis Guideline.

The applicability of each of these use cases will depend on the results of the
elicitation process. If during elicitation of the Abort Functional Usability Feature it is

determined that, for example, exiting the application will never imply saving changes,
the A_UC-3 and U_UC-3 use cases will be discarded at modeling time.

4.2 Usability Design Guideline

The Usability Design Guideline is comprised of five main parts, described below: The
general System Responsibilities that must be fulfilled in order to fully implement the
Abort Functional Usability Feature, the relationships between the System
Responsibilities and the Usability Use Cases, the Generic Architectural Component
Responsibilities, the Concrete Object Responsibilities (for a MVC architecture) and
the Usability Design Meta-models for those Concrete Object Responsibilities as
object-oriented class and sequence diagrams.

4.2.1 System Responsibilities
From the Elicitation Clusters identified above, four System Responsibilities are
derived, for which a partial view is offered in Table 2. More specifically, the System
Responsibilities A_SR-1 and A_SR-2 shown below are yielded directly by the
Elicitation Clusters shown in Fig 2, A_EC-1 and A_EC-2.

Table 2. System Responsibilities List. Part 1 of 5 of the Usability Design Guideline.

4.2.2 Use Case / System Responsibilities Mapping
The Usability Use Case / System Responsibilities Mapper depicts which System
Responsibilities are related to which Usability Use Cases. Responsibilities in the right
column will not be present in the resulting system if the use case in the left column is
not contemplated at elicitation time.

Table 3 shows how the System Responsibilities for the Abort feature depend on
the feature’s use cases.

Table 3. Use Case/System Responsibilities Mapping. Part 2 of 5 of the Usability Design
Guideline for the Abort feature.

Use Cases Dependent Responsibilities
A_UC-1 Cancel A_SR-1 Identify cancellable commands

A_SR-2 Cancel commands and handle application state
A_UC-2 Exit A_SR-3 Exit application handling potential on-going commands

A_SR-4 Handle potential changes to be saved
A_UC-3 Save Changes A_SR-4 Handle potential changes to be saved
A_UC-4 Long/Undoable User Action A_SR-1 Identify cancellable commands

A_SR-2 Cancel commands and handle application state

System Responsibilities List for Abort
A_SR-1 Identify cancellable commands: The system must keep track of commands that are cancellable
A_SR-2 Cancel commands and handle application state: The system must allow users to cancel (cancellable)

commands and to handle app state appropriately

4.2.3 Generic Component Responsibilities
Table 4 shows a partial view (two of four System Responsibilities) of the suggested
Generic Architectural Components for the Abort Functional Usability Feature.

Table 4. Partial view of the Generic Component Responsibilities. Part 3 of 5 of the Usability
Design Guideline for the Abort feature.

System Responsibility Generic Component Responsibilities
A_SR-‐1	 Identify	 and	
execute	 cancellable	
commands	

A_CR-1 A software component, preferably that responsible for handling user events (UI),
must know of all the commands that are cancellable. By being in charge of this
responsibility, it will be able to display the necessary interface components to
provide the user with the means to cancel the command.

A_CR-2 The UI is also responsible for listening for command invocations from the user.
A_CR-3 Execution of actions is always the responsibility of the pertinent Domain

Component in the application
A_CR-4 The component in charge of delegating actions (if any) should determine whether

the action is undoable or not, from a pre-established list.
A_CR-5 If the action to execute is undoable, it must first be encapsulated as an instance of

a Command Component, together with any pertinent state information and the
necessary actions needed to revert its effects.

A_CR-6 Such an instance is then stored in a History Component, responsible for keeping a
single (ordered) collection of all executed undoable actions.

A_CR-7 After encapsulation, the Domain Component is free to execute the invoked action

4.2.4 Concrete Object Responsibilities for MVC
When instantiating for an MVC architecture, the generic architectural components
described above can be translated into the following system objects (see Table 5).

Table 5. Partial view of the Concrete Object Responsibilities for MVC for the Abort feature.
Part 4 of 5 of the Usability Design Guideline.

System
Resp.

Objects
View Controller ConcreteComm. HistoryList DomainClass

A_SR-‐1	
Identify	 and	
execute	
cancellable	
commands

1. The View must listen
for calls to commands.
It must be aware of
which of these are
cancellable and provide
the appropriate GUI
components to enable
cancellation. (A_CR-1)

1. The View must listen
for invocation of
actions. Upon reception,
it must notify the
Controller of the action
(A_CR-2)

2. The Controller
must determine if
the invoked action is
cancellable. In such
case it execute the
corresponding
Concrete Command
object, otherwise the
call goes directly to
the DomainClas
(A_CR-4)
3. The Controller
must then add the
Concrete Command
to the HistoryList.

4a. Upon
execution, the
Concrete
Command saves
the state
information and
calls the
appropriate action
in the
corresponding
DomainClass
(A_CR-5)

4b. The
HistoryList
saves the
cloned
ConcreteCo
mmand atop
its collection
(so it can
later be
available to
undo)
(A_CR-6)

5a. The DomainClass
executes the
appropriate method to
carry out what was
originally invoked by
the user through the
View. (A_CR-3,
A_CR-7)

4.2.5 Usability Software Design Meta-models
These UML diagrams represent the Concrete Object Responsibilities described in the
previous sections. The following subsections describe the class diagram and the

classes involved in the Abort feature and their interrelationships, followed by the
description of one the three sequence diagrams that fully flesh out the present feature.

Class Diagram
Fig 4 below shows the class diagram for the Abort Functional Usability Feature. As
described in the Concrete Object Responsibilities Table, the main objects involved are
the View, Controller, HistoryList, ConcreteCommand and DomainClass. The first
two, fulfilling their role within MVC, respectively capture and distribute the user calls
to perform actions. The HistoryList stores invoked commands, ConcreteCommand
implements a Command interface, as described by [17], and is responsible for
ordering the execution of a requested action (in DomainClass) as well as for storing
all state information required for eventually undoing the command it represents (i.e
the method it’s calling in DomainClass)

Fig 4 Usability Software Design Meta Model. Class Diagram. Part 5a of 5 of the Usability
Requirements Analysis Guideline.

Sequence Diagram “Cancel Command”
The sequence diagram for cancelling a command is shown in Fig 5. This is the UML
representation of the object responsibilities and sequences presented in Table 5. It
starts when the user requests to cancel an on-going command. The View has the
information that identifies the command and passes it onto the Controller. With it, the
Controller finds the thread that the command is running in and orders it to stop. It then
orders the HistoryList to undo whatever changes were produced by that command
while it ran. The HistoryList orders the corresponding ConcreteCommand to undo,
which leads to the DomainClass reverting the state to what it was before the execution
of the command. Once the effects have been reverted, the Controller orders the
thread to end, sending a notification to any subscribed Progress indicators, which
proceed to terminate. Finally, the GUI updates to reflect the command has been
cancelled.

Fig 5 Usability Software Design Meta Model. ‘Cancel Command’ Sequence Diagram. Part 5b
of 5 of the Usability Requirements Analysis Guideline.

The guidelines developed for the different mechanisms where applied in different
projects as we will discuss in next section.

5 Results

The proposed guidelines were applied during construction of three different software
projects by nine teams (three teams per project) of Software Engineering master’s
students at the UPM School of Computing. These projects were:

1. An online list management system: An application to manage to-do lists with the
possibility of sharing and scheduling tasks, as well as organizing them visually.

2. A console for a home automation system: An application to operate a simulated
network of sensors and actuators that controlled various features of a home
environment (lights, air conditioner, blinds, garage door, etc) in real time.

3. An auction site: A web application with basic auction functionalities.

Each of the three teams (numbered PiG1, PiG2, PiG3, where ‘i’ represents the
project number from the above list) was provided with the same Software
Requirements Specifications (SRS). The differencing factor was the type of help that
was provided for each team:
− The first team in each group is given the full Usability Guidelines for each of the

features that apply to their project.
− The second team in each group is given a partial guideline for every needed

feature. This partial guideline contains the full Usability Requirements Analysis
Guideline and only one element of the Usability Design Guideline, namely the
System Responsibilities. In other words, the Generic Component Responsibilities,
the Concrete Object Responsibilities and the Usability Software Design Meta-
models were not given to these teams for any of the features.

− The third team in each group was not given any part of the guideline
The three SRSs already included usability requirements that were marked as

pertaining to one of the 11 Functional Usability Features in this work. Each team was
expected to design and implement their full SRS including all usability aspects.

Upon submission, the Software Usability Guidelines were being evaluated both in
a qualitative and a quantitative manner. The quantitative evaluation is still under way
at the time this writing, but partial results of the qualitative evaluation are shown in
Fig 61 below. A broader array of earlier results is presented in [18], excluded herein
due to space restrictions.

Fig 6 Responses to question “How would you rank this feature in terms of the complexity you
encountered during the: a) design phase?” [Legend: medium gray = with full guideline. Light
gray = with partial guideline. Black = with no guideline].

As an example, Fig 7 and Fig 8 show the way in which the Abort mechanism was
applied by one of the development teams. These figures depict the project’s class
diagram (partial) and one sequence diagram, respectively. They focus on the system
requirement pertaining cancellation of the opening or closing of window blinds,
which involves stopping their movement and returning the blinds to their original
state.

1 In Figure 6, the missing data points indicate that the corresponding feature was not a part of

the project being graphed.

Fig 7 Partial view of the team’s class diagram

In Fig 7 above, we can see the teams representations of the classes proposed by the
Abort Guideline in Fig 4: The View (Vista), ProgressIndicator (IndicadorProgreso),
DomainClass (Persiana), Controller (ControladorPersiana) and ConcreteCommand
(ComandoAbrirPersiana). HistoryList (HistorialUndo) is also present in the diagram
but cut out of frame for space reasons.

In Fig 8 below, we can see the team’s collaboration diagram2, where the proposed
interactions of the Abort Guideline for cancelling a command (Fig 5) are presented.
In this case, the command to cancel is the opening/closing of window blinds, where
the View orders the Controller (ControladorPersiana) to stop the thread responsible,
then orders the HistoryList (HistorialUndo) to undo any effects (causing the
DomainClass Persiana to ultimately revert any movement of the blinds made prior to
cancellation). Once control is returned to ControladorPersiana it kills the thread and
the view has since been notified of the change and updates the GUI accordingly.

2 P2G1 represented their interaction diagrams as collaboration diagrams for presentation reasons.

Fig 8 Team P2G1's collaboration diagram, showing the interactions suggested by the sequence
diagram in Fig 5, instantiated for the window blinds use case in the Home Automation Project

6 Conclusions and future work

In this paper we present one possible solution to guide software developers in
including eleven usability features involving software architecture into their
applications.

Preliminary validation results are encouraging. On the qualitative front, they show
that the guidelines help reduce the perceived complexity of the functional usability
features. Also, early quantitative validation results show that development time is
reduced when development teams make use of the guidelines proposed herein

While there are other usability features not considered in this work that could
potentially impact software functionality, our solution provides an important
contribution in the SE and HCI fields. The emphasis on assisting developers address
usability features with the highest impact in system functionality remains paramount.

The proposed guidelines help software development teams to include usability
features from the earliest phases of development all the way through software design.
Further research should focus on providing artifacts that would aid the
implementation phase. Providing developers with software plug-ins, for example,
would further aid a smooth inclusion of usability features into software.

Furthermore, at the time of this writing a tool is being developed to automate the
use of the guidelines by developers, which should facilitate its use and ultimately
further improve results.

7 References

[1] Nielsen, J. 1993. Usability engineering. Boston, Massachusetts, USA: Morgan Kaufmann.
[2] L. Constantine, L. Lockwood. Software for Use: A Practical Guide to the Models and

Methods of Usage-Centered Design. Addison-Wesley, 1999.
[3] M. van Welie. The Amsterdam Collection of Patterns in User Interface Design. Welie.com
[4] Seffah, A. M. 2004. The obstacles and myths of usability and software engineering.

Commun ACM, 47 12, 71-76.
[5] Constantine, L., Biddle, R., Noble, J. Usage-Centered Design and Software Engineering:

Models for Integration. Bridging the Gaps between Software Engineering and Human-
Computer Interaction. 106-113. 2003.

[6] Walenstein, A. Finding Boundary Objects in SE and HCI: An Approach Through
Engineering-oriented Design Theories. Bridging the Gaps between Software Engineering
and Human-Computer Interaction. 92-99. 2003.

[7] Bass, L., & John, B. E. 2002. Linking Usability to Software Architecture Patterns Through
General Scenarios. J Syst Software, 188-197.

[8] Folmer, E., van Gurp, J., & Bosch, J. 2005. Software Architecture Analysis of Usability.
Lect Notes in Comput Sc, 3425, 38-58.

[9] Ferre, X., Jusisto, N., Moreno, A., & Sánchez, M. 2003. A software architectural view of
usability patterns. Proceedings of INTERACT 2003.

[10] John, B., Bass, L. & Sanchez-Segura, M. 2005. Bringing Usability Concerns to the Design
of Software Architecture. Lecture Notes in Computer Science, 3425, 1-19.

[11] Seffah, A., Mohamed, T., Habieb-Mammar, H., & Abran, A. 2008. Reconciling usability
and interactive system architecture using patterns. J Syst Software

[12] Bass, L., John, B. E., Golden, E., Stoll, P. A Responsibility-Based Pattern Language for
Usability-Supporting Architectural Patterns. EICS’09, July 15–17, 2009, Pittsburgh, USA.

[13] Carvajal, L., 2009 Usability-enabling Design Guidelines: A design pattern and plug-in
solution. Proceedings of the doctoral symposium for ESEC/FSE. No. 42

[14] Juristo, N., Moreno, A., & Sanchez-Segura, M. 2007. Analysing the impact of usability on
software design. J Syst Software, 1507-1516.

[15] Juristo, N., Moreno, A., & Sanchez-Segura, M.I. 2007. Guidelines for eliciting usability
functionalities. IEEE Transactions on Software Engineering, 744-758.

[16] Alexander, C., Ishikawa, S., and Silvernstein, M. A Pattern Language, Oxford University
Press, New York, 1997.

[17] Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. Design Patterns Elements of
Reusable Object-Orientated Software., Addison -Wesley.

[18] Carvajal, L., Moreno, A., Usability-enabling design patterns. IADIS International
Conference Interfaces and Human Computer Interaction 2010

