
Advanced Execution Modes for Model
Transformation Languages

Salvador Mart́ınez and Jordi Cabot

AtlanMod, INRIA & École des Mines de Nantes, France
{salvador.martinez perez, jordi.cabot}@inria.fr

1 Introduction

Model transformations are a core activity in Model Driven Engineering. As a
consequence, in the last years the MDE community has proposed several lan-
guages and tools to define and execute model transformations. Thanks to these
efforts, we have now a relatively stable set of core technologies designers have
started to use in their day to day work to manipulate models. This has confirmed
the usefulness of these model transformation techniques but at the same time has
raised new challenges, mainly linked to scalability and efficiency problems, that
we must respond to in order to make sure model transformation becomes a tech-
nology mature enough to be used in real industrial scenarios. We believe the key
innovation to solve these new challenges consists in providing different execution
modes for the same model transformation, depending on its specific requirements
and characteristics. This demo will present three new execution modes for the
AtlanMod model-to-model Transformation Language (ATL) [2] addressing the
mentioned challenges for the industrial adoption of model transformation. It is
important to note that for the implementation of all these execution modes the
syntax of the language does not need no be modified, which enables the reuse of
existing transformations and the adoption by transformation developers.

2 Refining Mode

Some transformations aim only to perform slight modifications on the input
model (i.e. the target model is identical to the source model with the exception
of a set of changes that is relatively small compared to the overall model size). We
refer to this special kind of transformations as refinement transformations. Lan-
guages designed to translate read-only input models towards write-only output
models are not directly applicable to this kind of transformations. The refining
mode [5] we present in this demo is aimed to solve this problem.

This execution mode implements an in-place strategy, e.g., the changes are
directly performed on the source model without making any copy of the elements.
The rules in the transformation only need to specify the values that have changed
whereas all the other elements just remain untouched. The transformations in
this mode are performed in two steps. In the first step, the transformation engine
executes the rules which, as a result, produce a set of changes that are temporally

Listing 1.2. Private2Public.atl
1

2 rule PrivateAttribute {
3 from
4 s : ClassDiagram ! Attribute (s . isPrivate and
5 s . owner . op−>exists (o | o . name = ’ get ’ +
6 s . name . toUpperCase () and o . returnType = s . type)
7)
8 to
9 t : ClassDiagram ! Attribute (

10 isPrivate <− false
11)
12 }
13 rule DeleteOperation {
14 from
15 s : ClassDiagram ! Operation (s . owner . attr
16 −>exists (a | a . name = s . name . toUpperCase () . substring (3 , s . name−>size

↪→ ())
17 and a . isPrivate))
18 to
19 drop
20 }

stored in a differences model. In the second step, this set changes are applied
directly on the source model.

From the semantic point of view, it is worth to note that a delete change
can easily generate a conflict with another modification. This happens because
we chose to provide delete with a cascade-delete semantics for composition as-
sociations (i.e. the deletion of a container triggers the deletion of the contained
elements). For this reason, the second step in the transformation that is in charge
of applying the changes is implemented by first applying all the creation changes,
then all the modification changes, and finally all the deletion changes.

Althoug, as stated in the introduction, the syntax does not need to be mod-
ified for the implementation of new execution modes in ATL, in this particular
case we considered that introducing new language constructs would ease the
development of transformations. In the following examples we show these new
concrete syntax elements.

First, the refining mode is selected by simply replacing the from keyword by
the new REFINING keyword in the transformation header. Listing 1.1 shows
how the header of a refactoring transformation on a ClassDiagram metamodel
may look like.

Listing 1.1. ATL header of a Class refactoring transformation

1 module Public2PrivateAndGetter ;
2 create OUT : ClassDiagram refining IN : ClassDiagram ;

The listing 1.2 shows an ATL refining transformation that transforms private
attributes to public attributes and delete the corresponding getters unig the new
provided keyword DROP

3 Incremental Mode

Up to now, the execution of ATL transformations has always followed a two- step
algorithm: 1) matching all rules, 2) applying all matched rules. This algorithm
does not support incremental execution, meaning that even if only small part of
the source model is updated, the whole transformation must be executed again to
regenerate the complete target model, which brings efficiency problems for large
models. A similar situation happens in all model-to-model transformation lan-
guages. The new ATL incremental mode [3] provides a new execution algorithm
where changes in a source model are incrementally propagated to the target
model, minimizing the excerpts of the target model that must be recomputed.

This new execution mode rely on two runtime mechanisms:

1. Tracking dependencies of OCL[1] expressions (Note that, in ATL, all
expressions are expressed in OCL). During the evaluation of OCL expres-
sions, we collect dependency information. When a change takes place in the
source model, we thus know which OCL expressions are impacted (i.e., may
have a new value as a consequence of the change).

2. Controlling individual rule execution. The connection between source
models and rules happens at the OCL expression level. Therefore, the in-
formation gathered in the first mechanism is used in order to control rule
execution. In standard execution mode, all rules are matched and applied on
whole source models. Instead, we enable precise control over the matching
and application of each rule for each source element. Then, we just need to
actually trigger the rules in response to changes in the source models.

Once we have these two mechanism available we only need to track source
model change events. Concretely, the change events that can occur in the source
model and its impact in the transformation are as follow:

– Element creation has an impact over rule matching. If the created element
is also added to a specific property (e.g., an Attribute) that is created and
added to a Class separate property change events will be received. Therefore,
element creation only impacts rule matching.

– Element deletion has an impact over rule matching. Similarly to element
creation, related changes in specific property values will trigger property
changes.

– Property change is sent each time a property of an element is changed.
Depending on which OCL expression depends on the specific property for
the specific source element, the impact may be on: 1) rule matching if a filter
expression depends on it, or 2) a binding if a binding expression depends on
it. Actually, several bindings or rules, or both bindings or rules may be
impacted by the change of a single property on a single element.

4 Lazy Mode

Many times the user is only interested in accessing a small part of the whole
target model. In those situations generating the full target model may be a waste

of time and resources. To improve this situation, the lazy mode contributes a
new lazy execution algorithm for ATL where elements of the target model are
generated on demand only when (and if) they are accessed.

The implementation of the algorithm to allow lazy generation is based in the
following mechanism:

– To initiate the lazy generation process, consumption requests on the tar-
get model have to be tracked. This requires extending the model navigation
mechanism the consumer uses, to intercept the requests and activate a cor-
responding generation in the transformation engine. If this adaptation can
be performed in a transparent way, the client system will not notice that the
model it is handling is lazily built. For performing transparent lazy access
with EMF[4], we have reimplemented part of its API in order to trigger calls
to the transformation engine operations.

– The transformation engine has been modified to provide the means to launch
the computation of a single model element (as in incremental mode) or a
single property of the target model.

– Finally, the lazy engine can keep track of the status of the partial transfor-
mation, and use it as a context for the execution of new computations. The
stored context is exploited by the lazy system to avoid recomputations. In
transformation systems this context usually includes trace links that map
elements in the target model with their corresponding sources. We make use
of these traceability links to perform live lazy transformations (the trace
information should be serialized in order to perform offline lazy transforma-
tions)

Once modified the engine to provide this infrastructure, our lazy generation
algorithm works in three steps:

1. the consumer requests a new target element, and the call gets intercepted
by the navigation interface of the target model;

2. the navigation interface (e.g. the lazy model) requests to the engine the
generation of the single requested property or element;

3. the engine determines the computations to activate, based on the current
status of the transformation.

References

1. Object Constraint Language (OCL), OMG available specification, version 2.0, 2006.
2. F. Jouault and I. Kurtev. Transforming models with atl. In MoDELS Satellite

Events, pages 128–138, 2005.
3. F. Jouault and M. Tisi. Towards Incremental Execution of ATL Transformations.

In L. Tratt and M. Gogolla, editors, ICMT2010 - Intl. Conference on Model Trans-
formation, volume 6142 of LNCS, pages 123–137, Malaga, Espagne, 2010.

4. D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF: Eclipse Modeling
Framework (2nd Edition) (The Eclipse Series). Addison-Wesley Professional, 2008.

5. M. Tisi, S. Mart́ınez, F. Jouault, and J. Cabot. Refining Models with Rule-based
Model Transformations. Rapport de recherche RR-7582, INRIA, Mar. 2011.

	Lecture Notes in Computer Science
	Authors' Instructions
	Introduction
	Refining Mode
	Incremental Mode
	Lazy Mode

