
Towards Quality Evaluation in Embedded Model 

Driven Incremental Product Lines: Analyzing 

Performance 

Lorea Belategi
1
, Joseba Andoni Agirre

1
, Leire Etxeberria1,  

Goiuria Sagardui
1
, and Maider Azanza1 

 
1Mondragon Unibertsitatea, Mondragon, Spain 

{lbelategui, jaagirre, letxeberria, gsagardui, mazanza}@eps.mondragon.edu 

Abstract. Although they often go unnoticed, embedded systems are becoming 

essential in our everyday lives. From a software development perspective, 

embedded systems present interesting challenges, some of which can be 

addressed using advanced development paradigms such as Model Driven 

Engineering (MDE) and Software Product Line Engineering (SPLE). 

Nevertheless, these paradigms do not explicitly address quality attributes (e.g., 

performance), which are primary concerns in embedded systems. Within the 

general aim of ensuring that each member of the product line complies with the 

quality requirements, this paper presents a proposal for the performance 

analysis of products of embedded model driven incremental product lines. 

Keywords: Embedded Systems, Model Driven Engineering, Software Product 

Line Engineering, Quality Attributes, Performance, MARTE. 

1   Introduction and Motivation 

In recent years, embedded systems have substantially increased their presence both in 

industry and in our everyday lives. Already, over 98% of computing chips are 

embedded in all sorts of devices (e.g., planes, cars, mobile phones, etc.). Hence, more 

and more effort is being dedicated to the development of such systems. 

Embedded systems consist of hardware, software and an environment. It is important 

to note that there is an essential difference between embedded and other computing 

systems: since embedded systems involve computation that is subject to physical 

constraints, the separation of computation (software) from physicality (platform and 

environment) does not work for embedded systems. Instead, the design of embedded 

systems requires a holistic approach that integrates hardware design, software design, 

and control theory in a consistent manner [10]. 

If we focus on the software part, embedded system software characterizes itself, 

among others, by heterogeneity, distribution (on potential multiple and heterogeneous 

hardware resources), ability to react (supervision, user interfaces modes), criticality, 

real-time and consumption constraints [1]. As a consequence, quality attributes 

become a main concern when developing such software and Validation and 

Verification (V&V) from early development stages is crucial. In a nutshell, the need to 



cater for all these requirements on top of the functional ones makes the development 

of software for embedded systems a complex endeavor.  

Advanced software development paradigms such as Model Driven Engineering 

(MDE) and Software Product Line Engineering (SPLE) can assist when dealing with 

this complexity. The former abstracts from system complexity by the use of models, 

where information related to the critical quality attributes can be attached in order to 

support V&V through model analysis [1]. As a case in point, performance can be 

analyzed using stochastic techniques such as queuing theory or Petri nets to calculate 

response times, delays and resource requirements [7]. 

As for SPLE, it permits to build families of related systems by capitalizing on their 

common features in the form of core assets [6]. There are two fundamentally different 

ways of deriving each product from the common core assets. First, negative 

variability selectively deletes parts of an artifact, which comprises the realization of 

all the features of the product line. The second alternative uses positive variability. 

We start with a minimal core and incrementally add the features we want the product 

to contain [15]. 

The combination of both paradigms in Model Driven Product Line Engineering 

(MDPLE) combines the benefits of both paradigms. In this case models are the central 

artifact and become main core assets of the product line from which products will 

later be derived. 

In software product lines, core assets are the means to promote reuse, as they will be 

used in different products of the family. As mentioned above, in embedded systems 

quality attributes play an essential role. We need to assure that each product meets its 

quality requirements, which can vary among the different products of the line [11]. 

This is where model based analysis becomes a valuable aid [1]. However, it needs to 

be tailored to a product line setting. To minimize development cost and effort while 

assuring desired quality attributes at the same time, model analysis should not be 

performed from scratch in a per product basis but, whenever possible, analysis 

information present in the core assets should be reused.  

This work presents a proposal for increasing reuse in quality attribute product analysis 

for embedded model driven product lines implemented incrementally (i.e., using 

positive variability). Performance is used as the illustrative quality attribute, which is 

analyzed using MARTE [1] and Feature Oriented Software Development (FOSD) [4] 

is the SPL development paradigm of choice. 

2   Performance Analysis in Feature Oriented Model Driven 

Product Lines 

The MARTE (UML Profile for Modeling and Analysis of Real-Time and Embedded 

systems) profile [1] allows annotating temporal aspects (information related to 

schedulability and performance) in models in order to analyze or determine whether 

they will meet those temporal requirements. It defines quantitative performance 

annotations (such as resource demands made by different software execution steps, 

performance requirements, etc.). Thus they are aimed at determining the rate at which 

a system can perform a function [7]. Through these annotated models, analysis 



models, which are guided by a specific formalism in order to perform analysis, can be 

obtained (e.g., LQN, petri nets, etc.). 

Feature Oriented Software Development (FOSD) is a general paradigm for product 

synthesis in SPLE [4]. It advocates for the incremental development of the product 

line family members. Here, features are not only increments in program functionality 

that customers use to distinguish one application from another, but are the actual 

building blocks of the artifact at hand (i.e., features are the actual core assets). In 

MDPLE models are built incrementally by successively adding model deltas that 

realize features [3]. 

The process proposed in this paper follows the two phases of the traditional SPL 

development [6]: 

2.1   Domain Engineering 

Domain Engineering is the process of the SPL engineering in which the commonality 

and the variability of the product line are defined and realized. Hence, the feature 

model that defines the common and variable features of the product line and core 

assets that realize such features are created in this phase. In the same way, the 

information that will be used to perform product model analysis is also defined here. 

When performing analysis using MARTE extra annotations for analysis are attached 

to an actual design model (application, platform and deployment models), rather than 

requiring a special version of the design model to be created only for the analysis. 

This is done using stereotypes and tagged values [1]. 

AnalysisContext is the main concern of MARTE to perform model analysis. It allows 

analyzing hypothetical real-time situation of the system by describing a specific 

behavior and the execution platform through design models with non-functional 

annotations. But variability is the key aspect of SPLs and it must be considered when 

analyzing models: not all products of the SPL have the same functionalities; often, 

some of the hardware devices and other performance-affecting factors can vary from 

one product to another [13]; software can be allocated in different ways in a specific 

platform to optimize system objectives [7]; and two products with the same 

functionality may require different quality attributes, as well as the degree or priority 

of them [9]. Therefore, analysis can vary from one product to another, depending on 

its functional, platform or allocation features. In the case of FOSD, each feature is 

modeled separately in the form of model deltas. By composing such deltas, products 

will be created [3]. In the same way, deltas for analysis can be composed to obtain 

product specific analysis models. Each delta must be annotated using MARTE 

analysis stereotypes to obtain the product specific analysis models by reusing such 

deltas. However, two exceptions exist: the GaAnalysisContext and GaWorkloadEvent 

analysis stereotypes. These stereotypes must be applied once the analysis model is 

composed.  

GaWorkloadEvent specifies a flow of events that give way to system-level behavior 

initialization. Thus, the GaWorkloadEvent stereotype should go on the first action in 

the model representing the behavior of the analysis model giving way to the following 

operations.  



On the other hand, GaAnalysisContext is the stereotype that identifies models that 

gather information about the system’s behavior and workload, execution platform and 

allocation for the analysis and specifies global parameters (i.e., properties that 

describe different cases being considered for analysis) and is also annotated on the 

complete model.  

We have identified another case that deserves special attention: the PaStep and 

PaCommStep stereotypes. PaStep is an execution step on a host processor, while a 

PaCommStep unit may be executed by a combination of host middleware and 

network services. Depending on the selected execution platform and allocation, a 

different stereotype should be annotated.  

Analysis input/output variables must be defined in order to perform model analysis. 

As not all analyses have same variables, some standard variable values can be 

defined, which allow performing standard model based analysis for different product 

specifications. In case other analysis and variables are required, the user should 

provide the necessary information manually using the required annotations. 

Finally, two approaches can be applied in order to evaluate products depending on the 

desired goal: 

• When the goal of the evaluation is to ensure that the required quality 

levels for all the products are achieved in the software product line: In 

order to reduce the evaluation effort, from all the products of the line, a 

subset of representative products can be selected and evaluated, and in 

this way, data can be extracted to estimate the results of all the products 

[8]. 

• If the goal is to evaluate a specific product: That product is derived and 

then evaluated. This is the goal of this work and is performed in 

application engineering, which is described in the following section. 

2.2   Application Engineering 

Application Engineering is the process of the SPL engineering in which the 

applications of the product line are built by reusing domain artifacts and exploiting 

the product line variability. 

Considering that we want to ensure that the performance is adequate, the steps that 

need to be followed to perform model based analysis would be the following: 

1. Functional and platform features must be chosen first to decide the software 

allocation of the desired product. 

2. Once the desired features have been selected, the model deltas that realize 

each feature can be composed to obtain the product specific analysis models. 

3. The obtained models will contain MARTE analysis stereotypes, although, as 

it was aforementioned, some stereotypes such as GaAnalysisContext and 

GaWorkloadEvent must be annotated once the analysis model is derived. 

Considering that these annotations are general, i.e., do not change from 

product to product; this can be done automatically using a model 

transformation.  



4. If product specific analysis variables are required, they can be defined at this 

point. Otherwise, the standard variable values defined in Domain 

Engineering can be used.  

5. The now complete MARTE analysis model can be transformed using a 

bridge tool into the input model of the analysis tool, where the actual 

analysis will be performed. 

3   Related Work 

Being able to perform analysis with the aim of V&V of quality attributes at early 

phases facilitates obtaining a product with the same functionality but different quality 

levels through model based analysis. Over the last years, some works have been 

proposed, related to quality attributes, analysis based on models following SPLE and 

MDE, but most of them focus on negative variability.  

MeMVaTEx methodology [2] proposes the decomposition of the design process in 

different abstract levels of the EAST-ADL2 framework. System requirements are 

analyzed in the design phase and taken into account in verification. It concerns the 

verify links that show how requirements can be verified by test cases. Tawhid and 

Petriu propose a SPL modeling approach [14] with functional variability and 

annotated in a general way (using variables) with MARTE in order to validate 

performance aspects of products. And Belategi et al. [5] describe a process for model 

based analysis of product lines where analysis variability aspects (functional, 

platform, allocation, quality attributes and analysis) are taken into account from a 

negative variability point of view. Moreover, the defined process is oriented to the 

evaluation of the complete product line instead of evaluating specific products as is 

the case of this proposal.  

On the other hand, Espinoza [7] proposes a methodology that describes a set of steps 

to perform complex model analysis. In this methodology different computation blocks 

must be defined, adequate non-functional properties specified, etc. before reusing 

model elements and it has been defined for a single product model analysis. 

Variability is not taken into account. Thus some modifications are needed before 

applying this proposal in embedded SPLs. 

4   Conclusions and Future Work 

In this paper a model based quality attribute analysis for specific products in an 

embedded product line is proposed, where functional, quality attribute, platform and 

allocation variability issues need to be taken into account. MARTE and FOSD have 

been used for the analysis with the aim of reusing the performance information when 

analyzing each particular product. Besides, based on the analysis models composed 

from deltas, analyses that are not included in the previously defined standard set can 

be specified by hand by the user, thus taking advantage existing analysis models and 

minimizing effort and time. 



The future work to be carried out includes a real case study to analyze the results 

obtained following this proposal. Moreover, the selected architectural pattern has an 

impact in the resulting system quality (e.g., communication patterns impact 

performance) [12] and should be taken into account in the proposal (e.g., in the 

corresponding feature model). Considering our general aim, we also intend to 

complement our proposal by studying other quality attributes, distinguishing between 

operational or execution quality attributes and development or non-execution ones, 

and to compare the results attained with both types of quality attributes.  

 

 

Acknowledgments. This work was supported by COMODE Project (Basque 

Government under grants UE2011-4). The project has been developed by the 

embedded system group supported by the Department of Education, Universities and 

Research of the Basque Government. 

References 

1. UML Profile for MARTE: Modeling and Analysis of Real-Time Embedded Systems. 

formal/2009-11-02 (2009)  

2. Albinet, A., Begoc, S., Boulanger, J. -. et al.: The MeMVaTEx Methodology: From 

Requirements to Models in Automotive Application Design. (2008)  

3. Azanza, M., Batory, D., Díaz, O. et al.: Domain-Specific Composition of Model Deltas. pp. 

16-30, Proc. of the Third int. conf. on Theory and Practice of Model Transformations (2010) 

4. Batory, D. S., Sarvela, J. N., Rauschmayer, A.: Scaling Step-Wise Refinement. IEEE Trans. 

Software Eng., 30 (2004) 355-371 

5. Belategi, L., Sagardui, G., Etxeberria, L.: Model Based Analysis Process for Embedded 

Software Product Lines. ICSSP'11 (2011)  

6. Clements, P., & Northrop, L.: Software product lines: Practices and patterns. Addison-

Wesley Professional (2001)  

7. Espinoza, H.: An Integrated Model-Driven Framework for Specifying and Analyzing Non-

Functional Properties of Real-Time Systems, Thesis (2007)  

8. Etxeberria, L., & Sagardui, G.: Variability Driven Quality Evaluation in Software Product 

Lines, pp. 243-52, 12th Int. Software Product Line Conference (SPLC), (2008)  

9. Etxeberria, L., Sagardui, G., Belategi, L.: Quality Aware Software Product Line 

Engineering. Journal of the Brazilian Computer Society (JBCS), 14 (2008)  

10. Henzinger, T. A., & Sifakis, J.: The Embedded Systems Design Challenge, pp. 1-15, 14th 

Int. Symposium on Formal Methods (FM), Hamilton, Canada (2006)  

11. Montagud, S., & Abrahao, S.: Gathering Current Knowledge about Quality Evaluation in 

Software Product Lines, pp. 91-100, 13th Int. Software Product Lines Conference (2009) 

12. Ovaska, E., Evesti, A., Henttonen, K. et al.: Knowledge Based Quality-Driven Architecture 

Design and Evaluation. Information & Software Technology, 52 (2010) 577-601 

13. SEI A Framework for Software Product Line Practice, Version 5.0. 

http://www.sei.cmu.edu/productlines/frame_report/index.html (2008)   

14. Tawhid, R., & Petriu, D. C.: Towards Automatic Derivation of a Product Performance 

Model from a UML Software Product Line Model. pp. 91-102, In: WOSP '08 (2008) 

15. Voelter, M., & Groher, I.: Product Line Implementation using Aspect-Oriented and Model-

Driven Software Development. pp. 233-242, Int. Software Product Line Conference 

(SPLC), (2007) 


