
A Component-Based Architecture Template for
Adaptive System Design

Juan F. Inglés-Romero1 and Cristina Vicente-Chicote1,

1Dep. of Information and Communication Technologies

Technical University of Cartagena
30202 Cartagena, Spain

{juanfran.ingles, cristina.vicente}@upct.es

Abstract. In this paper we propose a component-based architecture template
for adaptive system design. This template aims to provide developers with some
design guideless that help them obtain efficient adaptive system
implementations. Different variants of the template are proposed together with
a selection criterion to help designers decide which alternative better fits (or
better balance) their system reconfiguration and efficiency requirements. In
order to demonstrate the feasibility and the benefits of our proposal, a case
study regarding the design and implementation of a self-adaptive robotic system
is presented.

Keywords: Component-Based Architecture, Design Template, Adaptive
System, Runtime Software Reconfiguration, Fractal, Robotics.

1 Introduction

Nowadays, given the fast pace of technological evolutions and the diversity of
computing platforms (both hardware and software), building applications that can
work in such a wide range of systems is becoming more and more challenging [1].
Moreover, even on a specific platform, the execution context and available resources
may significantly vary at runtime. This may require that the applications dynamically
adapt their structure or behavior in order to cope with changing environments. This is
particularly the case of resource-constrained systems, for which runtime adaptation
could be considered a good means to achieve their best-effort performance within
their available resources.

Adaptation in itself is nothing new, but it is generally implemented in an ad-hoc
way, which involves trying to predict future execution conditions and embedding the
adaptation decisions in the application code. This usually leads to increased
complexity (business logic polluted with adaptation concerns) and poor reuse of
components, due to the strong coupling among them and with the specific
environment for which they have been designed.

In this paper, we propose a component-based architecture template aimed at
providing designers with a more systematic (as opposed to ad-hoc) way to develop
adaptive systems. The proposed template (1) advocates for a clear separation of the

business and the adaptation concerns; (2) it does not rely on any specific component
model; and (3) it is fully application domain independent. Additionally, the proposed
template enables a certain flexibility degree providing designers with three alternative
variants, each one supporting different efficiency management mechanisms. All these
features mainly seek to improve system maintainability, component reusability, and
implementation efficiency.

The rest of the paper is organized as follows. Section 2 surveys related work.
Section 3 details the proposed component-based architecture template for adaptive
system design and its variants. Section 4 describes our experience in following the
design guidelines provided by the proposed template for implementing an efficient
self-adaptive robotics system. Finally, Section 5 concludes and presents some future
research lines.

2 Related Work

Since the late 90s, great research efforts have been made in (self-)adaptive systems.
Among them, this research focuses on component-based approaches. This section
reviews related works in this field, including: (1) component models supporting
dynamic reconfiguration; (2) existing facilities for dynamic reconfiguration
specification; and (3) existing frameworks for adaptive system development.

Among the existing component models currently supporting dynamic adaptation, it
is worth noting that only some of them impose restrictions on runtime
reconfigurations to assure a proper separation of the business and the adaptation
concerns. Next, we review three of them, ordered by the increasingly strong
constraints they impose on reconfigurations.

The SOFA 2.0 [2] component model defines a Nested Factory reconfiguration
pattern [3] that establishes the following rule: “Each newly created component
becomes a sibling of the component who requests the factory. This latter is
responsible to bind and initiate the new component”. Although this rule establishes a
clear reconfiguration policy, it does not prevent that designers spread the adaptation
logic through the architecture, as any of its component can have reconfiguration
capabilities. In this vein, other component models limit the reconfiguration
capabilities to specific components. For instance, in SaveCMM [4], Switch
components are the only ones allowed to modify component interconnections at
runtime. Switch components contain a set of connection patterns, each one defining a
specific way of connecting the Switch input and output ports. Logical expressions,
based on the data available at the input ports, are used to determine which connection
pattern is applied. Finally, the AADL [5] component model defines a more restrictive
reconfiguration mechanism based on predefined operational modes (i.e., fix
architecture configurations) defined at design time. In this case, runtime
reconfigurations imply changing from one mode to another one, i.e., replacing the
overall architecture design.

Among the models that do not impose restrictions, Fractal (http://fractal.ow2.org/)
defines four basic control interfaces to support architecture reconfiguration at runtime,
namely, a binding-controller, a content-controller, an attribute-controller, and a

lifecycle-controller. In addition, relating to dynamic component instantiation, the
Fractal component model specifies a general and a specific factory interface. The
former enables the creation of all kind of component instances, while the later can
only create instances of one component kind. The Fractal component model does not
prescribe which components should implement these interfaces. Consequently, the
designer assumes the responsibility of deciding how the adaptation logic is
implemented. This commonly leads to several ad-hoc designs, which do not follow a
clear pattern, making it difficult to reuse and maintain them. In the same group as
Fractal, the OpenCOM [6] component model does not consider composite
components, but special units called Capsules. Capsules can be seen as containers
into which primitive components can be loaded, instantiated, and bound. Each
Capsule defines a name space for its internal component instances, and offers two
very primitive system-level reconfiguration facilities: dynamic loading (load, unload,
instantiate, and destroy) and dynamic linking.

Concerning the existing facilities for dynamic reconfiguration specification,
FScript [7] is a scripting language that enables designers to define complex
reconfigurations in Fractal. FScript makes use of the FPath [7] domain-specific
language, which provides it with a notation to query and navigate inside Fractal
architectures. FScript is used as part of the SAFRAN [8] extension of the Fractal
component model. Plastik [9], differently from FScript, relies on the ACME/Armani
ADL [10], the Architecture Definition Language (ADL) used in OpenCOM to define
component configurations and to specify how these configurations may be changed at
runtime. Both FScript and Plastik allow designers (1) to abstract the low-level
dynamic reconfiguration primitives offered by the underlying component models;
(2) to deal with reconfigurations independently from the business logic, at least at
design time; and (3) to asses reconfiguration reliability.

To conclude this section, we review some of the existing frameworks enabling
adaptive system development. In particular, we focus on two of these frameworks that
illustrate the need not only for dynamic reconfiguration, but also for contex-
awareness and reasoning.

The framework presented in [1], offers a general approach to the systematic
development of self-adaptive component-based applications. In this framework,
adaptation is considered as a concern that needs to be treated separately from the rest
of the application. To achieve this, it defines two context-awareness services and a set
of adaptation polities. The former provides information about the execution context,
while the latter uses this information to decide which reconfigurations need to be
performed. Adaptation policies, defined as ECA (Event-Condition-Action) rules, can
be classified into three groups: structural reconfigurations, parameterizations, and
addition/removal of component services.

CASA [11] is a general-purpose framework that, as the previous one, promotes the
separation of the adaptation and the business concerns. This separation is achieved
through (1) an independent and reusable adaptation infrastructure, which enables to
monitor changes in the application execution environment; and (2) a set of contract-
based adaptation policies. The CASA framework supports four adaptation
mechanisms, namely, dynamic re-composition of application components, dynamic
weaving of aspects, dynamic change of application attributes, and dynamic change of
low-level services.

Before entering into the details of our proposal, it is worth mentioning that the
related works reviewed in this section (among others) have inspired many of the
design guidelines included in the proposed component-based template described next.

3 Towards a Design Template for Adaptive Systems

In this section, we present the proposed component-based architecture template for
adaptive system design. This template aims to provide developers with some guidance
on how to design applications with dynamic reconfiguration capabilities so that they
can easily translate them into efficient adaptive system implementations. Before
describing the template in detail, we summarize next its main features:
 The proposed template does not assume any specific component model in order to

keep it as generic as possible. This will allow developers to choose any of the
existing component models to implement their designs. Although we propose a
hierarchical architecture, most of its composite components are only logical groups
created for sake of clarity. Thus, it is easy to obtain an equivalent non-hierarchical
design if needed (e.g., if the component model selected to implement the design
does not support composite component definition).

 Separation of concerns is a key design principle. Following it, the proposed
template explicitly separates the adaptation logic from the business logic. The
benefits of such a decision are twofold: on the one hand, it reduces the complexity
and improves the maintainability of the design and, on the other hand, it promotes
the reuse and sharing of adaptation mechanisms among applications.

 The proposed template relies on two basic reconfiguration facilities, namely:
dynamic interface binding and dynamic component instantiation Most component
models supporting dynamic reconfiguration offer similar primitives. Some of them
also implement more complex reconfiguration mechanisms, although these can
always be expressed as a combination of the former.

 We provide designers with three (incrementally defined) variants of the proposed
template. Each variant supports different efficiency management mechanisms
dealing with memory occupation and execution time. As we will discuss later,
improving one of these factors commonly implies worsening the other. Thus, we
also provide designers with a selection criterion to help them decide which
template variant is the most appropriate according to their application efficiency
requirements.

 In the proposed template, the two reconfiguration facilities and the efficiency
management mechanisms are controlled by three separated components, enabling a
fine-grained separation of concerns within the adaptation logic.

 Self-adaptive systems are context-aware adaptive systems in which internal
reconfigurations are automatically triggered whenever a relevant change in the
context is detected. The proposed design template enables the inclusion of an
optional component with context-awareness and proactive reconfiguration
capabilities, thus enabling self-adaptive system design.

 Next, the general structure of the proposed design template is presented. Then, the
three following subsections describe, in turn, how this template enables dynamic
interface binding, dynamic component instantiation, and efficiency management.

3.1 Overview of the Proposed Design Template

As shown in Figure 1, the proposed component-based architecture template for
adaptive system design comprises four main components: Main, Malloc, Adaptive
Layer and Adaptation. All these components are mandatory in the proposed template,
although some of them (e.g., the Adaptation component) can be implemented using
alternative designs (i.e., internal templates).

Figure 1. General overview of the proposed component-based design template. Please, note
that the optional reconf interface, provided by the System and the Adaptation components, is
only included in the template when the Context Ctrl component is not present. In this case, the
Reconf Ctrl component delegates its reconf interface in them.

 The Main component encapsulates the application entry point and is responsible of
initializing and starting the execution by calling the services offered by the Adaptive
Layer component. The Malloc component is responsible of the dynamic memory
allocation necessary to enable runtime component instantiation.

The Adaptive Layer component implements the core system functionality, that is,
the business logic. As its name suggests, this is the only component in the template
which internal architecture can be adapted at runtime. This component may contain
any number of internal components of the following types: (i) BaseCO, which
identify mandatory components; and (ii) OptCO, which identify optional elements,
i.e., components that might be enabled or not at runtime. Please note that the template
does not restrict the nature of these components (i.e., each BaseCO and OptCO can be
either a primitive or a composite components) as, from a dynamic reconfiguration
perspective, they will be always treated as black box components (i.e, the
reconfiguration will never affect their internal structure).

The Adaptation component implements the system adaptation logic which, as
previously discussed, appears conveniently decoupled from the business logic. The
Adaptation component contains an optional Context Control component (only
included in self-adaptive systems) and a mandatory Reconfiguration Control
component (labeled in Figure 1 as “Context Ctrl” and “Reconf Ctrl”, respectively).

The Context Control component implements context-awareness and proactive
reconfiguration capabilities. Its three main functions are: (1) to acquire and structure
the application context, i.e., to obtain the relevant context information (raw data) and
to derive the value of significant variables from it; (2) to reason on these variables in
order to decide whether a reconfiguration is needed or not; and, (3) when a
reconfiguration is triggered, to calculate the best possible architecture according to the
current context. Note that the Adaptive Layer component provides a context interface
aimed to make contextual information (raw data) available to the Context Control
component. Although the proposed template does not prescribe how the Adaptive
Layer internally implements this interface, an elegant solution could be to adopt a
Façade Pattern [12]. In this vein, the Adaptive Layer component could delegate the
implementation of its context interface in an internal façade component responsible of
gathering (namely from other components also in the Adaptive Layer) all the relevant
contextual information.

As previously stated, the optional Context Control component provides the system
with self-adaptation capabilities. When this component is not included in the design
we assume that its functions are performed by an external actor (either a user or
another system). In this case, the proposed template varies as follows: (1) the context
interface, provided by the Adaptive Layer component, is removed or simply left
unbound; and (2) both the System (root element) and the Adaptation components
activate their optional reconf interfaces, enabling the Reconfiguration Control
component to delegate its provided interface to them.

Regarding the Reconfiguration Control component, the proposed template
considers three possible design variants, each one providing developers with different
dynamic reconfiguration capabilities, i.e., (a) dynamic interface binding; (b) dynamic
component instantiation; and (c) efficiency management. Figure 2 outlines the internal
structure of the Reconfiguration Control component for each of these variants and the
three following subsections describe them in detail.

(a) (b) (c)

Figure 2. Design variants for the Reconfiguration Control component.

3.2 Enabling Dynamic Interface Binding

Among the three design variants supported by the proposed template for the
Reconfiguration Control component, Figure 2a outlines the simplest. This variant
supports dynamic interface binding as the only reconfiguration mechanism. The
Weaver component responds to the reconfiguration commands it receives through its

reconf interface (either from a Context Control component or from an external actor)
and changes the internal architecture of the Adaptive Layer component accordingly.
To do this, the Weaver sends the appropriate bind/unbind commands to the Adaptive
Layer through its CC interface. As a result, some of its internal optional components
(OptCO) are bound/unbound according to the prescribed reconfiguration. It is worth
noting that, as this design variant does not support dynamic component instantiation,
all the OptCO components in the Adaptive Layer must be created at compilation-time
and kept in memory throughout the execution, regardless of they are in use or not.

It is also worth noting that the template does not prescribe how to implement the
Weaver interfaces, that is, the decision of what kind of reconfiguration commands can
the Weaver deal with and how it performs the corresponding binding reconfigurations
on the Adaptive Layer, relies exclusively on the adaptive system developer. For
instance, the Weaver may accept primitive reconfiguration commands (e.g., to
bind/unbind a single component) or more complex ones (e.g., to set a certain
configuration or mode that may require several bind/unbind operations at a time).

3.3 Enabling Dynamic Component Instantiation

As previously discussed, the former template variant enables the dynamic binding of
optional component interfaces, although all these components need to have been
instantiated at compilation-time. The second template variant, depicted in Figure 2b
and described in this subsection, enables a more efficient memory strategy based on
the inclusion of a Factory component in the Reconfiguration Control.

The Factory component enables the dynamic creation of component instances.
Similar to the classical Factory Pattern [12], the Factory component provides an
interface with a generic service that creates and returns new component instances of
the requested type. To support this action, the Factory requires the dynamic memory
allocation operations provided by the Malloc component (see Figure 1).

This template variant assumes that when the Weaver receives a reconfiguration
command it will proceed as follows. Firstly, if some of the optional components in the
Adaptive Layer need to be removed, the Weaver will disconnect them and remove all
the optional components left unbound. Similarly, if new optional components need to
be added, the Weaver will first ask the Factory to create the corresponding instances,
and then it will add them and appropriately bind them in the Adaptive Layer.

Here again, as in the previous variant, the template does not prescribe how to
implement the Factory component, leaving this decision to the developer. For
instance, the Factory can be implemented as a primitive component that stores all
component definitions, so that it can create instances of all kind of components.
Similarly, it can also be implemented as a composite component that contains internal
factories for creating specific component (or groups of component) instances.

3.4 Enabling Efficiency Management

Efficiency concerns need to be carefully taken into account, in particular, when
working with resource-constrained systems (e.g., robots, embedded systems, etc.).

When this is the case, it commonly becomes necessary to take and balance different
efficiency metrics.

The two template variants, previously described, have each one their own pros and
cons in terms of efficiency. For instance, if we consider the CPU processing time, the
first scheme (supporting only dynamic interface binding) is significantly more
efficient than the second one, as it saves the time of creating and removing component
instances at runtime. However, if we consider memory occupation, the balance tips
towards the second variant (supporting also dynamic instance creation) as the memory
will contain, at each moment, only the strictly required components.

In order to provide designers with some additional efficiency management
mechanism, we propose a third template variant that, built on the previous one,
includes a Cache component between the Weaver and the Factory components. As
shown in Figure 2c, the Cache provides (to the Weaver) and requires (from the
Factory) the same fact interface, serving as a transparent layer between the two other
components.

The Cache stores a set of component instances selected according to a predefined
policy (e.g., those more recently or frequently used), making them readily available
on demand for the Weaver. Depending on the number of instances allowed in the
Cache, the system will be more or less efficient in terms of memory usage and
execution time. Generally, the bigger the Cache the higher the memory occupation
and the faster the reconfigurations. In fact, a degenerate use of this template variant
can serve to simulate the other two. For instance, the first one can be simulated with a
Cache big enough to store all the possible component instances. Similarly, the second
variant can be simulated with a Cache small enough to prevent the storage of any
component instance, implying that the Factory will have to create all the required
instances at each reconfiguration step.

As in the two previous variants, the template does not prescribe how to implement
the Cache, leaving this decision to the developer, who will need to specify, at least, its
size and instance selection policy. Besides, the developer could also decide
implementing further additional features, e.g., a multi-layered Cache.

4 Tool Support for the Proposed Template

In the previous section, we have proposed a component-based architecture template
for adaptive systems design, where efficiency was regarded as a main concern. In
order to probe the feasibility and the benefits of applying the proposed template, we
have selected Cecilia (http://fractal.ow2.org/cecilia-site/current/), the C reference
implementation of the Fractal component model, to implement a self-adaptive
robotics system. The reasons that led us to select Fractal and, in particular, Cecila for
implementing our case study were the following:
 Fractal is a well known hierarchical and reflective component model intended to

implement, deploy and manage a wide range of software systems including
operating systems and middleware.

 Fractal does not impose any design constraint and, thus, it allows us to apply the
proposed design template without any restriction.

 Fractal offers some generic dynamic reconfiguration capabilities by means of
standard control interfaces that enable the manipulation of components, their
interfaces, subcomponents, client bindings, and attributes.

 The efficient use of the available resources is crucial in resource-constrained
systems (e.g., robotic or embedded systems). Many of these systems only support
C applications as they require minimal run-time support. Besides, C provides
designers with low-level machine control.
Component-based Fractal architectures are described using a XML-based

Architecture Description Language (ADL). This ADL allows designers to specify
software architectures in terms of primitive components, attributes, interfaces,
component bindings, and composite components, which may contain any number of
internal components (either primitive or composite) and bindings among them.

There exist two reference implementations of the Fractal component model,
namely, Cecilia for C, and Julia (http://fractal.ow2.org/julia) for Java. Both of them
provide developers with a tool-chain that takes ADL files as an input and
automatically generates (1) the necessary glue code between components; and (2) the
implementation of the Fractal interfaces needed to support features such as runtime
reconfiguration.

The F4E (Fractal for Eclipse) plug-in provides designers with a graphical
environment for editing ADL specifications. Furthermore, F4E use a Model-Driven
Engineering [13] (MDE) approach that enables designers (1) to formally validate their
graphical specifications (models) against a Fractal meta-model, and (2) to
automatically generate a Java implementation using the Julia API.

As previously described in Section 3, the proposed template requires defining both
mandatory components (e.g., Main, Malloc or Weaver) and optional components
(e.g., Context Control). However, the Fractal ADL only considers the former. The
inclusion of variability descriptions remains an open issue in most component-based
ADLs. Some works have already addressed this problem for component models
different from Fractal [9, 14]. In order to enable the inclusion of optional components
as part of Fractal ADL specifications, we considered two alternatives: (1) creating a
new Fractal ADL editor from scratch that explicitly supported component variability;
and (2) reusing the F4E graphical editor and including ad-hoc variability annotations
to designate optional components. We opted for the second solution, as explained
next in Section 4.1.

4.1 Description of the Case Study Implementation Process

Figure 3 illustrates the process we followed to implement our case study according to
the design guidelines provided by the proposed template. Before detailing the three
main steps in this process, it is worth highlighting that this solution does not intend to
compete in any sense neither with F4E nor with the Cecilia tool-chain. Conversely,
we have build upon them, trying to reuse their features in as much as possible.
Besides, it is also important to remark that the main objective of developing the
proposed case study and, in general of this work, was to demonstrate the feasibility
and benefits of the design template, rather than to develop new tools or to adapt
existing ones.

.idl

.c
JET

.fractal

.c

Factory
implementation

ADL

IDL

Components
implementation

Cecilia Tool-chain

Cecilia API

F4E

ADL
including variability

annotations

.c
Application

code

.idl

.c
JET

.fractal

.c

Factory
implementation

ADL

IDL

Components
implementation

Cecilia Tool-chain

Cecilia API

F4E

ADL
including variability

annotations

.c
Application

code

Figure 3. Overview of the process we followed to implement the case study according to the
design guidelines provided by the proposed template.

Architecture Design Using the F4E Graphical Model Editor

According to the design guidelines described in Section 3, developers should focus
on the description of the business logic, which, in the proposed template, is contained
in the Adaptive Layer component. In this regard, the graphical ADL model editor,
provided by F4E, can be used to depict the internal architecture of the Adaptive Layer
component. As previously mentioned, the Fractal ADL only considers mandatory
components (BaseCO in the proposed template). In order to provide developers with
some mechanism that allows them to define optional components in their designs, we
have used the F4E feature that enables the inclusion of comments in the Fractal
components. In our case, these comments may take two possible values: OPTIONAL
and INITIAL, both associated to optional components (OptCO in the proposed
template). The only difference between these annotations is that those components
marked as INITIAL will be included in the initial architecture configuration, while
those marked ad OPTIONAL will be removed. Those components containing
comments different from the two we have considered, or containing no comments will
be considered mandatory and included in the initial architecture configuration.

Model-to-Text Transformations

At this point, we have an annotated ADL model (conforming the Fractal ADL meta-
model) that represents the internal structure of the Adaptive Layer component. In
order to translate this model into a Cecilia implementation, following the design
guidelines prescribed by the proposed template, a Model-to-Text (M2T)
transformation has been implemented using JET (Java Emitted Templates [15]). This
transformation generates (1) an ADL file containing the whole architecture
description, i.e., the Main, Malloc and Adaptation1 components1, and a filtered
version of the Adaptive Layer component, previously designed, from which all the
components marked as OPTIONAL have been removed; (2) the code of the Factory
component that will allow the dynamic creation of instances for all the components
marked as OPTIONAL and INITIAL in the Adaptive Layer component.

11 Note that the M2T transformation, implemented as part of this research, assumes the third

variant of the proposed template for the Adaptation component.

The M2T transformation implemented as part of this research, overcomes two of
the main limitations of the current Cecilia tool-chain. On the one hand, although the
Fractal specification includes a factory interface for dynamic instance creation,
Cecilia does not implement that interface. Given that the ADL file created by the
designer contains the definitions of all the optional components in the architecture
(i.e., components that need to be dynamically created by the Factory component) it is
possible to automatically generate the implementation of the Fractal factory interface
from it. On the other hand, according to the latest version of the Cecilia tool-chain
(v.2.1), those components that appear disconnected in the input ADL file are
automatically removed from the design. This implies that the Cecilia tool-chain will
not generate the definitions for the unbound optional components. Thus, our M2T
transformation overcomes this limitation creating all the optional component
definitions as part of the Factory component.

Using the Cecilia Tool-Chain to Obtain a C Implementation

The Cecilia tool-chain allows developers to generate the C code of their
application. It takes as inputs (1) the ADL files (*.fractal); (2) the interface
description files (*.idl), that are manually defined as F4E does not provide a Fractal
IDL editor, (3) the files containing the implementation of the system
functionality (*.c), that is, the implementation of the services included in each
provided interface. Note that this tool-chain relies on the Cecilia API (see Figure 3),
which should provide the C implementation of the Fractal control interfaces involved
in the dynamic reconfiguration. For instance, for the design template proposed in
Section 3, the Cecilia API should implement the BindingController interface (to bind
and unbind optional components) and the ContentController interface (to add and
remove optional component instances into the Adaptive Layer component). However,
as the current version of the Cecilia API does not implement the ContentControler
interface, we had to manually implement it and add it to the API. As a result of
executing the Cecilia tool-chain with the files generated by the M2T transformation in
the previous step, we obtained the ANSI C application code, ready to be compiled for
a target platform and executed on it.

4.2 Case Study

This section practically illustrates the result of applying the process, previously
described, to implement a self-adaptive robotics system. The setting in which we
tested our case study was a room without obstacles, where the robot was initially
placed at an arbitrary position. The robot perceives its environment thanks to the
information provided by its light and noise detectors, which measure the level of light
and noise in the room, respectively. Depending on the information provided by these
sensors, the robot changes its signaling policy, which can be (i) Acoustic (i.e., playing
rhythmic beeps); (2) Light (i.e., turning on its led lights), or (3) None. Additionally,
the robot can adopt two different movement strategies, namely a Linear Motion or a
Circular Motion Strategy. Both the robot signaling policy and motion strategy can
change at runtime depending on certain context changes detailed latter.

In order to implement this case study we have selected a low-cost mobile robotic
platform known as e-puck (http://www.e-puck.org). E-pucks are compact mobile
robots with a large range of sensors and actuators, which make them appropriate for
testing the proposed self-adaptation approach. In spite of that, the computational
capabilities of the e-pucks are quite limited as they rely on a dsPIC microcontroller.

As a first step, we designed the internal architecture of the Adpative Layer
component for our case study (see Figure 4) using F4E and the variability annotation
mechanism described in the previous section. This architecture consists of one
BaseCO component (Control), and six OptCO components (namely, Light Detector
Noise Detector, Acoustic Signaling, Light Signaling, Linear Motion Strategy, and
Circular Motion Strategy). Among the latter, only Circular Motion Strategy and
Acoustic Signaling are marked as OPTIONAL, while the other four components are
marked as INITIAL. It is worth noting that some of the required interfaces have been
marked as optional implying that they do not need to be always bound to another
component. For instance, the Control.LightDet interface sometimes will be bound to
the LightDetector.LightDet and sometimes (when, a reconfiguration decides to
remove the Light Detector component) it will be left unbound. Conversely, other
required interfaces have been marked as mandatory implying that they cannot be left
unbound. For instance, the Control.MotionStr is mandatory implying that it needs to
be bound either to the LinearMotStr.MotionStr or to the CircularMotStr.MotionStr.

Figure 4. Initial design developed using the graphical model editor provided by F4E.

Figure 5 show the ADL specification obtained by the M2T transformation when
executed on the initial ADL file (shown in Figure 4). Please note that the two
components marked as OPTIONAL in the initial ADL file have been removed.

In addition, the M2T transformation also generates the factory.c file, containing the
implementation of the Factory component (see Figure 3). This Factory is ready to
dynamically create (on the Weaver demand) instances for the six optional
components. The code associated to all the other components was manually
implemented, including the robotic domain-specific components (e.g., Control) and
the adaptation logic (i.e., all the internal components included in Adaptation, except
the Factory). The information coded for all the components dealing with the
adaptation logic is outlined in Table 1.

Figure 5. Initial design developed using the graphical model editor provided by F4E.

Table 1. Information coded for the Adaptation internal components.

CONTEXT
CONTROL

ADAPTATION RULES
If LightDetection & !NoiseDetection then Mode 1
If !LightDetection & NoiseDetection then Mode 2
If LightDetection & NoiseDetection then Mode 3
If !LightDetection & !NoiseDetection then Mode 4

WEAVER

RECONFIGURATION MODES
Mode 1: AcousticSignaling & LinearMotStr
Mode 2: LightSignaling & LinearMotStr
Mode 3: CircularMotStr
Mode 4: LightSignaling & AcousticSignaling & CircularMotStr

CACHE
CACHE POLICY
Retention Policy: The most frequently created remains in the cache.
Size Policy: Variable size depending on memory occupation (from 0 to 3 components)

FACTORY
(automatically

generated)

SUPPORTED COMPONENT TYPES
LinearMotStr
CircularMotStr
LightSignaling
AcousticSignalig

5 Conclusions and Future Research

In this paper, we have presented a component-based architecture template for
adaptive system design. This template aims to provide developers with some design
guideless that help them obtain efficient adaptive system implementations. It is worth
highlighting that the proposed template promotes a clear separation between the
adaptation and the business logic, and that it provides explicit mechanisms to
separately deal with dynamic interface binding, dynamic component instantiation, and
efficiency management. Each of these mechanisms is supported by one of the three
template variants described in this paper. We have also shown the feasibility and
benefits of using the proposed template by developing a self-adaptive robotics system.

For the future, we plan to formalize the proposed template in order to obtain a
component-based design pattern (similar to existing object-oriented design patterns)
that prescribes how to systematically develop (self-) adaptive systems. Additionally,

we intend to develop a model-driven tool-chain that, based on this pattern, enables
designers to model component-based adaptive systems and generate the
corresponding implementations for some of the existing component-based platforms.

Acknowledgements

This work has been partially funded by the EXPLORE (MICINN, TIN2009-08572)
and the MISSION (Fundación Séneca-CARM, 15374/PI/10) projects. Juan F. Inglés-
Romero thanks Fundación Séneca-CARM for a research grant (Exp. 15561/FPI/10).

References

1. David, P., Ledoux, T.: Towards a Framework for Self-adaptive Component-Based
Applications. In: DAIS’03. LNCS, vol. 2893, pp. 1–14 (2003)

2. Bures, T., Hnetynka, P., Plasil, F.: SOFA 2.0: Balancing Advanced Features in a
Hierarchical Component Model. In: 4th International Conference on Software Engineering
Research, Management and Applications, pp. 40–48. Seattle, Washington (2006)

3. Hnetynka, P., Plasil, F.: Dynamic Reconfiguration and Access to Services in Hierarchical
Component Models. In: Gordon, I., et al. (eds.) CBSE 2006. LNCS, vol.4063, pp. 352–359.
Springer-Verlag, Berlin Hidelberg (2006)

4. Akerholm, M., et al.: The SaveCCM Language Referente Manual. Technical report,
Malardalen University (2007)

5. Feiler, P.H., Gluch, D.P., Hudak, J.J.: The Architecture Analysis & Design Language
(AADL): An Introduction. Technical report, Carnegie Mellon University (2006)

6. Coulson, G., et al.: A generic component model for building systems software. ACM Trans.
Comput. Syst. 26, 1, Article 1 (2008)

7. David, P., Ledoux, T., Léger, M., Coupaye, T.: FPath and FScript: Language support for
navigation and reliable reconfiguration of Fractal architectures. Annales des
Télécommunications, 45–63 (2009)

8. David, P.C., Ledoux T.: An aspect-oriented approach for developing self-adaptive Fractal
components. In: 5th international symposium on software composition (SC’06), (2006)

9. Joolia, A., et al.: Mapping ADL Specifications to an Efficient and Reconfigurable Runtime
Component Platform. In: WICSA, pp. 131–140 (2005)

10. Garlan, D., Monroe, R., Wile, D.: ACME: Architectural Description of Component-based
Systems. In: Foundations of Component-based Systems, Leavens, G. T., and Sitaraman, M.
(eds), Cambridge University Press, pp. 47–68 (2000).

11. Mukhija, A., Glinz, M.: The CASA Approach to Automatic Applications. In: 5th IEEE
Workshop on Applications and Services in Wireless Networks, pp. 173–189 (2005).

12. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented. Addison Wesley Professional (1994)

13. Stahl, T., Voelter, M., Czarnecki, K.: Model-Driven Software Development: Technology,
Engineering, Management. Wiley, (2006)

14. Roshandel R., Hoek A., Mikic-Rakic M., Medvidovic N.: Mae: a System Model and
Environment for Managing Architectural Evolution. ACM Trans Softw EngMethodol,
13(2), pp.240–276 (2004)

15. The Java Emitter Templates (JET), http://www.eclipse.org/modeling/m2t/?project=jet

