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Abstract. In this paper we propose a component-based architecture template 
for adaptive system design. This template aims to provide developers with some 
design guideless that help them obtain efficient adaptive system 
implementations. Different variants of the template are proposed together with 
a selection criterion to help designers decide which alternative better fits (or 
better balance) their system reconfiguration and efficiency requirements. In 
order to demonstrate the feasibility and the benefits of our proposal, a case 
study regarding the design and implementation of a self-adaptive robotic system 
is presented.  
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1 Introduction 

Nowadays, given the fast pace of technological evolutions and the diversity of 
computing platforms (both hardware and software), building applications that can 
work in such a wide range of systems is becoming more and more challenging [1]. 
Moreover, even on a specific platform, the execution context and available resources 
may significantly vary at runtime. This may require that the applications dynamically 
adapt their structure or behavior in order to cope with changing environments. This is 
particularly the case of resource-constrained systems, for which runtime adaptation 
could be considered a good means to achieve their best-effort performance within 
their available resources. 

Adaptation in itself is nothing new, but it is generally implemented in an ad-hoc 
way, which involves trying to predict future execution conditions and embedding the 
adaptation decisions in the application code. This usually leads to increased 
complexity (business logic polluted with adaptation concerns) and poor reuse of 
components, due to the strong coupling among them and with the specific 
environment for which they have been designed. 

In this paper, we propose a component-based architecture template aimed at 
providing designers with a more systematic (as opposed to ad-hoc) way to develop 
adaptive systems. The proposed template (1) advocates for a clear separation of the 



business and the adaptation concerns; (2) it does not rely on any specific component 
model; and (3) it is fully application domain independent. Additionally, the proposed 
template enables a certain flexibility degree providing designers with three alternative 
variants, each one supporting different efficiency management mechanisms. All these 
features mainly seek to improve system maintainability, component reusability, and 
implementation efficiency. 

The rest of the paper is organized as follows. Section 2 surveys related work. 
Section 3 details the proposed component-based architecture template for adaptive 
system design and its variants. Section 4 describes our experience in following the 
design guidelines provided by the proposed template for implementing an efficient 
self-adaptive robotics system. Finally, Section 5 concludes and presents some future 
research lines. 

2 Related Work 

Since the late 90s, great research efforts have been made in (self-)adaptive systems. 
Among them, this research focuses on component-based approaches. This section 
reviews related works in this field, including: (1) component models supporting 
dynamic reconfiguration; (2) existing facilities for dynamic reconfiguration 
specification; and (3) existing frameworks for adaptive system development.  

Among the existing component models currently supporting dynamic adaptation, it 
is worth noting that only some of them impose restrictions on runtime 
reconfigurations to assure a proper separation of the business and the adaptation 
concerns. Next, we review three of them, ordered by the increasingly strong 
constraints they impose on reconfigurations.  

The SOFA 2.0 [2] component model defines a Nested Factory reconfiguration 
pattern [3] that establishes the following rule: “Each newly created component 
becomes a sibling of the component who requests the factory. This latter is 
responsible to bind and initiate the new component”. Although this rule establishes a 
clear reconfiguration policy, it does not prevent that designers spread the adaptation 
logic through the architecture, as any of its component can have reconfiguration 
capabilities. In this vein, other component models limit the reconfiguration 
capabilities to specific components. For instance, in SaveCMM [4], Switch 
components are the only ones allowed to modify component interconnections at 
runtime. Switch components contain a set of connection patterns, each one defining a 
specific way of connecting the Switch input and output ports. Logical expressions, 
based on the data available at the input ports, are used to determine which connection 
pattern is applied. Finally, the AADL [5] component model defines a more restrictive 
reconfiguration mechanism based on predefined operational modes (i.e., fix 
architecture configurations) defined at design time. In this case, runtime 
reconfigurations imply changing from one mode to another one, i.e., replacing the 
overall architecture design. 

Among the models that do not impose restrictions, Fractal (http://fractal.ow2.org/) 
defines four basic control interfaces to support architecture reconfiguration at runtime, 
namely, a binding-controller, a content-controller, an attribute-controller, and a 



lifecycle-controller. In addition, relating to dynamic component instantiation, the 
Fractal component model specifies a general and a specific factory interface. The 
former enables the creation of all kind of component instances, while the later can 
only create instances of one component kind. The Fractal component model does not 
prescribe which components should implement these interfaces. Consequently, the 
designer assumes the responsibility of deciding how the adaptation logic is 
implemented. This commonly leads to several ad-hoc designs, which do not follow a 
clear pattern, making it difficult to reuse and maintain them. In the same group as 
Fractal, the OpenCOM [6] component model does not consider composite 
components, but special units called Capsules. Capsules can be seen as containers 
into which primitive components can be loaded, instantiated, and bound. Each 
Capsule defines a name space for its internal component instances, and offers two 
very primitive system-level reconfiguration facilities: dynamic loading (load, unload, 
instantiate, and destroy) and dynamic linking.  

Concerning the existing facilities for dynamic reconfiguration specification, 
FScript [7] is a scripting language that enables designers to define complex 
reconfigurations in Fractal. FScript makes use of the FPath [7] domain-specific 
language, which provides it with a notation to query and navigate inside Fractal 
architectures. FScript is used as part of the SAFRAN [8] extension of the Fractal 
component model. Plastik [9], differently from FScript, relies on the ACME/Armani 
ADL [10], the Architecture Definition Language (ADL) used in OpenCOM to define 
component configurations and to specify how these configurations may be changed at 
runtime. Both FScript and Plastik allow designers (1) to abstract the low-level 
dynamic reconfiguration primitives offered by the underlying component models; 
(2) to deal with reconfigurations independently from the business logic, at least at 
design time; and (3) to asses reconfiguration reliability. 

To conclude this section, we review some of the existing frameworks enabling 
adaptive system development. In particular, we focus on two of these frameworks that 
illustrate the need not only for dynamic reconfiguration, but also for contex-
awareness and reasoning.  

The framework presented in [1], offers a general approach to the systematic 
development of self-adaptive component-based applications. In this framework, 
adaptation is considered as a concern that needs to be treated separately from the rest 
of the application. To achieve this, it defines two context-awareness services and a set 
of adaptation polities. The former provides information about the execution context, 
while the latter uses this information to decide which reconfigurations need to be 
performed. Adaptation policies, defined as ECA (Event-Condition-Action) rules, can 
be classified into three groups: structural reconfigurations, parameterizations, and 
addition/removal of component services.  

CASA [11] is a general-purpose framework that, as the previous one, promotes the 
separation of the adaptation and the business concerns. This separation is achieved 
through (1) an independent and reusable adaptation infrastructure, which enables to 
monitor changes in the application execution environment; and (2) a set of contract-
based adaptation policies. The CASA framework supports four adaptation 
mechanisms, namely, dynamic re-composition of application components, dynamic 
weaving of aspects, dynamic change of application attributes, and dynamic change of 
low-level services.  



Before entering into the details of our proposal, it is worth mentioning that the 
related works reviewed in this section (among others) have inspired many of the 
design guidelines included in the proposed component-based template described next. 

3 Towards a Design Template for Adaptive Systems 

In this section, we present the proposed component-based architecture template for 
adaptive system design. This template aims to provide developers with some guidance 
on how to design applications with dynamic reconfiguration capabilities so that they 
can easily translate them into efficient adaptive system implementations. Before 
describing the template in detail, we summarize next its main features: 
 The proposed template does not assume any specific component model in order to 

keep it as generic as possible. This will allow developers to choose any of the 
existing component models to implement their designs. Although we propose a 
hierarchical architecture, most of its composite components are only logical groups 
created for sake of clarity. Thus, it is easy to obtain an equivalent non-hierarchical 
design if needed (e.g., if the component model selected to implement the design 
does not support composite component definition). 

 Separation of concerns is a key design principle. Following it, the proposed 
template explicitly separates the adaptation logic from the business logic. The 
benefits of such a decision are twofold: on the one hand, it reduces the complexity 
and improves the maintainability of the design and, on the other hand, it promotes 
the reuse and sharing of adaptation mechanisms among applications. 

 The proposed template relies on two basic reconfiguration facilities, namely: 
dynamic interface binding and dynamic component instantiation Most component 
models supporting dynamic reconfiguration offer similar primitives. Some of them 
also implement more complex reconfiguration mechanisms, although these can 
always be expressed as a combination of the former.  

 We provide designers with three (incrementally defined) variants of the proposed 
template. Each variant supports different efficiency management mechanisms 
dealing with memory occupation and execution time. As we will discuss later, 
improving one of these factors commonly implies worsening the other. Thus, we 
also provide designers with a selection criterion to help them decide which 
template variant is the most appropriate according to their application efficiency 
requirements.  

 In the proposed template, the two reconfiguration facilities and the efficiency 
management mechanisms are controlled by three separated components, enabling a 
fine-grained separation of concerns within the adaptation logic. 

 Self-adaptive systems are context-aware adaptive systems in which internal 
reconfigurations are automatically triggered whenever a relevant change in the 
context is detected. The proposed design template enables the inclusion of an 
optional component with context-awareness and proactive reconfiguration 
capabilities, thus enabling self-adaptive system design. 



 Next, the general structure of the proposed design template is presented. Then, the 
three following subsections describe, in turn, how this template enables dynamic 
interface binding, dynamic component instantiation, and efficiency management.   

3.1  Overview of the Proposed Design Template 

As shown in Figure 1, the proposed component-based architecture template for 
adaptive system design comprises four main components: Main, Malloc, Adaptive 
Layer and Adaptation. All these components are mandatory in the proposed template, 
although some of them (e.g., the Adaptation component) can be implemented using 
alternative designs (i.e., internal templates). 

 

Figure 1. General overview of the proposed component-based design template. Please, note 
that the optional reconf interface, provided by the System and the Adaptation components, is 
only included in the template when the Context Ctrl component is not present. In this case, the 
Reconf Ctrl component delegates its reconf interface in them. 

 The Main component encapsulates the application entry point and is responsible of 
initializing and starting the execution by calling the services offered by the Adaptive 
Layer component. The Malloc component is responsible of the dynamic memory 
allocation necessary to enable runtime component instantiation.  

The Adaptive Layer component implements the core system functionality, that is, 
the business logic. As its name suggests, this is the only component in the template 
which internal architecture can be adapted at runtime. This component may contain 
any number of internal components of the following types: (i) BaseCO, which 
identify mandatory components; and (ii) OptCO, which identify optional elements, 
i.e., components that might be enabled or not at runtime. Please note that the template 
does not restrict the nature of these components (i.e., each BaseCO and OptCO can be 
either a primitive or a composite components) as, from a dynamic reconfiguration 
perspective, they will be always treated as black box components (i.e, the 
reconfiguration will never affect their internal structure). 

The Adaptation component implements the system adaptation logic which, as 
previously discussed, appears conveniently decoupled from the business logic. The 
Adaptation component contains an optional Context Control component (only 
included in self-adaptive systems) and a mandatory Reconfiguration Control 
component (labeled in Figure 1 as “Context Ctrl” and “Reconf Ctrl”, respectively). 



The Context Control component implements context-awareness and proactive 
reconfiguration capabilities. Its three main functions are: (1) to acquire and structure 
the application context, i.e., to obtain the relevant context information (raw data) and 
to derive the value of significant variables from it; (2) to reason on these variables in 
order to decide whether a reconfiguration is needed or not; and, (3) when a 
reconfiguration is triggered, to calculate the best possible architecture according to the 
current context. Note that the Adaptive Layer component provides a context interface 
aimed to make contextual information (raw data) available to the Context Control 
component. Although the proposed template does not prescribe how the Adaptive 
Layer internally implements this interface, an elegant solution could be to adopt a 
Façade Pattern [12]. In this vein, the Adaptive Layer component could delegate the 
implementation of its context interface in an internal façade component responsible of 
gathering (namely from other components also in the Adaptive Layer) all the relevant 
contextual information.  

As previously stated, the optional Context Control component provides the system 
with self-adaptation capabilities. When this component is not included in the design 
we assume that its functions are performed by an external actor (either a user or 
another system). In this case, the proposed template varies as follows: (1) the context 
interface, provided by the Adaptive Layer component, is removed or simply left 
unbound; and (2) both the System (root element) and the Adaptation components 
activate their optional reconf interfaces, enabling the Reconfiguration Control 
component to delegate its provided interface to them.  

Regarding the Reconfiguration Control component, the proposed template 
considers three possible design variants, each one providing developers with different 
dynamic reconfiguration capabilities, i.e., (a) dynamic interface binding; (b) dynamic 
component instantiation; and (c) efficiency management. Figure 2 outlines the internal 
structure of the Reconfiguration Control component for each of these variants and the 
three following subsections describe them in detail. 
 

   
(a) (b) (c) 

Figure 2. Design variants for the Reconfiguration Control component. 

3.2  Enabling Dynamic Interface Binding 

Among the three design variants supported by the proposed template for the 
Reconfiguration Control component, Figure 2a outlines the simplest. This variant 
supports dynamic interface binding as the only reconfiguration mechanism. The 
Weaver component responds to the reconfiguration commands it receives through its 



reconf interface (either from a Context Control component or from an external actor) 
and changes the internal architecture of the Adaptive Layer component accordingly. 
To do this, the Weaver sends the appropriate bind/unbind commands to the Adaptive 
Layer through its CC interface. As a result, some of its internal optional components 
(OptCO) are bound/unbound according to the prescribed reconfiguration. It is worth 
noting that, as this design variant does not support dynamic component instantiation, 
all the OptCO components in the Adaptive Layer must be created at compilation-time 
and kept in memory throughout the execution, regardless of they are in use or not.  

It is also worth noting that the template does not prescribe how to implement the 
Weaver interfaces, that is, the decision of what kind of reconfiguration commands can 
the Weaver deal with and how it performs the corresponding binding reconfigurations 
on the Adaptive Layer, relies exclusively on the adaptive system developer. For 
instance, the Weaver may accept primitive reconfiguration commands (e.g., to 
bind/unbind a single component) or more complex ones (e.g., to set a certain 
configuration or mode that may require several bind/unbind operations at a time).  

3.3  Enabling Dynamic Component Instantiation 

As previously discussed, the former template variant enables the dynamic binding of 
optional component interfaces, although all these components need to have been 
instantiated at compilation-time. The second template variant, depicted in Figure 2b 
and described in this subsection, enables a more efficient memory strategy based on 
the inclusion of a Factory component in the Reconfiguration Control.  

The Factory component enables the dynamic creation of component instances. 
Similar to the classical Factory Pattern [12], the Factory component provides an 
interface with a generic service that creates and returns new component instances of 
the requested type. To support this action, the Factory requires the dynamic memory 
allocation operations provided by the Malloc component (see Figure 1). 

This template variant assumes that when the Weaver receives a reconfiguration 
command it will proceed as follows. Firstly, if some of the optional components in the 
Adaptive Layer need to be removed, the Weaver will disconnect them and remove all 
the optional components left unbound. Similarly, if new optional components need to 
be added, the Weaver will first ask the Factory to create the corresponding instances, 
and then it will add them and appropriately bind them in the Adaptive Layer.  

Here again, as in the previous variant, the template does not prescribe how to 
implement the Factory component, leaving this decision to the developer. For 
instance, the Factory can be implemented as a primitive component that stores all 
component definitions, so that it can create instances of all kind of components. 
Similarly, it can also be implemented as a composite component that contains internal 
factories for creating specific component (or groups of component) instances.  

3.4  Enabling Efficiency Management 

Efficiency concerns need to be carefully taken into account, in particular, when 
working with resource-constrained systems (e.g., robots, embedded systems, etc.). 



When this is the case, it commonly becomes necessary to take and balance different 
efficiency metrics.  

The two template variants, previously described, have each one their own pros and 
cons in terms of efficiency. For instance, if we consider the CPU processing time, the 
first scheme (supporting only dynamic interface binding) is significantly more 
efficient than the second one, as it saves the time of creating and removing component 
instances at runtime. However, if we consider memory occupation, the balance tips 
towards the second variant (supporting also dynamic instance creation) as the memory 
will contain, at each moment, only the strictly required components. 

In order to provide designers with some additional efficiency management 
mechanism, we propose a third template variant that, built on the previous one, 
includes a Cache component between the Weaver and the Factory components. As 
shown in Figure 2c, the Cache provides (to the Weaver) and requires (from the 
Factory) the same fact interface, serving as a transparent layer between the two other 
components.  

The Cache stores a set of component instances selected according to a predefined 
policy (e.g., those more recently or frequently used), making them readily available 
on demand for the Weaver. Depending on the number of instances allowed in the 
Cache, the system will be more or less efficient in terms of memory usage and 
execution time. Generally, the bigger the Cache the higher the memory occupation 
and the faster the reconfigurations. In fact, a degenerate use of this template variant 
can serve to simulate the other two. For instance, the first one can be simulated with a 
Cache big enough to store all the possible component instances. Similarly, the second 
variant can be simulated with a Cache small enough to prevent the storage of any 
component instance, implying that the Factory will have to create all the required 
instances at each reconfiguration step.  

As in the two previous variants, the template does not prescribe how to implement 
the Cache, leaving this decision to the developer, who will need to specify, at least, its 
size and instance selection policy. Besides, the developer could also decide 
implementing further additional features, e.g., a multi-layered Cache. 

4 Tool Support for the Proposed Template  

In the previous section, we have proposed a component-based architecture template 
for adaptive systems design, where efficiency was regarded as a main concern. In 
order to probe the feasibility and the benefits of applying the proposed template, we 
have selected Cecilia (http://fractal.ow2.org/cecilia-site/current/), the C reference 
implementation of the Fractal component model, to implement a self-adaptive 
robotics system. The reasons that led us to select Fractal and, in particular, Cecila for 
implementing our case study were the following: 
 Fractal is a well known hierarchical and reflective component model intended to 

implement, deploy and manage a wide range of software systems including 
operating systems and middleware.   

 Fractal does not impose any design constraint and, thus, it allows us to apply the 
proposed design template without any restriction.  



 Fractal offers some generic dynamic reconfiguration capabilities by means of 
standard control interfaces that enable the manipulation of components, their 
interfaces, subcomponents, client bindings, and attributes. 

 The efficient use of the available resources is crucial in resource-constrained 
systems (e.g., robotic or embedded systems). Many of these systems only support 
C applications as they require minimal run-time support. Besides, C provides 
designers with low-level machine control. 
Component-based Fractal architectures are described using a XML-based 

Architecture Description Language (ADL). This ADL allows designers to specify 
software architectures in terms of primitive components, attributes, interfaces, 
component bindings, and composite components, which may contain any number of 
internal components (either primitive or composite) and bindings among them.  

There exist two reference implementations of the Fractal component model, 
namely, Cecilia for C, and Julia (http://fractal.ow2.org/julia) for Java. Both of them 
provide developers with a tool-chain that takes ADL files as an input and 
automatically generates (1) the necessary glue code between components; and (2) the 
implementation of the Fractal interfaces needed to support features such as runtime 
reconfiguration.  

The F4E (Fractal for Eclipse) plug-in provides designers with a graphical 
environment for editing ADL specifications. Furthermore, F4E use a Model-Driven 
Engineering [13] (MDE) approach that enables designers (1) to formally validate their 
graphical specifications (models) against a Fractal meta-model, and (2) to 
automatically generate a Java implementation using the Julia API.  

As previously described in Section 3, the proposed template requires defining both 
mandatory components (e.g., Main, Malloc or Weaver) and optional components 
(e.g., Context Control). However, the Fractal ADL only considers the former. The 
inclusion of variability descriptions remains an open issue in most component-based 
ADLs. Some works have already addressed this problem for component models 
different from Fractal [9, 14]. In order to enable the inclusion of optional components 
as part of Fractal ADL specifications, we considered two alternatives: (1) creating a 
new Fractal ADL editor from scratch that explicitly supported component variability; 
and (2) reusing the F4E graphical editor and including ad-hoc variability annotations 
to designate optional components. We opted for the second solution, as explained 
next in Section 4.1. 

4.1 Description of the Case Study Implementation Process 

Figure 3 illustrates the process we followed to implement our case study according to 
the design guidelines provided by the proposed template. Before detailing the three 
main steps in this process, it is worth highlighting that this solution does not intend to 
compete in any sense neither with F4E nor with the Cecilia tool-chain. Conversely, 
we have build upon them, trying to reuse their features in as much as possible. 
Besides, it is also important to remark that the main objective of developing the 
proposed case study and, in general of this work, was to demonstrate the feasibility 
and benefits of the design template, rather than to develop new tools or to adapt 
existing ones. 
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Figure 3. Overview of the process we followed to implement the case study according to the 
design guidelines provided by the proposed template.  

Architecture Design Using the F4E Graphical Model Editor 

According to the design guidelines described in Section 3, developers should focus 
on the description of the business logic, which, in the proposed template, is contained 
in the Adaptive Layer component. In this regard, the graphical ADL model editor, 
provided by F4E, can be used to depict the internal architecture of the Adaptive Layer 
component. As previously mentioned, the Fractal ADL only considers mandatory 
components (BaseCO in the proposed template). In order to provide developers with 
some mechanism that allows them to define optional components in their designs, we 
have used the F4E feature that enables the inclusion of comments in the Fractal 
components. In our case, these comments may take two possible values: OPTIONAL 
and INITIAL, both associated to optional components (OptCO in the proposed 
template). The only difference between these annotations is that those components 
marked as INITIAL will be included in the initial architecture configuration, while 
those marked ad OPTIONAL will be removed. Those components containing 
comments different from the two we have considered, or containing no comments will 
be considered mandatory and included in the initial architecture configuration. 

Model-to-Text Transformations 

At this point, we have an annotated ADL model (conforming the Fractal ADL meta-
model) that represents the internal structure of the Adaptive Layer component. In 
order to translate this model into a Cecilia implementation, following the design 
guidelines prescribed by the proposed template, a Model-to-Text (M2T) 
transformation has been implemented using JET (Java Emitted Templates [15]). This 
transformation generates (1) an ADL file containing the whole architecture 
description, i.e., the Main, Malloc and Adaptation1 components1, and a filtered 
version of the Adaptive Layer component, previously designed, from which all the 
components marked as OPTIONAL have been removed; (2) the code of the Factory 
component that will allow the dynamic creation of instances for all the components 
marked as OPTIONAL and INITIAL in the Adaptive Layer component.  

                                                           
11 Note that the M2T transformation, implemented as part of this research, assumes the third 

variant of the proposed template for the Adaptation component.  



The M2T transformation implemented as part of this research, overcomes two of 
the main limitations of the current Cecilia tool-chain. On the one hand, although the 
Fractal specification includes a factory interface for dynamic instance creation, 
Cecilia does not implement that interface. Given that the ADL file created by the 
designer contains the definitions of all the optional components in the architecture 
(i.e., components that need to be dynamically created by the Factory component) it is 
possible to automatically generate the implementation of the Fractal factory interface 
from it. On the other hand, according to the latest version of the Cecilia tool-chain 
(v.2.1), those components that appear disconnected in the input ADL file are 
automatically removed from the design. This implies that the Cecilia tool-chain will 
not generate the definitions for the unbound optional components. Thus, our M2T 
transformation overcomes this limitation creating all the optional component 
definitions as part of the Factory component. 

Using the Cecilia Tool-Chain to Obtain a C Implementation  

The Cecilia tool-chain allows developers to generate the C code of their 
application. It takes as inputs (1) the ADL files (*.fractal); (2) the interface 
description files (*.idl), that are manually defined as F4E does not provide a Fractal 
IDL editor, (3) the files containing the implementation of the system 
functionality (*.c), that is, the implementation of the services included in each 
provided interface. Note that this tool-chain relies on the Cecilia API (see Figure 3), 
which should provide the C implementation of the Fractal control interfaces involved 
in the dynamic reconfiguration. For instance, for the design template proposed in 
Section 3, the Cecilia API should implement the BindingController interface (to bind 
and unbind optional components) and the ContentController interface (to add and 
remove optional component instances into the Adaptive Layer component). However, 
as the current version of the Cecilia API does not implement the ContentControler 
interface, we had to manually implement it and add it to the API. As a result of 
executing the Cecilia tool-chain with the files generated by the M2T transformation in 
the previous step, we obtained the ANSI C application code, ready to be compiled for 
a target platform and executed on it. 

4.2 Case Study 

This section practically illustrates the result of applying the process, previously 
described, to implement a self-adaptive robotics system. The setting in which we 
tested our case study was a room without obstacles, where the robot was initially 
placed at an arbitrary position. The robot perceives its environment thanks to the 
information provided by its light and noise detectors, which measure the level of light 
and noise in the room, respectively. Depending on the information provided by these 
sensors, the robot changes its signaling policy, which can be (i) Acoustic (i.e., playing 
rhythmic beeps); (2) Light (i.e., turning on its led lights), or (3) None. Additionally, 
the robot can adopt two different movement strategies, namely a Linear Motion or a 
Circular Motion Strategy. Both the robot signaling policy and motion strategy can 
change at runtime depending on certain context changes detailed latter.  



In order to implement this case study we have selected a low-cost mobile robotic 
platform known as e-puck (http://www.e-puck.org). E-pucks are compact mobile 
robots with a large range of sensors and actuators, which make them appropriate for 
testing the proposed self-adaptation approach. In spite of that, the computational 
capabilities of the e-pucks are quite limited as they rely on a dsPIC microcontroller. 

As a first step, we designed the internal architecture of the Adpative Layer 
component for our case study (see Figure 4) using F4E and the variability annotation 
mechanism described in the previous section. This architecture consists of one 
BaseCO component (Control), and six OptCO components (namely, Light Detector 
Noise Detector, Acoustic Signaling, Light Signaling, Linear Motion Strategy, and 
Circular Motion Strategy). Among the latter, only Circular Motion Strategy and  
Acoustic Signaling are marked as OPTIONAL, while the other four components are 
marked as INITIAL. It is worth noting that some of the required interfaces have been 
marked as optional implying that they do not need to be always bound to another 
component. For instance, the Control.LightDet interface sometimes will be bound to 
the LightDetector.LightDet and sometimes (when, a reconfiguration decides to 
remove the Light Detector component) it will be left unbound. Conversely, other 
required interfaces have been marked as mandatory implying that they cannot be left 
unbound. For instance, the Control.MotionStr is mandatory implying that it needs to 
be bound either to the LinearMotStr.MotionStr or to the CircularMotStr.MotionStr.  

 

Figure 4. Initial design developed using the graphical model editor provided by F4E. 

Figure 5 show the ADL specification obtained by the M2T transformation when 
executed on the initial ADL file (shown in Figure 4). Please note that the two 
components marked as OPTIONAL in the initial ADL file have been removed.  

In addition, the M2T transformation also generates the factory.c file, containing the 
implementation of the Factory component (see Figure 3). This Factory is ready to 
dynamically create (on the Weaver demand) instances for the six optional 
components. The code associated to all the other components was manually 
implemented, including the robotic domain-specific components (e.g., Control) and 
the adaptation logic (i.e., all the internal components included in Adaptation, except 
the Factory). The information coded for all the components dealing with the 
adaptation logic is outlined in Table 1. 



 

Figure 5. Initial design developed using the graphical model editor provided by F4E. 

Table 1. Information coded for the Adaptation internal components. 

CONTEXT 
CONTROL 

ADAPTATION RULES  
If LightDetection  & !NoiseDetection  then Mode 1  
If !LightDetection & NoiseDetection   then Mode 2 
If LightDetection  & NoiseDetection   then Mode 3 
If !LightDetection & !NoiseDetection  then Mode 4 

WEAVER 

RECONFIGURATION MODES  
Mode 1: AcousticSignaling & LinearMotStr 
Mode 2: LightSignaling & LinearMotStr 
Mode 3: CircularMotStr 
Mode 4: LightSignaling & AcousticSignaling & CircularMotStr 

CACHE 
CACHE POLICY  
Retention Policy: The most frequently created remains in the cache. 
Size Policy: Variable size depending on memory occupation (from 0 to 3 components) 

FACTORY 
(automatically 

generated) 

SUPPORTED COMPONENT TYPES  
LinearMotStr 
CircularMotStr 
LightSignaling 
AcousticSignalig 

5 Conclusions and Future Research 

In this paper, we have presented a component-based architecture template for 
adaptive system design. This template aims to provide developers with some design 
guideless that help them obtain efficient adaptive system implementations. It is worth 
highlighting that the proposed template promotes a clear separation between the 
adaptation and the business logic, and that it provides explicit mechanisms to 
separately deal with dynamic interface binding, dynamic component instantiation, and 
efficiency management. Each of these mechanisms is supported by one of the three 
template variants described in this paper. We have also shown the feasibility and 
benefits of using the proposed template by developing a self-adaptive robotics system.  

For the future, we plan to formalize the proposed template in order to obtain a 
component-based design pattern (similar to existing object-oriented design patterns) 
that prescribes how to systematically develop (self-) adaptive systems. Additionally, 



we intend to develop a model-driven tool-chain that, based on this pattern, enables 
designers to model component-based adaptive systems and generate the 
corresponding implementations for some of the existing component-based platforms. 
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