
Adapting Component-based User Interfaces
at Runtime using Observers

Javier Criado1, Luis Iribarne1, Nicolás Padilla1,
Javier Troya2, and Antonio Vallecillo2

1 Applied Computing Group, University of Almeŕıa, Spain
{javi.criado,luis.iribarne,npadilla}@ual.es

2 GISUM/Atenea Research Group, University of Málaga, Spain
{javiertc,av}@lcc.uma.es

Abstract. Model-driven engineering (MDE) already plays a key role in
Human-Computer Interaction for the automatic generation of end-user
interfaces from their abstract and platform-independent specifications.
Moreover, MDE techniques and tools are proving to be very useful for
adapting at runtime the final user interfaces according to the current
context properties: platform, user roles, component states, etc. In this
paper we propose a mechanism to adapt user interfaces at runtime. These
user interfaces will be (re)generated through the dynamic composition
of user-interface software components, depending on the observed prop-
erties of the environment and of the components’ behaviour.

Keywords: UI Adaptation, UI Composition, MDE, Observer, Trading

1 Introduction

Model-driven engineering (MDE) already plays a key role in user-interface de-
sign and user-interface development [11]. However, experience is showing that
MDE can be even more effective for user-interface generation at runtime. Specifi-
cally, it is possible that different final user interfaces can be generated at runtime
from the same abstract specifications, according to end-user context properties
such as platform, user roles, component states, environmental conditions, etc.
In this context, it is important to count on variability mechanisms that pro-
vide the appropriate levels of adaptability required to dynamically adapt user
interfaces at runtime. Several authors have proposed solutions to tackle this
problem. For example, in [12] the authors describe an example to adapt the user
interface transformation at runtime through the selection of different types of
rules. Recently, the work in [9] presents a framework for specifying user inter-
faces transformations through the definition of rules. Using a different approach,
in [4] high-level modelling techniques and low-level programming techniques are
combined to achieve the required plasticity of user interfaces. Interfaces are mod-
elled through the composition of user interface components, which are described
in terms of both abstract specifications and executable code.

A refactoring process of user interfaces is introduced in [10], which preserves
the architectural definition and makes use of object-oriented programming to de-
fine the components and the selection logic. Another example that adds flexibility
to the transformation rules of user interfaces is presented in [1]. It describes the
transformation templates which specify the selection of user interface elements
based on contextual requirements. Although all these works deal with user inter-
face adaptation, none of them combines the dynamic user interface composition
using transformations that are also adapted to the context at runtime.

Our research work also focuses on user interface adaptation at runtime. Here,
user interfaces are described by means of Architectural Models that contain the
specification of abstract user interface components [6, 7], which combined to-
gether provide the required user interface functionality. The realization of such
software architecture is achieved by a trader [8] that looks in existing reposito-
ries of user-interface components for those that fulfil the requirements imposed
by the architecture and selects the right set of components for the application.
User-interface adaptation is achieved by changing the software architecture of
the application, using standard model transformations languages and tools. Ev-
ery time a new architecture is identified (normally due to changes in the user
requirements or in the running environment), the trader finds again the suitable
components that realize it. This defines a two-stage process for user-interface
adaptation, consisting on a transformation phase that changes the architectural
models that define the structure of the user-interface application, followed by a
regeneration phase that populates the new architecture [5].

In this paper we introduce a new level of adaptation, provided by the use of
observer objects that monitor the state and behaviour of the components that
realize the user-interface architecture. Observers are not a new concept. For
instance, the CAMELEON-RT framework [2] uses observers to collect system
context information which is then used by an evolution engine. In [13] observers
are in charge of calculating the QoS properties of the system elements by mon-
itoring their progress, which can then be used in rules for system adaptation.
In our case, we were inspired by this concept to establish UI adaptation rules
from the UI component monitoring. In our proposal observers are used to trigger
the model transformations that accomplish the adaptation process. A second,
and more interesting, use of our observers is that they can be used to trigger a
lower-level adaptation process whereby the global architecture does not need to
be changed, but only one of its realizing components. For example, think of a
video component whose output resolution drastically decreases due to a low net-
work throughput. In this case a change in the architecture may not be needed if
the component admits a change in its configuration that toggles to B/W display
mode. Alternatively, another video component can be selected to replace it if no
tuning is possible and the new component allows solving this problem.

The rest of the paper is organized as follows. Section 2 introduces our proposal
for component-based user interface adaptation, and Section 3 explains the use of
the observer elements. Finally, Section 4 presents some conclusions and outlines
future work.

2 Component-based User Interface Adaptation

As explained above, user-interface adaptation is achieved by changing the soft-
ware architecture of the application using a two-stage process: a transformation
phase and a regeneration phase. The first phase was described in [5]. In this
paper we focus on the second phase.

The regeneration phase takes as input an architectural model (AM), which
is the abstract definition of the UI application. The architectural models are
dynamically generated through the composition of UI components. This process
is performed by two actors, called SemanticTrader and UIManager, respectively.

In the first place we suppose that the abstract definitions of the UI com-
ponents reside in a component repository that is inspected by the Semantic-
Trader [8], which builds a runtime component model (RTM) from the abstract
architectural model. The RTM is built in two steps. In the first step, the trading
process generates all those configurations of “candidate” concrete components
that can fulfil the architectural requirements. In the second step, the trader cal-
culates the optimal configuration from the information given by abstract com-
ponents in the architectural model and the information provided in the concrete
component templates. This optimal configuration constitutes the RTM. From
the RTM model, the UIManager process is responsible for generating the final
user interface (that is showed to the user) by assembling the concrete software
components recovered from the component repository.

This adaptation schema uses several abstraction levels, in a similar way to
the Model Driven Development of Advanced User Interfaces (MDDAUI) proposal
used in the Cameleon framework [3]: (a) Tasks and concepts, which represent the
interaction models and abstract component models of the system; (b) Abstract
UIs, which correspond to our architectural models; (c) Concrete UIs, which are
the runtime component models, and (d) Final UIs, which are equivalent to the
interfaces that are generated by the UIManager and showed to the user.

3 Using Observers in the adaptation schema

In our proposals observers are used to monitor the state of components in the
runtime model (RTM). Not all user interface components can be monitored,
since they are by default considered as “black box” components. Therefore, only
those component properties explicitly modelled as “observable” in its associ-
ated component template will be able to be monitored—for instance noise level,
throughput, jitter, number of lost packets, last interaction time, etc.

Observers are formally defined in a monitoring observer model (MOM) which
is associated with the runtime component model. Figure 1 shows the observer and
component metamodel. An observer model (ObserverModel) contains elements
of type Observer. An Observer element has a reference to the monitored compo-
nent (observed component) and contains elements of type ObservedProperty

referring to those properties that are being monitored and belong to a concrete
component of the component model at run-time.

Fig. 1. The observer and component metamodel.

Once we have defined an observer model associated to a concrete user inter-
face (i.e., the runtime component model), we propose a transformation schema
that makes use of this new information to enable the adaptation of user inter-
faces without causing any transformation (or modification) in the abstract user
interface (i.e., our architectural model). This new process (MonitoringTrans-
formation) is a MIMO (Multiple Input and Multiple Output) model-to-model
transformation that inputs the monitoring observer model (MOM) and the run-
time component model (RTM), and generates a new runtime component model
and a new monitoring observer model in the output (Figure 2). This Moni-
toringTransformation generates a runtime component model that conforms to
the specification of the previous architectural model. In addition, it updates the
observer model according to those “new” concrete components included in the
model and the values of the observed properties of those concrete components
that remain in the model.

The new runtime component model obtained by the MonitoringTransforma-
tion will also be regenerated by the UIManager showing accordingly the updated
UI. From this adaptation schema, a change in the UI may be due to two rea-
sons: (i) because of a change in the architectural definition, or (ii) because of a
change determined by monitoring of the system. In the first case, a change in the
architectural model may be determined, for instance, by the hiding, removing or
addition of a component due to the presence of a detected event or the need to
achieve a task. The second one concerns to those UI transformations that do not
involve a change in the component architecture. For example, if an audio com-
ponent is providing communications between two users of the system, and an
observer object records a high noise level, the monitoring transformation process
will generate a new runtime component model by replacing the audio component
for a concrete one that can carry out this role in an improved manner.

AMi AMi+1 ArchitecturalModel
Transformation

abstract
components

MOMi,j

 Semantic
Trader

concrete
component
templates

MOMi+1,j

RTMi,j

 Monitoring Transf.

MOMi,j+1

RTMi,j+1

 Monitoring Transf.

MOMi,j+2

RTMi,j+2 RTMi+1,j

 UI Manager

monitoring
rules

 Semantic
Trader

UI Manager UI Manager UI Manager

concrete
components

Transformation Phase

Regeneration Phase

Fig. 2. The adaptation schema.

Regarding the Figure 2, we can observe those two kinds of adaptation. The
right side shows the process when there is an architectural model change. This
event causes an architectural model transformation that generates AMi+1 as out-
put. On the other hand, the left side shows the adaptation process when there
are no architectural model changes in AMi. In this case, the runtime component
model, regenerated by the SemanticTrader, takes part in the MonitoringTrans-
formation which generates new RTM replacing the involved components.

4 Conclusions and future work

This paper has presented a user interface adaptation proposal at runtime, which
extends our previous work [5, 7] with the use of observers that monitor the state
of the user-interface components and of the overall system. Observers have pro-
vided us with an effective mechanism for triggering the changes in the high-level
software architecture of the user interface application, and also for identifying
and implementing low level changes that affect only to individual components.

This work is in an initial stage, much remains to be done. We now plan to
build a concrete component repository that incorporates the new information
about the component properties that can be observed and changed, using the
metamodel presented in this paper. We will also need to update the Seman-
ticTrader implementation [8] so that it works with the new repository. Finally,
we need to develop all the machinery required to implement the models and
transformations shown in Figure 2 in an automated way.

Acknowledgments. This work has been supported by the EU (FEDER) and
the Spanish Ministry MICINN under grants TIN2010-15588, TRA2009-0309,
TIN2008-00889-E and TIN2008-03107, and the Junta de Andalućıa under grants
TIC-6114 and P07-TIC-03184.

References

1. Aquino, N., Vanderdonckt, J., Pastor, O.: Transformation templates: adding flex-
ibility to model-driven engineering of user interfaces. In: ACM Symposium on
Applied Computing, pp. 1195–1202. ACM (2010)

2. Balme, L., Demeure, A., Barralon, N., Coutaz, J., Calvary, G.: Cameleon-rt: A
software architecture reference model for distributed, migratable, and plastic user
interfaces. Ambient Intelligence, pp. 291–302 (2004)

3. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt,
J.: A unifying reference framework for multi-target user interfaces. Interacting
with Computers, 15(3):289–308 (2003)

4. Coutaz, J.: User interface plasticity: model driven engineering to the limit! In:
2nd ACM SIGCHI Symposium on Engineering Interactive Computing Systems,
pp. 1–8. ACM (2010)

5. Criado, J., Vicente-Chicote, C., Iribarne, L., Padilla, N.: A Model-Driven Ap-
proach to Graphical User Interface Runtime Adaptation. In: 5th Workshop on
Models@run.time, CEUR-WS Vol 641, pp. 49-59 (2010)

6. Criado, J., Padilla, N., Iribarne, L., Asensio, J.: User Interface Composition with
COTS-UI and Trading Approaches: Application for Web-Based Environmental In-
formation Systems. CCIS 111, pp. 259-266, Springer-Verlag, Berlin (2010)

7. Iribarne, L., Padilla, N., Criado, J., Asensio, J., Ayala, R.: A Model Transforma-
tion Approach for Automatic Composition of COTS User Interfaces in Web-Based
Information Systems. Information Systems Management, 27(3):207–216 (2010)

8. Iribarne, L., Troya, JM., Vallecillo, A.: A trading service for COTS components.
The Computer Journal, 47(3):342 (2004)

9. López-Jaquero, V., Montero, F., González, P.: T:XML: A Tool Supporting User
Interface Model Transformation. Model-Driven Development of Advanced User
Interfaces, pp. 241–256 (2011)

10. Savidis, A., Stephanidis, C.: Software refactoring process for adaptive user-interface
composition. In: 2nd ACM SIGCHI symposium on Engineering Interactive Com-
puting Systems, pp. 19–28. ACM (2010)

11. Schaefer, R.: A survey on transformation tools for model based user interface
development. Human-Computer Interaction. Interaction Design and Usability, pp.
1178–1187 (2007)

12. Sottet, J., Ganneau, V., Calvary, G., Coutaz, J., Demeure. A., Favre, J., Demu-
mieux, R.: Model-driven adaptation for plastic user interfaces. In: 11th IFIP TC 13
Int. Conf. on Human-Computer Interaction, pp. 397–410. Springer-Verlag (2007)

13. Troya, J., Rivera, J., Vallecillo, A.: On the specification of non-functional properties
of systems by observation. Models in Software Engineering, pp. 296–309 (2010)

