
Applying 3D Techniques to Compute Views
Provided by Video-Cameras

Roberto Yus, Eduardo Mena, and Sergio Ilarri

IIS Department, University of Zaragoza
Maria de Luna 1, 50018, Zaragoza, Spain

{ryus,emena,silarri}@unizar.es

Abstract. There exist contexts where managing several video-cameras
is required, for example in the broadcasting of sports events. To identify
the objects that a certain camera views (e.g., when there are multiple
objects in the focus) or obtaining the kind of view (front, top, etc.) that
a camera is capturing of an object are challenging tasks if we want to
perform them automatically.

In this paper, we describe a set of 3D techniques that can be applied
to obtain the view of a camera. More specifically, they can be used to
obtain the objects viewed by a camera, the kind of view of an object
retrieved by the camera, and the percentage of the object or the view of
an object that the camera is capturing. These techniques use a 3D model
of the scenario and a 3D engine. Many dynamic factors are taken into
account, such as the location of interesting objects in the environment,
camera parameters, and possible occlusions, among others.

Keywords: Multiple camera management, 3D view analysis, content
selection in run-time, data management in 3D spaces

1 Introduction

Nowadays, a lot of video-cameras with competitive prices are available in the
market. Thus, those video-cameras can be part of information systems and pro-
vide rich multimedia content. It is possible to build a system that provides in-
formation about a multi-camera environment, which could be useful for example
to help technical directors in broadcasting sports events. Such users could want
to select among the views provided by the different cameras. For example:

– To retrieve automatically the objects viewed by a camera. An automatic
identification of the several objects captured by a camera could be very useful
for example when it is difficult to identify them due to the long distance.

– To obtain a certain kind of view of an object. When dealing with a multi-
camera environment, it is possible that several cameras view the same object,
but from different angles. Thus, front/top, rear, right side/front, etc. views
of the same object can be available from different cameras.



– To view at least a certain percentage of an interesting object. A partial view
of the object can happen 1) when it is occluded by other objects or 2) when
it does not fit the field of view (for example if the target is too close).

– To view at least a certain percentage of a given kind of view of an interesting
object. This case is a combination of the two previous ones, for example when
the technical director is interested in cameras viewing at least 50% of the
top of an object.

Developing such a system implies facing a number of challenges. Not only the
information about the features of cameras must be taken into account, but also
the location of both objects and cameras and, as explained before, the possible
occlusions.

In this paper, we propose a 3D approach that overcomes these difficulties.
The main features of our proposal are:

– It manages information about the features of video-cameras to decide which
of them satisfy the requirements of the user.

– It allows the user to obtain the objects that a camera is currently focusing,
the kind of views (top, front, etc.) of the objects provided, and the percentage
of the object or the view of an object of interest viewed.

– It considers the 3D representations and locations of the objects defined by
the user.

– It supports the detection of occlusions caused by other objects or by the
camera limitations.

To perform these tasks, the system manages a 3D model and uses an existing
3D engine to obtain 2D projections of such a 3D model. The rest of the paper
is structured as follows. In Section 2, we introduce some concepts about video-
cameras and objects in the scenario and how they are modeled in our approach.
In Section 3, we explain how to obtain the kind of view of an object that a
camera is capturing. In Section 4, we present 3D techniques to compute the
percentage of a target object that a camera is viewing. In Section 5, we explain
how to compute the percentage of a certain view of a target object that a camera
is viewing. In Section 6, we review some related work. Finally, conclusions and
future work appear in Section 7.

2 Monitoring Multimedia Data: Management of
Video-Cameras

In this section, we first introduce some basic concepts about video-cameras,
explaining their parameters and limitations. Then, we explain how multi-camera
scenarios are modeled and managed in our approach.

2.1 Video-Camera Features

There are several parameters that define a video-camera. Among them, the field
of view is one of the most important, as it determines the extent that the camera



will see. The field of view of a camera is called in 3D computer graphics viewing
frustum, and denotes the region of space in the modeled world that the camera
is capturing.

Some cameras are also defined by its horizontal turning capability (called
pan) and its vertical turning capability (tilt), along with the corresponding pan
and tilt speeds. The pan and tilt range of a camera are physically limited by its
maximum and minimum pan and tilt. Cameras have other parameters (such as
zoom, focus, etc.), but they will not be considered in the proposal presented in
this paper.

2.2 Modeling the Scenario

We model a camera c as shown in Figure 1. In the figure, we identify several ele-
ments: id is a unique identifier; βh and βv are the horizontal and vertical angle of
view, respectively; α, αmax, αmin, and αspeed are the current pan, the maximum
pan possible, the minimum pan possible, and the pan speed (degrees/second) of
such a camera, respectively; finally, θ, θmax, θmin, and θspeed are the current tilt,
the maximum tilt possible, the minimum tilt possible, and the tilt speed (de-
grees/second), respectively. Considering both the pan and the tilt of a camera
is needed to manage a 3D space containing 3D objects.

βh

βv

top view3D view

id='studioCam1'

βh

αmax

αmin

α
0

side view

θmax

θmin

0

βv

θ

c =< id, α, αmax, αmin, αspeed, θ, θmax, θmin, θspeed, βh, βv >

Fig. 1. Modeling a video-camera

We model objects in the scenario by representing them in a 3D model, con-
sidering their extent. This extent is represented by a 3D mesh created by using
an external modeling package (e.g., Autodesk 3ds Max, Blender, etc.). Also the
locations of the objects are needed. This information can be obtained from a
database that supports efficient real-time updates in dynamic environments.
Besides, the normal front and top vectors are defined for each object in order
to distinguish between the different kinds of views of the object (top/bottom,
front/rear, left/right side, or any combination of two or three of these elements
from different pairs). As an example, Figure 2 shows a 3D mesh representing
a rowing boat, its top and front vectors, and some examples of views that we
could obtain for that object.



top

bottom
frontrear

top

bottom

front

right side

(a) side view (c) rear/right/top view

left side
top

left sideright side

front

(b) front/top view

rear

Fig. 2. Different views of an object

Notice that our approach is applicable to any scenario where the location of
(moving) objects (no matter if they are vehicles or people) and their extents can
be obtained (somehow) in real-time. To compute what a camera is viewing, we
recreate the scene in a 3D engine and use 2D projections (obtained by rendering
the 3D scene) to calculate the percentage of an object that is viewed by each
camera. For this purpose, we have used JMonkeyEngine (JME)1, a Java game
engine with advanced graphics capabilities supported through OpenGL 2.0 via
LWJGL2. JME enables us to model cameras by setting the parameters explained
in Section 2.1. For example, we can set the field of view of a camera by defining
the planes that compose its viewing frustum. It also allows us to add 3D models
of objects using several 3D formats (OGRE XML3, Wavefront OBJ4, etc.). Thus,
with this engine a real scenario can be simulated.

Identifying the objects that a camera is viewing can be achieved by comput-
ing intersections between the 3D mesh and the planes composing the viewing
frustum of such camera (usually 3D engines provide methods for this). However,
this is not the main goal of our proposal. Instead, we present methods to retrieve
the kind of views of an object that a camera is obtaining in Section 3, the per-
centage of an object that a camera is covering in Section 4, and a combination
of the two previous ones in Section 5.

3 Computing the Kind of View of an Object

A user could be interested in obtaining the kind of views that a camera is retriev-
ing of a target object. For example, it could be interesting to obtain the cameras
that are providing a rear/right side/top view of a rowing boat, as seen in Fig-
ure 2. The 3D model of the objects can be complex, and therefore selecting the
parts of the target that belong to a view can be a difficult and time-consuming
task. So, we have used an approach based on light sources and illumination. Our
proposal is to use a directional light source5 as the only light in the scenario,

1 http://www.jmonkeyengine.org/
2 Lightweight Java Game Library: http://www.lwjgl.org/
3 http://www.ogre3d.org/
4 http://en.wikipedia.org/wiki/Wavefront_.obj_file
5 Directional light sources have no position, only a direction. They are considered

“infinitely” far away and send out parallel beams of light.



setting its direction according to the vector corresponding to the desired view.
In this way, we illuminate only the parts of the object that belong to the view.
The procedure is similar to the use of a flashlight in a dark room: if we point
the flashlight to an object inside the room, only the parts being illuminated will
be visible.

(a) Top view selection (b) Left side view selection

Fig. 3. Selecting the pixels of the image belonging to the top view of the target object
(a) and to its left side view (b)

Figure 3 shows an example of this technique, where a light source has been
added to “select” the parts of the target object that the camera is focusing and
belong to the top view (Figure 3.a) and to the left side view (Figure 3.b). Notice
that the rest of the object, that is not visible, has been colored in gray to help
understand the current view.

4 Computing the Percentage Viewed of a Target Object

A challenging problem when dealing with video-cameras is to take into account
possible occlusions. This is an important issue because considering only the
positions of the objects could lead us to add cameras to the answer set that are
focusing the object but are not having a good view of it (even they could not
view the target at all). For example, a camera could be focusing an object but a
wall between them would make it invisible for the camera. An incomplete view
of an object occurs in two situations:

1. The target is partially or fully occluded by another object.
2. The target does not fit the field of view of the camera (because of its size or

the camera viewing frustum).

In the following, we detail these cases.

4.1 Occlusions Caused by Other Objects

We need a mechanism to deal with occlusions caused by other objects located
between the camera and the target. For this purpose, we use pixels as metric for



counting the amount of the target that a camera is viewing. A first approach
one can think of consists of the following steps:

1. Obtain an image of the current view of the camera, setting the scene with
the target object alone.

2. Count the number of pixels of the target being shown.
3. Add all the other objects to the scene.
4. Count the number of pixels of the target still being shown.
5. Calculate the percentage by comparing both counts.

The main problem of this method is that it needs to use two images rendered
from the 3D scene, and obtaining them is an expensive task that involves both
the graphic card and the CPU. Thus, for a highly dynamic environment the
number of such expensive tasks has to be minimized.

Therefore, the approach proposed uses a single image rendered from the
3D scene to compute both the pixels of the target being shown and the pixels
occluded. This is achieved by setting different colors for the target object (blue)
and the others objects (green) in the scenario and setting the transparency of
these other objects to 100%.

We consider a pixel as composed of four color channels (red, blue, green and
alpha). Thus, if a certain pixel has its blue channel distinct from zero it will
belong to the target object, and if the green channel is also distinct from zero, it
will be an occluded pixel. If the same part of a target is occluded by two or more
objects there is no problem, as the green channel of an occluded pixel will be
the same for any number of occlusions (for an example, see Figure 4.a.2, where
the method computes that the camera is viewing a 19% of the target object).

(a.1) Target object (boat1) partially occluded
by two objects (boat2, boat3)

boat1 boat2 boat3

(a.2) Pixels viewed of the target (darker) and
pixels occluded (brighter)

(b.1) Target object partially occluded
due to camera limits

(b.2) Pixels viewed of the target (brighter) and
pixels occluded (darker)

Fig. 4. Incomplete view of an object caused by: occlusions by other objects (a) and
the target does not fit the viewing frustum (b)

4.2 Objects that Do Not Fit the Viewing Frustum

If the object intersects the viewing frustum it means that we have to somehow
compute the total number of pixels of the object, even if they are not in the shot,



to be able to compare them with the pixels currently being viewed. Assuming
that the pixels inside the viewing frustum are all the pixels of the object would
lead us to erroneously obtain the percentage being viewed; more specifically, we
would consider that the camera is focusing a greater percentage that the real
one.

There are several approaches to deal with a situation like this one where the
target intersects the camera frustum. Rotating the camera to cover the whole
object by parts is a natural way to count the total number of pixels of the target
object, but a rotation of the camera will change the angle between it and the
target, and thus the view will be modified. So, the only constraint to consider is
not to rotate the camera. We briefly indicate two possible approaches:

1. Increase the size of the frustum until it contains the full object. With this
approach, the idea is to count the number of pixels being viewed by the
current camera, then increase the size of the frustum, and finally count the
total number of pixels of the object.

2. Move the camera backwards until the target is completely shown. In this
case, the idea is first to occlude the parts of the object that the camera is
viewing, then move the camera until the target is completely shown, and
finally perform the counting6.

Increasing the size of the frustum is not always possible, as it depends on the
3D engine used. For example, with the JME, a change of the planes that define
the frustum means a change of the resolution of the JME application, which
would make the two images obtained not comparable. So, we use the second
approach, which is based on a movement of the camera backwards:

1. The objects behind the camera have to be removed from the scene to avoid
possible new occlusions.

2. The parts of the object that the camera was viewing have to be “selected”
(to distinguish between the pixels of the object occluded and the pixels
viewed). To “select” those parts, a 3D representation of the frustum of the
camera has to be added to the scene and its color has to be set to red and
its transparency to 100%.

3. The camera is moved backwards until the object fits within the frustum, as
explained before.

Figure 4.b.2 shows the parts of the target object that the camera is viewing
(brighter) and occluded (darker), and the method returns that the camera is
currently viewing a 76% of the target object. Notice that a pixel is visible when
all the following statements occur:

– Its blue channel is distinct from zero.
– Its green channel is equal to zero.
– Its red channel is distinct from zero (if the object did not fit the viewing

frustum).

6 The percentage being viewed will be #occluded pixels
total # pixels

∗ 100.



4.3 Method Proposed

We present a method developed to deal with occlusions and objects that do not
fit the viewing frustum, in order to obtain the percentage of the target object
being viewed by a camera. This method first obtains the situation of the target
from the camera point of view (by calling cam.checkObjectVision(target)). There
are three possibilities:

– Outside the viewing frustum: the camera is not currently focusing this object.
– Intersecting the viewing frustum: the object does not fit the viewing frustum.
– Inside the viewing frustum: the camera is focusing the object and the object

fits the viewing frustum.

Then, considering this information, we deal with occlusions to obtain the
total number of pixels of the object and the number of pixels of the object
viewed by the camera.

program obtainPercentageViewed(target, objects, cam)

--Requires:

-- target: target object of the query

-- objects: all the objects in the scenario

-- cam: camera to check

--Returns:

-- percentage of the target that cam is viewing

--Check the position of the object in the frustum of the camera

--(inside, outside or intersects)

visionOfTarget=cam.checkObjectVision(target);

if(visionOfTarget == "outside") return 0; end if;

intersects=false;

if (visionOfTarget == "intersects")

for all object in objects

if (cam.objectBehind(object)) --Objects behind the camera are made

object.setVisible(false); --invisible

end if;

end for;

cam.createFrustumObject(red,100%); --Occlude the current view of the camera

while (visionOfTarget != "inside")

cam.moveBackwards();

visionOfTarget=cam.checkObjectVision(target);

end while;

intersects=true;

end if;

for all object in objects

if (object == target) object.setColor(blue); object.setTransparency(0%);

else object.setColor(green); object.setTransparency(100%);



end if;

end for;

view=cam.renderScene();

occludedPixels=0; objectPixels=0; visible=0;

for all pixel in view.pixels --Analyze the color channels of the

if (pixel.blueChannel != 0) --pixels of the image

objectPixels++;

if (pixel.greenChannel != 0) occludedPixels++; end if;

if (pixel.redChannel != 0) visible++; end if;

end if;

end for;

if (intersects == true) return (visible-occludedPixels)*100/objectPixels;

else return (objectPixels-occludedPixels)*100/objectPixels;

end if;

end

5 Computing the Percentage Viewed of a Target View of
an Object

Our proposal also takes into account that the user could want to query the
system about specific views of an object. For example, he/she could be interested
in cameras providing a view that covers a certain percentage of the top of an
object. The challenge for this type of queries is the need to obtain the parts of
the target that belong to the view (explained in Section 3) and to obtain the shot
that would cover 100% of the view selected (in order to compute the percentage
actually covered).

To obtain the shot that covers 100% of the target view, we need to set
a camera pointing in the same direction as the desired view but at the same
distance to the target object than the real camera that we are considering (to
have comparable values). Figure 5 shows the shots that would cover 100% of the
top view (Figure 5.a) and front view (Figure 5.b) of the target object.

(a) Top view (b) Front view

Fig. 5. Shots covering 100% of the top (a) and front (b) views of a target object



We have developed a method to solve both problems, which computes the
percentage that a camera is viewing of a target view of an object. This method
obtains first what the camera is viewing, taking occlusions into account:

1. Set the color of the objects that are not the target to black. The parts of the
target object being occluded have to remain invisible.

2. Create directional lights for the views. This method is able to check several
views at the same time by using different colors for the light sources (using
a similar approach to the one explained in Section 4.1 about analyzing the
color channel of every pixel).

3. Move the camera in the direction of the view and at the same distance to
the object, and obtain an image that covers 100% of the view.

4. Return the percentage that the camera is covering of each view entered as a
parameter.

As explained before, the method can consider several views per query at the
same time. The example of Figure 6 shows an image rendered by the system for
the current view of a camera focusing the target object when the user wants to
obtain a certain percentage of its front and top. Notice that there are different
intensities of red and green in the image, as depending on the normal of the
corresponding polygon the illumination method (Phong is used in JME) makes
it look darker or brighter. This is not a problem for our approach because it
counts pixels that have a nonzero value for that specific channel. It is interesting
to notice also that some parts of the paddles are green (those parts belong to
the top view, as seen in Figure 5.a) and others are red (because they belong to
the front view). Using this image and the ones in Figure 5 (representing the shot
that covers 100% of the top (a) and front (b) parts of the object, the system
computes that the camera is currently viewing a 41% of the front and a 78% of
the top views of the target.

Fig. 6. Image showing the 41% of the front and the 78% of the top views of an object

A more detailed version of the method proposed is included on the following:

program obtainPercentageOfViewPoints(target, objects, cam, viewPoints)

--Requires:

-- target: target object of the query



-- objects: all the objects in the scenario

-- cam: camera to check

-- viewPoints: views that are going to be checked

-- (e.g., front and top)

--Returns:

-- percentage of every view in viewPoints of the target

-- that cam is viewing

for all object in objects --Take into account possible occlusions

if (object != target)

object.setColor(black); object.setTransparency(0%);

end if;

end for;

colors={blue,green,red}; i=0;

for all viewPoint in viewPoints --Create directional light sources

createLight(viewPoint, colors[i]); i++;

end for;

currentView=cam.renderScene();

--Count the number of pixels of every viewPoint being viewed

for all pixel in currentView.pixels

if (pixel.blueChannel != 0) pixelsViewing[0]++; end if;

if (pixel.greenChannel != 0) pixelsViewing[1]++; end if;

if (pixel.redChannel != 0) pixelsViewing[2]++; end if;

end for;

d=cam.distanceToObject(target); i=0;

--Obtain the shot that will cover 100% of every viewPoint and

--compute the percentage being viewed

for all viewPoint in viewPoints

cam.align(viewPoint,d);

perfectView=cam.renderScene();

for all pixel in perfectView.pixels

if (pixel.colorChannel[i] != 0) totalPixels[i]++; end if;

end for;

percentages.add(pixelsViewing[i]*100/totalPixels[i]); i++;

end for;

return percentages;

end



6 Related Work

In this section, we briefly describe some related work. We consider works related
to the problem of positioning a camera in a virtual world, works that deal with
object detection, tracking, and occlusions, as well as works related to image and
video retrieval.

The Virtual camera composition (VCC) problem (positioning a camera in a
virtual world) has been widely studied in Computer Graphics (some examples
are [1–5, 8]). Where to position a camera to get a desired shot is not an easy
task in a 3D environment and these works try to solve this problem. These
works are based on the definition of constraints on the camera variables and
the numerically solving an optimization problem (obtaining the location of the
camera). Although our problem is not exactly the same (in our case the locations
of the cameras are already set and obtained by querying a database that tracks
the locations of the moving objects and their cameras), there are some common
difficulties, such as the need to take into account occlusions or consider when an
object is inside the field of view of a camera [1].

Other related works are those that deal with object detection and tracking,
for example Computer Vision applied to surveillance (some examples are [7, 10,
13, 14]. These works are based on the analysis of the images provided by a real
camera, which is a great challenge. The objects involved in these scenarios are
usually unknown in advance and the system has to use different techniques to
identify them. Moreover, the analysis can be affected by several difficulties, such
as the variation of lighting conditions, the possibility of failures in foreground
detection, etc. The idea of closed-worlds [10], which are regions of space and time
in which the specific context of what is inside is assumed to be known, is used to
minimize those problems. Occlusions are also an important issue because when
a camera is tracking an object it could be occluded for a certain amount of time
and this has to be taken into account to estimate trajectories accurately. In [7,
13, 14] a model of the background is used to help the system reason about the
occlusions of objects by scene elements. However, obtaining this model can be
difficult.

In the field of image and video retrieval in information systems there are
numerous works. These works deal with the same problems that the ones ex-
plained in Computer Vision [11]. Visual information (as for example color, tex-
ture, shape, etc.) is usually used to compute the similarity between shots [12, 15].
This technique allows the users to express queries such as “images containing
35% red and 27% blue”. Other techniques use semantic content associated to
the videos to support queries defined in a more declarative manner [6].

Although our work shares some problems with the proposals described in this
section, there are also some differences. Specifically, in our scenario the locations,
directions of movement, extents (given by the 3D model attached), and other
parameters of the interesting objects are known. Thus, we can recreate entirely
the scene in a 3D virtual environment avoiding the problems related to Computer
Vision regarding the analysis of real images. So, for these scenarios we can obtain
more accurate answers and support queries that will be difficult to compute



by using techniques based on image comparison or visual information analysis.
Nevertheless, the works performed in Computer Vision on trajectory estimation
could be considered and adapted to our context to improve the answers provided
to the user.

7 Conclusions and Future Work

In modern information systems, multimedia data represent an interesting source
of information to take into account. In this paper, we have presented a general
method based on several 3D techniques that can be used to compute what a
camera is viewing automatically. The approach is based on the use of 3D models
for the objects in the scenario along with information about their locations. The
main contributions of this work are the techniques proposed to support several
tasks:

– To retrieve automatically the objects viewed by a camera.

– To obtain a certain kind of view of an object, even defying the percentage
of the view or the object.

– To take into account occlusions caused by other objects or by the camera
viewing frustum.

– To optimize the time required for computations by using efficient methods
that minimize the number of expensive tasks needed.

The 3D techniques implemented support obtaining the information about
the cameras in a flexible way in order to retrieve cameras that can provide the
required views. Our approach is applicable to any scenario where the locations
of (moving) objects (no matter if they are vehicles, people or others) and their
extents can be obtained (somehow) in real-time.

Furthermore, we have performed several tests (not included here due to space
limitations) to prove the methods explained in this work. In these tests7, check
the cameras viewing at least a 70% of an object take between 0.3 and 0.6 seconds
(0.4 seconds on average) in a scenario with seven cameras and four moving
objects.

As future work we plan to use the techniques explained in this paper to
improve the continuous location query processing system explained in [9]. In this
system the cameras fulfilling the queries expressed by a technical director are
shown to him/her and updated every second. So, the potential and the efficiency
of the techniques explained in this paper become very important.

Acknowledgments. This research work has been supported by the CICYT
project TIN2010-21387-C02-02. We also thank Francisco J. Serón for his techni-
cal support.

7 Tests run on an Intel Core i5-480M with graphics card NVIDIA GeForce GT 540M.



References

1. W. H. Bares, J. P. Grégoire, and J. C. Lester. Realtime constraint-based cine-
matography for complex interactive 3D worlds. In 15th National/10th Conference
on Artificial Intelligence/Innovative Applications of Artificial Intelligence, AAAI
’98/IAAI ’98, pages 1101–1106. American Association for Artificial Intelligence,
1998.

2. W. H. Bares, S. McDermott, C. Boudreaux, and S. Thainimit. Virtual 3D camera
composition from frame constraints. In 8th ACM International Conference on
Multimedia, MULTIMEDIA ’00, pages 177–186. ACM, 2000.

3. J. Blinn. Where am I? What am I looking at? Computer Graphics and Applications,
IEEE, 8(4):76 –81, July 1988.

4. D. B. Christianson, S. E. Anderson, L.-w. He, D. H. Salesin, D. S. Weld, and M. F.
Cohen. Declarative camera control for automatic cinematography. In 13th National
Conference on Artificial Intelligence, AAAI’96, pages 148–155. AAAI Press, 1996.

5. M. Christie and J.-M. Normand. A semantic space partitioning approach to virtual
camera composition. In Annual Eurographics Conference, volume 24, pages 247–
256, 2005.

6. M.-S. H. Cyril Decleir and J. Kouloumdjian. A database approach for modeling
and querying video data. In 15th International Conference on Data Engineering,
ICDE ’99, pages 6–13. IEEE Computer Society, 1999.

7. T. Ellis and M. Xu. Object detection and tracking in an open and dynamic world.
In IEEE CVPR Workshop on Performance Evaluation of Tracking and Surveil-
lance, PETS ’01, 2001.

8. L.-w. He, M. F. Cohen, and D. H. Salesin. The virtual cinematographer: a paradigm
for automatic real-time camera control and directing. In 23rd Conference on Com-
puter Graphics and Interactive Techniques, SIGGRAPH ’96, pages 217–224. ACM,
1996.

9. S. Ilarri, E. Mena, A. Illarramendi, and G. Marcos. A location-aware system for
monitoring sport events. In 8th International Conference on Advances in Mobile
Computing & Multimedia (MoMM 2010), pages 305–312. ACM Press, Austrian
Computer Society (OCG), November 2010.

10. S. S. Intille, J. W. Davis, and A. F. Bobick. Real-time closed-world tracking. In
Conference on Computer Vision and Pattern Recognition, CVPR ’97, pages 697–
703. IEEE Computer Society, 1997.

11. M. S. Lew, N. Sebe, C. Djeraba, and R. Jain. Content-based multimedia informa-
tion retrieval: State of the art and challenges. ACM Transactions on Multimedia
Computing, Communications and Applications, 2:1–19, February 2006.

12. C.-W. Ngo, H.-J. Zhang, and T.-C. Pong. Recent advances in content based video
analysis. International Journal of Image and Graphics, 1(3):445468, 2001.

13. A. Senior. Tracking people with probabilistic appearance models. In IEEE Work-
shop on Performance Evaluation Tracking Surveillance, PETS ’02, pages 48–55,
2002.

14. C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland. Pfinder: Real-time track-
ing of the human body. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 19:780–785, 1997.

15. Y. Wu, Y. Zhuang, and Y. Pan. Content-based video similarity model. In 8th
ACM International Conference on Multimedia, MULTIMEDIA ’00, pages 465–467.
ACM, 2000.




