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Abstract

Outer joins are extended relational algebra operations intended to deal with unknown information
represented with null values. This work shows an approach to embed both null values and outer
join operations in the deductive database system DES (Datalog Educational System), which uses
Datalog as a query language. This system also supports SQL, where views and queries are compiled
to Datalog programs. So, as SQL statements are ultimately solved by a Datalog engine, it became a
need to integrate null-related operations into Datalog in order to support a wider set of SQL. Since
DES implements a top-down-driven bottom-up stratified fixpoint computation based on tabling
for solving Datalog queries, we show how to compute outer joins in such a context by means of
source-to-source transformations applied to Datalog programs.
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1 Introduction

Deductive database systems include a form of the Datalog language, which has
become the de-facto standard deductive database query language. There have
been many versions of this language (pure Datalog, Datalog with negation, un-
interpreted function symbols, disjunctive heads, constraints, . . . [20]), and sev-
eral deductive systems have emerged along time, mostly born from academic
efforts. See, among others, DLV [17], XSB [26], bddbddb [16], LDL++ [2],
DES [25], ConceptBase [15], and .QL [21].

This language has been extensively studied and is gaining a renowned in-
terest thanks to their application to ontologies [13], semantic web [8], social
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networks [22], policy languages [3], and even for optimization [14]. In addition,
companies as LogicBlox (www.logicblox.com), Exeura (www.exeura.com),
Semmle (www.semmle.com), and Lixto (www.lixto.com) embody Datalog-
based deductive database technologies in the solutions they develop. The
high-level expressivity of Datalog and its extensions has therefore been ac-
knowledged as a powerful feature to deal with knowledge-based information.
Compared to the widely-used relational database language SQL, Datalog adds
two main advantages. First, its clean semantics allows to better reason about
problem specifications. Its more neat formulations, notably when using recur-
sive predicates, allow better understanding and program maintenance. Sec-
ond, it provides more expressivity because the linear recursion limitation in
SQL is not imposed.

However, in order to subsume SQL, a Datalog-based language has to in-
clude null values and its related outer join operations, among other features
(aggregates, arithmetics, . . . ). In this work, we are therefore interested in ob-
taining the very same answer for a given Datalog query including outer joins as
for its equivalent SQL counterpart, instead of embodying a true three-valued
semantics for including undefinedness, as in other works [29]. This work was
motivated by the use of Datalog Education System (DES), a deductive sys-
tem including Datalog and SQL as query languages which is geared towards
teaching. As in this system, SQL queries are compiled to Datalog programs,
then providing support for outer joins became a need.

This paper shows how to represent null values and implement outer joins
in this system, which enjoys tabling for solving queries, following a top-down-
driven bottom-up stratified fixpoint computation. We describe its concrete
implementation and explain how to adapt it for supporting those new con-
structors. In particular, we show how to compute outer joins by means of
source-to-source transformations applied to Datalog programs. As our goal
is to have the same answer for equivalent Datalog and SQL queries, we have
mimicked the actual semantics of SQL null-related operators in the context of
a tabled deductive system. The examples given throughout the paper, both
Datalog and SQL, can be executed in the current version of DES [24] and
their listings correspond to actual displays of the system.

To the best of our knowledge, outer joins in a Datalog context have been
only dealt in the translation of SPARQL (a language for RDF in the context
of Semantic Web) to Datalog rules [19]. That work uses a simplified version
of ASP with so-called HEX-programs [12] as target instead of a tabling-based
system we consider. Also, SPARQL is non-recursive and does not support
nested-queries.

Organization of this paper is as follows: Section 2 introduces DES and
its query languages: Datalog and SQL. Section 3 describes the tabling-based
solving that DES implements which is used to compute outer joins. Section
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4 introduces null values, their representation, how they are handled, and the
outer join operations allowed in the system from a user viewpoint. Section
5 shows how it is possible to solve outer joins via program transformations
and including native support for nulls. As well, points to drive the proposed
program transformation technique to other systems are also given in Section
6. Finally, Section 7 draws some conclusions.

2 DES, Datalog, and SQL

2.1 DES

The Datalog Educational System (DES) is a free, open-source, multiplatform,
portable, Prolog-based implementation of a deductive database system. DES
2.3 [24] is the current implementation, which enjoys Datalog and SQL query
languages, full recursive evaluation with tabling, full-fledged arithmetic, strat-
ified negation [30], ODBC connections and novel approaches to Datalog and
SQL declarative debugging [5,7], test case generation for SQL views [6], null
values support, (tabled) outer join and aggregate predicates and functions
[24].

DES has been developed to be used via an interactive command shell.
Nonetheless, more appealing environments are available. On the one hand,
DES has been plugged to the multi-platform, Java-based IDE ACIDE [23].
It features syntax colouring, project management, interactive console with
edition and history, configurable buttons for commands, and shortcuts, among
others. On the other hand, an Emacs environment has been developed by
Markus Triska as a contribution to this project.

The system is implemented on top of Prolog and it can be used a state-
of-the-art Prolog interpreter (currently, Ciao, GNU Prolog, SWI-Prolog and
SICStus Prolog) running on any OS supported by such Prolog interpreter (i.e.,
almost any HW/SW platform). Portable executables has been also provided
for Windows, Linux, and Mac OS X. They are portable as they do not need
installation and can be run from any directory they are stored. This amounts
to a straightforward startup procedure: Simply copy a folder to the desired
target and run the application.

2.2 Datalog

The Datalog version considered in DES is as follows:

• A Datalog program consists of a set of rules.

• A rule has the form head :- body, or simply head, ending with a dot.

• A head is a positive atom including no built-in predicate symbols.

• A body contains conjunctions (denoted by “,”) as well as disjunctions (de-
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noted by “;”) of literals (with usual associativity and priority for these
operators).

• A literal is either an atom, or a negated atom (not(Atom)), or a built-in
(literals are also referred to as goals).

• An atom is an atomic formula [1] restricted to have variables or constants
as arguments.

• A variable is a program symbol starting with either an uppercase letter or
an underline.

• A constant is a program symbol either starting with a lowercase letter or
being a sequence of chars delimited by single quotes.

• A query is a literal (some built-ins are exceptions, as will be shown in Section
4, and include other atoms as arguments). In addition, temporary views
can also be submitted as queries, as will be introduced in next subsection.

Compound terms are not allowed but as arithmetic expressions, which can
occur in certain built-ins (for writing arithmetic expressions and conditions).

The answer to a query is the set of facts matching the query which are
deduced in the context of the program, from both the extensional and inten-
sional database. A query with different variables for all its arguments gives
the whole set of facts (meaning) defining the queried relation. If a query con-
tains a constant in an argument position, it means that the query processing
will select the facts from the meaning of the relation such that the argument
position matches the constant (i.e., analogous to a select relational operation
with an equality condition). If a given variable occurs more than once in a
query, the corresponding predicate arguments are required to match.

DES implements Datalog with stratified negation as described in [30] with
safety checks [30,31]. Stratified negation broadly means that negation is not
involved in a recursive computation path, although it can use recursive rules.
The system can compute a query Q in the context of a program that is re-
stricted to the dependency graph (which shows the computation dependen-
cies among predicates) built for Q so that a stratification can be found. This
means that, even when a program could be actually non-stratifiable, a query
involving a subset of the program might be safely computable, provided that
a suitable stratification can be found for its dependency subgraph.

2.3 SQL

DES covers a reasonable set of the SQL language following the ISO standard
SQL:1999 (further revisions of the standard cope with issues as XML, triggers,
and cursors which are outside of the scope of DES), including recursive queries
(limitations can be found in [24]). There is provision for the DDL (data
definition language – CREATE TABLE, . . . ), DML (data manipulation language
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– INSERT INTO, . . . ) and DQL (data query language – SELECT, . . . ) parts of
the language 3 .

SQL DQL statements are translated into and executed as Datalog pro-
grams (basics can be found in [30]), and relational metadata for DDL state-
ments are kept. Submitting a DQL query amounts to 1) parse it, 2) compile
to a Datalog program including the relation answer/N with as many argu-
ments as expected from the SQL statement, 3) assert this program, and 4)
submit the Datalog query answer(X), where X are N fresh variables. After
its execution, this Datalog program is removed. On the contrary, if a DDL
statement defining a view is submitted, its translated program and metadata
do persist. A DML statement including either a WHERE condition for filter-
ing or a SELECT data source is translated into a Datalog query and program,
so that results obtained from executing this query are used to modify base
relations, depending on the statement (DELETE, UPDATE, or INSERT).

3 Tabling-based Solving

The computational model of DES follows a top-down-driven bottom-up fix-
point computation with tabling. Tabling is implemented with the ideas found
in [11,28], which deal with termination and performance issues of Prolog pro-
grams. In its current form, it can be seen as an extension of the work in
[11] in the sense that, in addition, it deals with negation, undefined (although
incomplete) information, nulls and aggregates, also providing a more efficient
tabling mechanism (however, this system does not pretend to be competitive
with current implementations but a system capable of showing the nice as-
pects of the more powerful form of logic we can find in Datalog systems w.r.t.
relational database systems).

3.1 Tabling

DES uses an extension table which stores answers to goals previously com-
puted, as well as their calls. For the ease of the introduction, we assume an
answer table and a call table to store answers and calls, respectively. Answers
may be positive or negative, that is, if a call to a positive goal p succeeds,
then, the fact p is added as an answer to the answer table; if a negated goal
not(p) succeeds, then the fact not(p) is added. Calls are also added to the
call table whenever they are solved. This allows to detect whether a call has
been previously solved and the computed results in the extension table (if
any) can be reused.

3 Note that we distinguish, as opposed to common use, DQL and DML. Usually, DQL, as
we understand it, is rather included in DML.
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Sáenz-Pérez

The algorithm which implements this idea can be sketched as follows: First,
test whether there is a previous call that subsumes the current call, where calls
occur in the usual innermost left-to-right order of Prolog implementations.
There are two possibilities: 1) there is such a previous call: then, use the
result in the answer table, if any. It is possible that there is no such a result
(for instance, when computing the goal p in the program p :- p) and no more
tuples can be deduced, 2) otherwise, process the new call knowing that there is
neither a call nor an answer to this call in the extension table. So, firstly store
the current call and then, solve the goal with the program rules (recursively
applying this algorithm). Once the goal has been solved (if succeeded), store
the computed answer if there is no any previous answer subsuming the current
one (note that, via recursion, we can deliver new answers for the same call).
This is known as a memoization process, which is implemented with a Prolog
predicate, and will also be referred to as a memo function.

Negative facts are produced when a negative goal is proved by means of
negation as failure (closed world assumption (CWA) [30]). In this situation,
a goal as not(p) which succeeds produces the fact not(p) which is added to
the answer table, just the same way as proving a positive goal. However, both
positive and negative facts cannot occur in a stratifiable program [30]. Before
executing any query, the extension table is empty; after executing a query,
at least the call is not empty. Also, the extension table is emptied after the
execution of a temporary view. The extension table contains the calls made
during the last fixpoint iteration (see next section for details); the calls are
cleared before each iteration whereas the answers are kept.

3.2 Fixpoint Computation

The tabling mechanism is insufficient in itself for computing all possible an-
swers to a query. The rationale behind this comes from the fact that the
computed information is not complete when solving a given goal, because it
can use incomplete information from the goals in its defining rules (these goals
can be mutually recursive). Therefore, it is needed to ensure that all the possi-
ble information is deduced by finding a fixpoint of the memo function. First,
the call table is emptied in order to allow the system to try to obtain new
answers for a given call, preserving the previous computed answers. Then,
the memo function is applied, possibly providing new answers. If the answer
table remains the same as before after this last memo function application, we
are done. Otherwise, the memo function is reapplied as many times as needed
until we find a stable answer table (with no changes in the answer table). The
answer table contains the meaning of the query (plus perhaps other meanings
for the relations used in the computation of the given query).

The fixpoint is found in finite time because the memo function is monotonic
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in the sense that new entries are only added each time it is called, while
keeping the old ones. Repeatedly applying the memo function to the answer
table delivers a finite answer table since the number of new facts that can be
derived from a Datalog program without (built-in) infinite relations is finite
(recall that user domains are finite since function symbols are not allowed and
no compound terms are possible). On the one hand, the number of positive
facts which can be inferred are finite because there is a finite number of ground
facts which can be used in a given proof, and proofs have finite depth provided
that tabling prevents recomputations of older nodes in the proof tree. On the
other hand, the number of negative facts which can be inferred is also finite
because they are proved using negation as failure. (Failures are always finite
because they are proved trying to get a success.) Finally, there are facts that
cannot be proved to be true or false because of recursion. These cases are
detected by the tabling mechanism which prevent infinite recursion such as in
p :- p.

For non-stratifiable programs (cf. next subsection), it is also possible to
infer both a positive and a negative fact for a given call. Then, an undefined
fact replaces the contradictory information. The implementation simply re-
moves the contradictory facts and informs about the undefinedness. However,
the current algorithm for determining undefinedness is incomplete as this fea-
ture is only kept for teaching purposes on rather small examples (for instance,
XSB includes a complete implementation of the well-founded semantics which
deals with undefined facts).

3.3 Dependency Graphs and Stratification

Each time a program is consulted or modified (i.e., via submitting a query or
changing the database), a predicate dependency graph is built [31]. This graph
shows the dependencies, through positive and negative atoms, between predi-
cates in the program. Each node in this graph is a program predicate symbol
and there are as many nodes as such symbols. Arcs come from each antecedent
in a rule (i.e., each predicate in a rule body) to its consequent (i.e., rule head).
Arcs are labeled as either negative, if the antecedent node occurs negated, or
positive otherwise. This dependency graph is used for looking for a stratifica-
tion for the program [31]. A stratification collects predicates into numbered
strata (1 . . . N) so that, given the function strata(p) which assigns a strata
number to predicate p, then for a positive arc p←q, strata(p) ≤ strata(q),
and for a negative arc p

¬←q, strata(p) < strata(q). Then, it follows that a
cycle in this graph containing a negative arc amounts to a non-stratifiable
program.

A näıve bottom-up computation would solve all of the predicates in stra-
tum 1, then 2, and so on, until the meaning of the whole program is found.
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However, query solving in DES is restricted to the predicates that can be
reached from the query in the dependency graph. And it only resorts to com-
pute by stratum when a negative dependency occurs in this subgraph. Nev-
ertheless, each predicate that is actually needed is solved by means of the ex-
tension table mechanism described in the previous section. As a consequence,
many computations are avoided w.r.t. a näıve bottom-up implementation.

4 Nulls and Outer Joins

Unknownness has been handled in relational databases long time ago because
its ubiquitous presence in real-world applications. Despite its claimed dan-
gers due to unclean semantics (see, e.g., the discussion in [10]), null values
to represent unknowns have been widely used. Including nulls in a Datalog
system conducts to also provide built-ins to handle them, as outer join opera-
tions. DES includes the common outer join operations in relational databases,
providing the very same semantics for outer join operators ranging over null
values, which are described next.

4.1 Null Semantics

A null value represents unknown data. To include such values into relational
database systems (RDBMS’s), a new logical value is added for unknown re-
sults, leading to a three-valued logic (3VL, for true, false and unknown). Any
comparison operator relating at least a null value should return the unknown

logic value [10]. Although a 3VL is assumed for RDBMS’s 4 (Oracle, DB2,
SQL Server, MySQL, . . . ), the fact is that the implemented logic does not
account for the unknown logic value. Instead, it is incorrectly represented by
the null value [10].

Moreover, the following example shows that the expected outcome from
a “real world” viewpoint is not got. Let’s consider the SQL query SELECT

COUNT(*) FROM t WHERE a = a, assuming a table t with a single column a.
If the instance of t contains a tuple with a null value, the answer to this query
is 0, but it should be otherwise 1, as a is trivially equal to itself for any given
tuple.

To illustrate the incorrect implementation of 3VL, we can follow the same
example assuming that t contains two tuples with a null value, and the query
SELECT * FROM t t1, t t2 WHERE t1.a = t2.a. Which would we expect
from comparing the first to the second tuple in t in this query? (Let’s denote
the two null values in t as null1 and null2, respectively.) Following 3VL in
current RDBMS’s, as null1 = null2 admittedly delivers unknown, then it is

4 Although prepended by that R, recall that relational model is about a two-valued logic
so that such systems are nonrelational indeed.
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neither true nor false anymore. So, what bag is the tuple <null1,null2>
thrown at? Incorrectly, at the false bag following a CWA approach. One
can argue that such tuple was thrown at an unknown bag hidden from the
user. But then, the answer is incomplete: the user should be warned that
there are tuples that cannot be classified as either belonging to the meaning
of the query or not.

However, as we are interested in allowing outer join operations and we
rely on a logic engine with 2VL (two-valued logic), we restrict to this, so
that any comparison relating at least a null value returns false instead of
unknown. Truth tables for usual logical operators (not, and and or) remain
thus as for 2VL. Regarding comparison operators, two (distinct) null values
are not (known to be) equal, and are (not known to be) distinct. Thus, nei-
ther null = null (syntactic equality) nor null \= null (syntactic disqual-
ity) hold. However, notice that a semantic flaw emerges in not(null = null)

(negation), which succeeds! 5 This does not follow SQL: The conditions a<>b

and not(a=b), where a and b are columns, yield the same logical outcome
when considering nulls. So, comparing null values are discouraged in DES.

Nonetheless, to test whether a value is null, two built-in predicates are
provided:

• is null/1: Test whether its argument is a null value. Analogous operation
to the SQL clause IS NULL.

• is not null/1: Test whether its argument is not a null value. Analogous
operation to the SQL clause IS NOT NULL.

Nulls are internally represented with the term ’$NULL’(IdNumber), where
IdNumber is a unique integer which does not occur in any other null. This
representation is similar to that also suggested in other systems [27], but,
as a difference, DES considers null as a first class citizen and its internal
representation is hidden from the user. Therefore, asserting or consulting a
rule as p(null) is directly allowed. Back to the first SQL statement in this
section above, if executed in DES, it delivers the “expected” answer, since the
comparison a = a is instanced as ’$NULL’(Id) = ’$NULL’(Id) which has
given a concrete integer for Id, and therefore syntactic unification succeeds.

4.2 Outer Join Built-ins

Three outer join operations are provided, following relational database query
languages (SQL, extended relational algebra): left, right and full outer joins.
An outer join computes the cross-product of two relations that satisfy a third
relation, extended with some special tuples including nulls as explained next.
In an outer join, tuples in one of the first two relations which have no counter-

5 The negation of the equality should behave as disequality.
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part in the other relation (w.r.t. the third relation) are included in the result
(the values corresponding to the relation with no corresponding tuple are set
to null). If this is true for relation A in the cross-product A × B then it is
a left outer join; if it is true for B then it is a right outer join; if it is true
for both then it is a full outer join. In DES, the left (resp. right, and full)
outer join corresponds to the construction lj(A,B,C) (resp. rj(A,B,C), and
fj(A,B,C)), with A, B, and C relations. In addition, both A and B can take the
form of such constructions in order to allow more neat, nested applications of
outer joins (cf. Subsection 5).

A join condition must not be confused with a where condition.
Let’s consider the query lj(a(X),b(Y),X=Y), which is not equivalent to
lj(a(X),b(X),true) 6 . Assuming that x and y are columns of tables a and
b, resp., these queries could be respectively written in SQL as follows:

SELECT * FROM a LEFT JOIN b ON x=y;

SELECT * FROM a LEFT JOIN b WHERE x=y;

Outer join relations can be nested as well, as in:

lj(a(X),rj(b(Y),c(U,V),Y=U),X=Y)

which is equivalent to the following SQL statement:

SELECT * FROM a LEFT JOIN

(b RIGHT JOIN c ON y=u) ON x=y;

Note that compound conditions must be enclosed between parentheses, as in:

lj(a(X),c(U,V),(X>U;X>V))

5 Source-to-Source Transformations

This section explains outer join-related, source-to-source transformations,
which are conducted during the preprocessing phase in DES. Other trans-
formations include simplifications, unfolding, outer joins and aggregate pred-
icates (which are out of the scope of this paper). Transformations are guided
by several needs: enhancing performance, ensuring termination and resorting
to Datalog tabled computation for solving the outer join primitives (rather
than writing (Prolog-)specific code for that).

As stated in Section 4, a left join operation lj(A,B,C) requires to build
tuples for each tuple in A which does not match with any other of B w.r.t.
C. In a given cycle of the fixpoint computation, a tuple tA might not find a
matching tuple in B, but a further cycle may develop new tuples for B that do.
In order to prevent speculative computations and removing entries from the
extension table, we restrict to have completed the computation of the involved

6 Notice that the variable X is shared by relations a and b.
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relations. This can be achieved by taking advantage of the stratification idea:
relations in outer joins are collected into strata as if they were negative atoms
in order to have their answer sets completely defined before an outer join over
those relations.

To this end, a left join lj(A,B,C) is transformed into an equivalent set of
rules (w.r.t. semantics) for reusing the dependency graph and stratification
approach. A new predicate $pi is introduced as an argument of the built-in,
void predicate lj/1, which does nothing, but is handy to specify a predicate
classification in strata. So, the predicate $pi is to be set in a deeper strata
than the predicate of the rule in which it occurs, say of predicate p, because the
negative arc $p

¬←p is added to the dependency graph. Its arity is |vars(A) ∪
vars(B) ∪ vars(C)|.

Next, the predicate $pi is defined to compute the outer join. All of the facts
in the meaning of $pi come from two sources: the facts in A joined with those
of B which meet C, and the facts in A joined with nulls which do not meet C. So,
a source-to-source transformation in this case can be seen with the following
example. Let’s consider the rule v(X,Y) :- lj(s(X,U),t(V,Y),U>V), which
is transformed into:

v(X,Y) :- lj(’$p0’(X,U,V,Y)).

’$p0’(A,B,’$NULL’(C),’$NULL’(D)) :- s(A,B), not(’$p1’(A,B,E,F)).

’$p0’(A,B,C,D) :- ’$p1’(A,B,C,D).

’$p1’(A,B,C,D) :- s(A,B), t(C,D), B > C.

Note that the predicate $p0 is used to compute both sources of facts,
whether provided by the positive case (a straight call to $p1 from the second
rule of $p0) or the negative one (a negated call to $p1 in the first rule of $p0).
This negative call oughts $p1 to be in a lower strata than $p0. Therefore,
before computing $p0, the meaning of $p1 is completely available. Also note
that the first rule builds the null values for the arguments of the right relation
B for which no tuples are found meeting C. Observe terms ’$NULL’(C) and
’$NULL’(D), containing free (unsafe) variables. They are the internal rep-
resentations for null values, which a normal user would see simply as null.
Before adding a tuple to the extension table, each null value is assigned with
a unique integer should it is not assigned already. This allows a single rule
to become source of different null values for each tuple it may deliver as an
element of its meaning. Finally, the predicate $p1 contains the (possible) hard
stuff to be computed since it contains the Cartesian product of two relations,
followed by the condition. Despite its arrangement, which may yield to think
of a bad computational behavior (compute all tuples from s, then all from t,
and finally filter results), the top-down driven computation looks for a tuple
from s, then a tuple from t, and only adds a new tuple to the answer table
of ’$p1’ if the condition B > C holds. Indeed, this is quite similar to the
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RDBMS implementations of join operations (modulo indexing).

Whilst transformation of the right join is a reflection of the left join, the
full join is a bit different, where the source of tuples comes from three sources:
the same two as for the left join, plus the facts in B joined with those of A
which do not meet C.

Notice that the transformed program above include floundering [4]: there
exists a call not(’$p1’(A,B,E,F)) in the first rule for ’$p0’, where variables
E and F are not range restricted. However, floundering in this concrete case
poses no problem as the call to $p1 is completely computed before it is used
by any other call and no other negated call occurs in the program. Note
that the other call in the program to $p1 is for the positive case where all of
its arguments become ground. In particular, the negated call will use those
results and the corresponding negative entries will be added to the answer
table. Such negated entries should not be reused by any other (negated) calls
in the program since they are not ground.

Although a safety check is performed whenever a rule is going to be as-
serted, this is previous to the program transformation so that no errors are
reported to the user in this automatic translation. Other works treat the floun-
dering problem in a general use of negation (see, e.g., constructive negation
[18] and also tabled query evaluation [9]), where non-ground negated calls are
possibly involved in recursive calls, which we do not consider in our setting.

As well, nested outer join calls are allowed, as in the next view, where
relations s and t are now assumed to take only one argument for the sake of
brevity: v(X,Y,U) :- lj(lj(s(X),t(Y),X < Y),s(U),Y = U).

6 Transfers to Other Systems

Other deductive systems, such as DLV [17], might benefit from including outer
joins as well. In this case, floundering programs are not allowed, but for true
negation (CWA is not assumed; instead, negative data are explicitly declared).
Fortunately, as pointed out in [30], above programs can be transformed into
non-floundering programs, where all calls to negated goals are ensured to be
ground. Let’s consider for instance how to transform the running example:
Non-relevant variables should be dropped in the translation (here, A in predi-
cates $p1 and $p2). Also, unfolding can be applied and get:

v(X,Y) :- ’$p0’(X,U,V,Y).

’$p0’(A,B,’$NULL’(C),’$NULL’(D)) :- s(A,B), not(’$p1’(B)).

’$p0’(A,B,C,D) :- s(A,B), t(C,D), B > C.

’$p1’(B) :- s(A,B), t(C,D), B > C.

However, comparing this version to the running example, even when the
number of relations does not increase, extra computation has to be done in
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the second clause of $p0.

So, although it seems possible to compute outer joins in DLV with an
adaptation of our proposal, nulls should be natively supported; otherwise it
couldn’t be applied because there is no provision to get unique identifiers for
null values in this system (DLV does not feature a general-purpose program-
ming language, but a deductive language).

XSB [26] is another system which supports non-ground semantics allowing
floundering programs with the use of the special negation sk not/1, which au-
tomatically produces a similar translation as explained before [27]. To write
outer joins in this system, in particular it is needed to generate unique iden-
tifier integer numbers for the null values and declare as tabled the predicates
involved in the computation of the outer join, which is now possible as we will
see. Next, we show the complete program (but the facts for s and t) for the
running example involving only one outer join:

:- table(’$p0’/4).

:- table(’$p1’/4).

:- table(s/2).

:- table(t/2).

main(Vs) :- findall(v(X,Y),v(X,Y),Vs).

v(X,Y) :- ’$p0’(X,U,V,Y).

’$p0’(A,B,’$NULL’(C),’$NULL’(D)) :-

get_id(C), get_id(D), s(A,B), sk_not(’$p1’(A,B,E,F)).

’$p0’(A,B,C,D) :- ’$p1’(A,B,C,D).

’$p1’(A,B,C,D) :- s(A,B), t(C,D), B > C.

:- dynamic id/1.

id(0).

get_id(X) :- id(X), retractall(id(X)), Y is X+1, assertz(id(Y)).

Here, the main entry point (predicate main/1) returns a list of deduced
facts via the metapredicate findall, which collects all answers to the goal
v(X,Y). Predicate get id returns a new integer each time it is called, therefore
allowing to uniquely identify nulls.

7 Conclusions

We have presented a novel approach to embed outer joins as Datalog built-ins
in an existing deductive database system, which is used in many universities
(des.sourceforge.net/des_facts). Its statistics (des.sourceforge.net/
statistics) show a notable increasing number of downloads, up to more than
1,500 downloads a month, and more than 34,000 downloads since 2004. New
releases are expected each two or three months, therefore revealing it as a live
project.

138

des.sourceforge.net/des_facts
des.sourceforge.net/statistics
des.sourceforge.net/statistics
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Those outer join built-ins are not only used in the Datalog query language
but are also used in the evaluation of SQL DQL statements, as they are
compiled to Datalog programs and executed by the deductive engine. The
program transformation technique has been found to be useful in both ensuring
terminating computations and also computing outer join results as these built-
ins are expressed as Datalog programs, rather than writing specialized Prolog
code to compute them.

Though this work was originally focused to provide outer joins in an ed-
ucational deductive system, we have also shown that this technique can also
be applied to other systems such as XSB which features non-ground seman-
tics, and highlighted the need for native support of nulls in DLV as it is
not a general-purpose programming system as XSB is. Compared to DES,
an explicit management of nulls is needed in the former system, and, in the
latter, it is also needed to use the (slightly costly) alternative translation to
non-floundering programs.
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