
Using Measures to Improve i* Models for Automatic

Interoperability in Model-Driven Development Processes*

Giovanni Giachetti
1
, Xavier Franch

2
, Beatriz Marín

1
, Oscar Pastor

1
, Carlos

Cares
2
, Lidia López

2

1
Centro de Investigación en Métodos de Producción de Software

Universitat Politècnica de València

Camino de Vera s/n, 46022 Valencia, Spain

{ggiachetti, bmarin, opastor}@pros.upv.es
2
Grupo de investigación en Ingeniería del Software para los Sistemas de Información

Universitat Politècnica de Catalunya (UPC)

UPC-Campus Nord, Omega-122, 08034 Barcelona, Spain

franch@essi.upc.edu, {ccares, llopez}@lsi.upc.edu

Abstract. The use of requirement modeling approaches in model-driven

development (MDD) is a relevant topic that has received special attention

during the last years. However, there still are several issues that must be taken

into account to obtain a sound interoperability of requirement models in MDD

processes. Among these, the generation of appropriate input artifacts for model-

compilation processes from the requirement artifacts defined is a key aspect to

be faced. In this paper, we tackle this issue with an approach for the definition

of specific measures that are used to verify i* models for the automatic

interoperability with MDD processes. From the definition and execution of

these verification measures, relevant information for identifying and fixing i*

interoperability issues is obtained. From the improved i* models, initial MDD-

models can be automatically generated, which guarantees the completeness of

the obtained software models in relation to the requirement specification.

Keywords: DSM, MDD, Verification, i* Framework, i-Star, interoperability.

1 Introduction

In general terms, the Model-Driven Development (MDD) [1] approaches

propose the automatic generation of software products through the automatic

transformation of the defined software models into the final program code.

Thus, MDD is oriented to reduce (or even eliminate) the hand-made

programming, which is an error-prone and time-consuming task.

In this context, interoperability can be considered as a natural trend for the

future of model-driven technologies, where different modeling approaches

* Acknowledgments. This work has been supported by MICINN under projects TIN2010-

19130-C02-01, TIN2010-19130-C02-02, and PTA2008-1443-P. Co-financed with ERDF

can be integrated and coordinated to reduce the implementation and learning

time of MDD approaches as well as to improve the quality of the final

software products. In particular, through the integration of the requirement

elicitation approaches into MDD processes, it should be possible to obtain

software products properly aligned with the stakeholders’ needs.

We consider the i* framework [2] as a suitable alternative for requirement

modeling since it is a versatile, expressive, and well documented analysis

approach [3]. The interoperability of i* and MDD processes is centered on

transforming the defined i* models into initial MDD models, which are the

starting point of the MDD processes involved. In this context, it is necessary

to count with adequate mechanisms to identify and fix those i* model issues

that prevent an automatic MDD model generation. We faced this situation by

means of an approach for the definition of specific verification measures that

are oriented to automatically identify interoperability conflicts. This paper

introduces this approach by putting special emphasis on how the involved

verification measures provide information to improve the defined i* models

for the generation of the corresponding MDD models. The proposed

verification approach is explained through an i* and MDD interoperability

example, which is part of the empirical experiment presented in [4].

 The rest of the paper is organized as follows. Section 2 shows the

background and the related work. Section 3 presents a big picture of the

transformation process defined for transforming i* models into MDD models.

Section 4 details the proposed i* verification process. Section 5 explains how

the verification measures can be used to fix and improve i* models. Finally,

Section 6 presents our conclusions and further work.

2 Background and Related Work

The i* framework [2] is a Goal-Oriented Requirement Engineering (GORE)

approach that is oriented to obtain the ‘whys’ of the intended systems through

the analysis of organizational scenarios [5]. It emphasizes the analysis of

strategic relationships among organizational actors capturing the intentions

behind software requirements.

The i* framework offers two types of models: the Strategic Dependency

(SD) model and the Strategic Rationale (SR) model. The SD model is focused

on external relationships among actors. The SR model provides the internal

decomposition of SD actors’ intentions. We have considered the i* SR model

to perform the interoperability of i* and MDD processes since it provides

extra information to generate appropriate inputs for MDD processes.

Figure 1 shows an i* SR, which is related to the management of work

requests in a Photography Agency. Softgoals are omitted in the example since

this i* construct does not participate in the generation of the target MDD

models that are considered in this paper.

In general terms, the presented i* model shows how the production

department depends on the reception of work requests (i.e., job applications)

that are produced by photographers that want a work opportunity. The work

requests are comprised by the photographer’s personal data. The production

department is the responsible for refusing or accepting the received work

requests by indicating the final work request status. For the accepted requests

a photographer level is assigned according to the information provided by the

Commercial Department.

Figure 1. Example i* SR Model

2. Related Work

As we can observe in the systematic review about requirement engineering

and MDD presented in [6], several approaches have encouraged the use of

requirement models as part of a sound MDD process. However, a sound

solution that includes requirement models as part of a complete, standardized,

and automatic MDD process is still a pending challenge [6].

Most of the proposals oriented to translate requirement models into MDD

models (such as [7]) are considering the input requirement models to be

properly defined to perform the translation. We know this idealist scenario is

not applicable in practice, and verification mechanisms are necessary to

assure the generation of the corresponding MDD models.

To automate requirement model transformation, certain proposals manually

transform the requirement documents to specific computable formats [8]. This

restricts the flexibility of the original specification, which, together with the

manual translation of the requirements, may cause loss of information.

Other approaches add quantitative information to existent requirement

modeling approaches [9, 10], which allows the automatic measure and

analysis of the defined models without restricting their original specification.

However, there is a lack of measures to support the verification of

requirement models for generation of models related to MDD processes.

3 Interoperability of i* Models and MDD Processes

For the interoperability of i* and MDD processes, we propose to partially

infer an initial MDD model from both the information that is represented in

the i* models and from extra information that is added when it is necessary.

This MDD model generation is feasible through a mapping (or model

weaving [11]) from the i* metamodel to the target MDD metamodel.

Additional details about our interoperability approach can be found in [12]

Table 1. Mapping for the transformation of i* models into OO-Method class models

i* Construct Additional Information Target Class Model Construct

Actor Class

Resource

Physical entity Class

Informational resource related to

a physical resource or an actor

An attribute of the class generated from the actor or

physical resource

Informational resource inside of

an actor boundary
An agent relationship1 between the class generated from

the actor and the attribute generated from the resource

Task

If generates an entity (physical

resource or actor)

An instance creation service of the class generated from

the corresponding entity

If affects the state of a resource
A service of the class generated from the resource or

from the owner physical resource.

If does not affect resources or

generate entities
A service of the actor that contains the task

If is decomposed in resources

Associations are automatically defined among the class

that contain the corresponding service and the classes

generated from the decomposed resources

Inside of an actor boundary
An agent relationship between the class generated from

the owner actor and the task

Resource

Dependency

Link

Associations are automatically defined among the class

generated from the dependum resource and the classes

that own the services generated from the involved tasks

Is-a Link
A generalization relationship is generated between the

classes generated from the involved actors

1 This construct corresponds to a binary relationship that indicates the visibility and execution

permissions that a class has over others or over itself (recursive agent relationship).

The i* model transformation can be automated by using technologies such

as ATL [13] or QVT [14]. For the representation of the extra information that

is required, we use a UML profile, which is automatically generated with the

proposal presented in [15].

Table 1 summarizes a representative subset of transformation guidelines

(adapted from [16]) for i* and an industrially applied MDD approach, which

is called OO-method [17]. This table indicates the additional information that

is necessary to perform the transformation of the i* construct involved. Thus,

the i* guidelines and the involved OO-method constructs are used to

exemplify our verification approach throughout this paper.

The guidelines presented in Table 1 can be combined, for example, a

physical resource that is a dependum in a dependency link generates a class,

but also, associations between the classes that own the services generated

from the involved tasks.

For the transformation guidelines related to tasks and dependency links,

when the resource involved corresponds to an informational resource, the rule

is applied to the physical resource related to the informational resource. For

instance, a task that affects the state of an informational resource is

transformed into a service of the class generated from the physical resource

that owns the attribute generated from the informational resource.

4 Integration of Verification Measures into the i* Framework

This section briefly explains the process for the definition and integration of

verification measures into the i* framework. For the elaboration of this

process, existing standards and modeling technologies have been considered,

such as the last version of the i* framework [18], approaches for the definition

of i* measures [19, 20], OMG Standards for metamodeling [21] and model

extensions definition [22], and Eclipse Model Development Tools [23]. The

steps of the process are described below (see Figure 2).

Figure 2. Process for definition of i* verification measures

4.1 Step 1: Measures Formulation.

The first step of the process considers the appropriate formulation of the i*

verification measures. This means identifying the i* constructs that participate

in the MDD model generation, and, from these, identifying the properties that

must be verified for a correct i* model transformation. These properties can

be obtained from the defined transformation guidelines (or rules), in

particular, from the additional information that is required to properly perform

the involved transformation. We have applied the Goal-Question-Metric

(GQM) approach [24] to the transformation guidelines presented in Table 1 to

obtain the required verification measures (see Figure 3).

To improve the

i* element transformation

in a class model generation process

from MDD requirement analyst perspective

Purpose

Issue

Object

Viewpoint

Q1:What i* elements

must be fixed for class

model generation

Q2:What i* elements

can be improved for

class model generation

Goal Question

M1:Wrong Attribute

Generation (WAG)

M2:Wrong Service

Generation (WSG)

M3:Non-Accessible

Element (NAE)

M4:Non-Instantiable

Class (NIC)

Measure

Figure 3. Application of the GQM approach

Two questions have been considered for the GQM approach application: 1)

the i* elements that must be necessarily fixed because they cannot be

transformed or produce a wrong class model generation (Q1 in Figure 3); and

2) the i* elements that can be correctly transformed, but they can be improved

to obtain a more complete class model generation (Q2 in Figure 3).

The measures that are related to answer each of the presented GQM

questions are specified by considering the framework presented in [25]. Due

to space constraints, we only present a brief description of each obtained

measure. The detailed definition is presented in [4].

M1. Wrong Attribute Generation (WAG). The informational resources are

involved in the generation of attributes (see Table 1). Therefore, for the

correct transformation of informational resources, they must be related to a

system entity (actor or a physical resource), which is transformed into a class.

Otherwise, the informational resources cannot be transformed into attributes

because the lack of a class that contains them.

()
()

=

=
¬∧¬=∑

=
∧ ∈ false x if 0,

true x if 1,
Conv(x) e(r)) hysResourcrelatedToPctor(r)relatedToA(convWAG

nal Informatior kind
Mresourcesr

M

M2. Wrong Service Generation (WSG). The tasks that do not generate

system entities (physical resources or actors) or that do not affect resources

are transformed into services of the class generated from the owner actor

(according to the corresponding actor boundary). Therefore, if the

corresponding actor is not marked for the MDD model generation, the

involved task cannot be transformed since it is not possible to generate a

service in the class model without a class that contains it.

()
ctor(t)) hasSystemA ource(t)affectsRes esource(t)generatesR(convWSG

M tasks t
M ¬∧ ¬ ∧¬ = ∑

∈

 M3. Non-Accessible Element (NAE). Agent relationships are defined

between the classes generated from actors and the elements generated from

services or informational resources contained in the corresponding actor

boundaries. However, if the involved actors are not selected for the MDD

model generation, they are not transformed into classes, and the necessary

agent relationships are not defined. This demands the definition of specific

agent classes (such as a system administrator) at design to allow the execution

and visualization of the generated services and attributes.

()
ctor(r)) hasSystemA (conv ctor(t)) hasSystemA (conv NAE

M tasks t
M ¬ + ¬ = ∑ ∑

∈ (

)

() =
∧ ∈

nal Informatio rkind

M

resources

r

M4. Non-Instantiable Class (NIC). The system entities (physical resources or

actors) without a production task related are transformed into classes without

an instance-creation service. In OO-Method, all the classes must be capable of

generating their instances. Thus, specific instance-creation services must be

defined at design time for those non-insatiable classes generated.

() ()
)ionTask(a)hasProduct(conv)ionTask(r)hasProduct (convNIC

Ma
) (

M r
M ¬+¬ = ∑∑

∈
=

∧ ∈ actors
Physicalr kind

resouces

4.2 Step 2: i* Metamodel Statement

The second step corresponds to stating the target i* metamodel, which must

be defined according to the EMOF specification [21]. The use of EMOF is

mandatory for the appropriate application of the considered interoperability

approach [15]. For the elaboration of the i* metamodel, the proposals

presented in [26-29], can be considered. Details about the i* metamodel used

for the application of the defined measures can be found in [4].

4.3 Step 3: i* Verification Model Definition

The third step of the process consists in the definition of a verification model

(see Figure 4). This is an EMOF model that includes the information required

for the correct application of the measures. In particular, those elements that

represent the additional information (not present in the i* metamodel) that is

necessary for the execution of the transformation guidelines (see Table 1).

Figure 4 also shows the mapping that indicates the correspondences among

the elements of the verification model and the i* metamodel.

SNode

STask

WSELocator() : Boolean

NAELocator() : Boolean

SActor

SResource

SPhysicalR

SInfoR

WAGLocator() : Boolean

NAELocator() : Boolean

VModel

WAGAggregation() : Integer

WSGAggregation() : Integer

NAEAggregation() : Integer

NICAggregation() : IntegerSEntity

NIELocator() : Boolean

model

ownedNode [0..1]

 [0..*]

boundary

ownedElement

 [0..1]

 [0..*]

affectedBy

affects [0..*]
 [0..1]

generates generatedBy
 [0..1]

 [0..*]

infoOf

relatedInfo

 [0..1]

 [0..*]

Figure 4. Verification Model and Mapping Information

4.4 Step 4: i* Measures Specification

The fourth step of the process corresponds to the OCL specification of the

measures, which must be included in the verification model. This

specification is performed by considering the modeling information that is

contained in the verification model. Figure 4 shows the names and outputs of

the different OCL rules defined. For the measure specification, we have

applied the aggregation and locator patterns presented in [20]. The locator

pattern identifies the elements involved in the measure evaluation, and the

aggregation pattern returns the final value of the measure. Thus, the elements

that must be fixed are identified by means of the locator pattern. For instance,

for the measure WAG (Wrong Attribute Generation), the OCL rule

WAGAggregation returns the WAG measure result by aggregating those

resources where the WAGLocator returns true.

For the measures execution two alert levels have been considered: 1)

Critical, which indicates that the situation identified by the measure prevents

the transformation of the corresponding i* elements; and 2) Warning, which

indicates that there is a modeling issue that can be fixed to improve the class

model generation. These alert levels are derived from the questions proposed

for the GQM application. Thus, WAG and WSG measures have a critical

level, and NAE and NIE measures have a warning level.

4.5 Step 5: i* Extensions Generation.

Finally, in the fifth step of the process, the verification model and the OCL

specification of the measures are used to generate the metamodel extensions

that are necessary to integrate the proposed measures into the i* framework.

These extensions are implemented in a UML profile (see Figure 5), which is

generated by means of the proposals presented in [15] and [30]. This kind of

extensions do not alter the target metamodel, which guarantees the

compatibility with the original i* specification and already implemented tools

[31]. However, UML profile depends of the UML metamodel. Thus, a

specialization of the classes Model and Element from the UML metamodel

has been performed for the definition of the i* metamodel.

«stereotype»

VModel

WAGAggregation

WSGAggregation

NAEAggregation

NICAggregation

«stereotype»

SResource

«stereotype»

SActor

«stereotype»

SInfoR

infoOf : SEntity [0..1]

WAGLocator

NAELocator

«stereotype»

SPhysicalR

«stereotype»

STask

generates : SEntity [0..1]

affects : SResource [0..1]

WSELocator

NAELocator

«stereotype»

SEntity

generatedBy : STask [0..1]

NIELocator

«metaclass»

IStarModel

«metaclass»

Actor

«metaclass»

Resource

«metaclass»

Task

Figure 5. UML Profile to extend the i* metamodel with the verification measures

5 Applying the i* Verification Measures

This section shows how the proposed i* measures are used to verify and

improve the generation of the corresponding class model. Only those i*

elements related to the intended system are considered in the transformation

process. These elements are the stereotyped elements.

Figure 6. Example i* Model extended with the generated UML Profile

Table 2 shows the values related to the tagged values of each stereotyped

element. Table 3 shows the results obtained from the measures evaluation by

indicating: 1) the result of the measure (the values obtained from the

aggregation OCLs); and 2) the i* elements that return true for evaluation of

locator OCLs.

Table 2. Tagged values related to the example i* Model

TaggedValue Value TaggedValue Value
Curriculum Photographer Price

.infoOf -- .infoOf Photographer Level

Photo Equipment Pub. House Price

.infoOf -- .infoOf Photographer Level

PersonalData Assign Required Equipment

.infoOf -- .affects --

Reception Date .generates --

.infoOf Work Request Assign Date and Number

Serial Number .affects Work Request

.infoOf Work Request .generates --

Assign Photo Price Assign Level

.affects -- .affects --

.generates -- .generates --

Present Work Request Refuse Work Request

. affects -- .affects --

.generates Work Request .generates Refused Work Request

Receive Work Request Accept Work Request

.affects -- .affects --

.generates Work Request .generates Accepted Work Request

Table 3. Results obtained from measures evaluation

Measure Alert Result (Aggregation) Locator
WAG Critical 3 Resources Curriculum, Photo Equipment, Personal Data

WSG Critical 3 Tasks
Assign Photo Price, Assign Required

Equipment, Assign Level

NAE Warning 15 Elements

All stereotyped informational resources and

tasks defined in actors’ boundaries (none

stereotyped actors in the model)

NIC Warning 1 Entity Photographer Level

Figure 7 shows the class model that is generated (applying the

transformation guidelines presented in Table 1) from the example i* without

considering the information reported by the verification measures.

Figure 7. Class model generated from the example i* model

Figure 7 shows that those elements identified by the critical measures are

not present, such as the resource Curriculum. Therefore, it is necessary to fix

the interoperability issues identified by critical measures.

5.1. Improving the i* Models for MDD Interoperability

The results obtained from the measures application provide useful information

to fix the detected modeling issues. Thus, it is possible to identify specific

fixing guidelines for each measure formulated. For the four measures defined,

the alternative guidelines presented in Table 4 have been inferred.

Table 4. Fixing guidelines related to the verification measures

Measure Wrong Attribute Generation (WAG)

Guidelines

Associate the informational resources to a system entity (stereotyped actor or

physical resource).

Change the kind of the informational resource to physical resource.

Remove the resource from the intended system (un-stereotyped resource).

Measure Wrong Service Generation (WSG)

Guidelines

Define the owner actor as part of the intended system.

Indicate if the involved task participates in the generation or affect the state of a

system entity (stereotyped actors or physical resources).

Measure Non-Accessible Element (NAE)

Guidelines
Define the owner actor as part of the intended system.

Change the informational resource to physical resource.

Measure Non-Instantiable Class (NIC)

Guidelines

Define a new task in the model as production task of the involved entity

(stereotyped resource or physical resource).

Indicate a task that is already defined in the model as production task of the entity

(stereotyped resource or physical resource).

Change the physical resource to informational resource.

In addition to the guidelines presented, it is also possible to remove the

corresponding element from the intended system (i.e., remove the stereotype),

or even remove the element from the i* model.

Figure 8 shows the i* model improved by the analyst after analyzing the

results obtained from the application of the verification measures. In the

improved i* model, the task Assign Level affects the state of the new defined

actor Accepted Photographer. The tasks Assign Photo Price and Assign Photo

Equipment are now related to the resource Photographer Level.

The informational resources located by the WAG measure are now defined

as information of the actor Photographer. The warning related to the NIE

measure has been solved by defining the task Establish Level as a generation

task for the resource Photographer Level. Table 5 shows the tagged values

that have been changed in the improved i* model.

Figure 9 shows that the class model generated from the improved i* model

has a more detailed system specification. Essential elements generated from

the improved i* model are the classes Photographer and

AcceptedPhotographer. Also, associations among classes have been

generated. In summary, all the stereotyped elements of the i* model have

been transformed to conceptual constructs of the target class model. Thus, the

MDD model represents all the system requirements considered.

Table 5. Tagged values changed in the improved i* Model

TaggedValue Value TaggedValue Value
Curriculum Assign Required Equipment

.infoOf Photographer .affects Photographer Level

Photo Equipment .generates

.infoOf Photographer Assign Level

PersonalData .affects Accepted Photographer

.infoOf Photographer .generates --

Req. Photo Equipment Establish Level

.infoOf Photographer Level .affects --

Assign Photo Price .generates Photographer Level

.affects Photographer Level

.generates --

Figure 8. Improved i* model

Figure 9. Class model generated from the improved i* model

Since the generated class model is an initial MDD model, it must be refined

at design time. Some possible refinements are the specification of the

specializations that exist between the class PhotoWorkRequest and the classes

AcceptedWorkRequest and RefusedWorkRequest. Also, the cardinality of the

associations and the appropriate specification of the services must be defined.

8. Conclusions and Further Work

This has presented an approach for the definition verification measures, which

improve the interoperability of the i* framework in MDD processes. Thus,

using our proposal, the defined analysis models are not just documentation

artifacts; they also play an active role in the development process.

From the i* and OO-Method interoperability example, we observe that the

fixing guidelines obtained from the verification reduce the refinement effort

of the generated class models. Furthermore, the critical measures clearly

indicate those i* elements that cannot be transformed. Thus, by fixing the

identified critical issues, all the transformation rules can be executed properly.

This implies that all the requirement elements considered for the specification

of the intended system have correspondence in the generated MDD model. i.e.

the generated system model is complete in relation to the requirements. This

completeness assurance is demonstrated in the experiment presented in [4].

We consider as future work the development of empirical studies to obtain

results of using i* models in real MDD processes. Additionally, we plan to

publish the complete interoperability framework defined for i* and OO-

Method, which can be used as a reference by different MDD approaches.

References

1. Selic, B.: The Pragmatics of Model-Driven Development. IEEE Software, vol. 20, pp. 19–

25 (2003)

2. Yu, E.: Modelling Strategic Relationships for Process Reengineering, Tech. Report DKBS-

TR-94-6. Dept. of Computer Science. University of Toronto, Canada (1995)

3. Eric Yu, P.G., Neil Maiden and John Mylopoulos: Social Modeling for Requirements

Engineering (2011)

4. Giachetti, G., Alencar, F., Franch, X., Marín, B., Pastor, O.: Technical Report ProS-TR-

2011-07: Automatic Verification of Requirement Models for Their Interoperability in

Model-Driven Development Processes. Universidad Politécnica de Valencia (2011)

5. Lamsweerde, A.v.: Goal-oriented requirements engineering: A guided tour. 5th IEEE

International Symposium on Requirements Engineering (RE’01), (2001)

6. Loniewski, G., Insfran, E., Abrahao, S.: A Systematic Review of the Use of Requirement

Engineering Techniques in Model-Driven Development. MoDELS 2010, vol. LNCS 6395,

pp. 213–227. Springer-Verlag (2010)

7. Lapouchnian, A., Yu, Y., Liaskos, S., Mylopoulos, J.: Requirements-driven design of

autonomic application software. CASCON 2006. ACM

8. Lu, C.-W., Chang, C.-H., Chu, W.C., Cheng, Y.-W., Chang, H.-C.: A Requirement Tool to

Support Model-Based Requirement Engineering. COMPSAC'08, pp. 712–717 IEEE (2008)

9. Pardillo, J., Molina, F., Cachero, C., Toval, A.: A UML Profile for Modelling Measurable

Requirements. In: FP-UML, vol. LNCS 5232, pp. 123–132. Springer-Verlag (2008)

10. Amyot, D., Ghanavati, S., Horkoff, J., Mussbacher, G., Peyton, L., Yu, E.: Evaluating goal

models within the goal-oriented requirement language. In: International Journal of

Intelligent Systems (IJIS) (2010)

11. Fabro, M.D.D., Valduriez, P.: Towards the efficient development of model transformations

using model weaving and matching transformations. Software and Systems Modeling 8,

305–324 (2009)

12. Pastor, O., Giachetti, G.: Linking Goal-Oriented Requirements and Model-Driven

Development. In: Nurcan, S., Salinesi, C., Souveyet, C., Ralyté, J. (eds.) Intentional

Perpectives on Information Systems Engineering, pp. 257–276. Springer-Verlag (2010)

13. Jouault, F., Kurtev, I.: Transforming Models with ATL. Satellite Events at the MoDELS

2005 Conference, vol. LNCS 3844, pp. 128–138 Springer (2006)

14. OMG: QVT 1.0 Specification. (2008)

15. Giachetti, G., Marín, B., Pastor, O.: Using UML as a Domain-Specific Modeling Language:

A Proposal for Automatic Generation of UML Profiles. CAiSE 2009, vol. LNCS 5565, pp.

110–124. Springer (2009)

16. Alencar, F., Marín, B., Giachetti, G., Pastor, O., Castro, J., Pimentel, J.H.: From i*

Requirements Models to Conceptual Models of a Model Driven Development Process.

PoEM 2009, vol. LNIBP 39, pp. 99–114. Springer (2009)

17. Pastor, O., Molina, J.C.: Model-Driven Architecture in Practice: A Software Production

Environment Based on Conceptual Modeling. Springer, New York (2007)

18. http://istar.rwth-aachen.de/, last Accessed October 2009

19. Franch, X.: A Method for the Definition of Metrics over i* Models. CAiSE 2009, pp. 201-

215. Springer-Verlag LNCS (2009)

20. Franch, X., Grau, G.: Towards a Catalogue of Patterns for Defining Metrics over i* Models.

CAiSE 2008, pp. 197–212. Springer (2008)

21. OMG: MOF 2.0 Core Specification. (2006)

22. Fuentes-Fernández, L., Vallecillo, A.: An Introduction to UML Profiles. The European

Journal for the Informatics Professional (UPGRADE), vol. 5, pp. 5–13 (2004)

23. http://www.eclipse.org/modeling/mdt/

24. Basili, V., Caldeira, G., Rombach, H.D.: The Goal Question Metric Approach. Encyclopedia

of Software Engineering, Wiley (1994)

25. Habra, N., Abran, A., Lopez, M., Sellami, A.: A framework for the design and verification

of software measurement methods. Journal of Systems and Software 81, 633–648 (2008)

26. Ayala, C., Cares, C., Carvallo, J.P., Grau, G., Haya, M., Salazar, G., Franch, X., Mayol, E.,

Quer, C.: A Comparative Analysis of i*-Based Goal-Oriented Modelling Languages.

AOSDM'05, at the SEKE Conference, pp. 657–663, Taipei, Taiwán; China. (2005)

27. Franch, X.: Incorporating Modules into the i* Framework. CAiSE 2010, vol. LNCS 6051,

pp. 439–454. Springer-Verlag Berlín Heidelberg, Hammamet, Tunisia (2010)

28. Lucena, M., Santos, E., Silva, M.J., Silva, C., Alencar, F., Castro, J.F.B.: Towards a Unified

Metamodel for i*. In: RCIS 2008, pp. 237–246 IEEE (2008)

29. Amyot, D.: New draft Recommendation Z.151: User Requirements Notation (URN). (2008)

30. Giachetti, G., Valverde, F., Pastor, O.: Improving Automatic UML2 Profile Generation for

MDA Industrial Development. In: FP-UML – ER Workshop, vol. LNCS 5232, pp. 113–122.

Springer (2008)

31. Amyot, D., Horkoff, J., Gross, D., Mussbacher, G.: A Lightweight GRL Profile for i*

Modeling. RIGIM - ER Workshops, vol. LNCS 5833, pp. 254–264. Springer-Verlag (2009)

