
PROLE 2011

A Tool for the Integration of Constraint Logic

Programming in Spreadsheets

Ana Maŕıa Fernández-Soriano1 Julio Mariño1 Ángel Herranz1

{amfernandez,jmarino,aherranz}@fi.upm.es
Babel Research Group

Universidad Politécnica de Madrid
Madrid, Spain

Abstract

Spreadsheets have become widely used tools, but they are applied to increasingly complex problems,
far beyond the kind of tasks for which they were originally conceived. This often results in large,
hard to maintain sheets, with little guarantee about their correctness. Potential errors are due in
part to unskilled users and also to the spreadsheet systems’ own limitations. This contribution
presents a tool that aims at improving the usual working flow when filling in a spreadsheet. The
tool integrates a constraint solver based on transformations of the cell content into equality and
inequality systems over rationals. The transformed systems are then solved using constraint logic
programs and the obtained solutions are presented to the user in an understandable way. One of the
practical benefits of this solution based on constraint logic programming is backwards execution:
our tool is able to find out the required input values to reach the desired outputs depending on
aggregation formulae written in the cells. Also, the constraint model offers a simple and sound
solution to the problem of circular references in cell formulas.

Keywords: Spreadsheet, Constraint Logic Programming, Constraint Solving, Programming
Environments, End-User Development

1 Introduction

The term End-User Development (EUD) [5] has been coined as an umbrella to
refer to those environments which allow nonprofessional developers to create
or modify software without significant knowledge of a programming language.
Mash-ups, Programming by Example (PbE), or graphical scripting languages
are among the instances that are receiving more attention today but the oldest

1 Work partially supported by MICINN grant TIN2009-14599-C03-03 (DESAFIOS10) and
grant S2009TIC-1465 (PROMETIDOS-CM) from the regional government of Madrid.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Fernández-Soriano, Mariño, Herranz

example and, definitely, the most successful of these tools is the spreadsheet.
Some of the reasons for its success are paradigmatic: 1.- Availability : they
are present in the office suites on most computers. 2.- Immediate feedback :
changes made in one part of the spreadsheet are reflected instantly in the re-
sults without any restructuring, recompilation or testing that a conventional
software system would require, and 3.- Cheap reuse: fragments from a spread-
sheet can be easily combined with other ones, and users can apply the skills
learnt on one application to another one, very often just extending some ex-
isting sheet.

Of course, the EUD model is not free from criticism. The results of re-
peated composition, cut & paste and analogy can be unpredictable, specially
given that there is seldom a previous specification of the problem that has to
be solved and tests are nonexistent. In the case of spreadsheets, this results in
huge, hard to maintain and understand sheets but that are often responsible
for key functions for the business logic of certain parts of an organisation. In
fact, studies from consulting firms such as PWC and KPMG reveal that 95%
of spreadsheets in certain areas might contain some kind of error. [6]

Typical sources of errors include arithmetical operations between incom-
patible data (e.g. adding yards to pounds), operating with undefined cells
(erroneously taken as zero) or circular references in cell sets (that are treated
in diverse ways by different spreadsheet systems). While some of these prob-
lems could be attacked using conventional programming technology – e.g. type
systems – that possibility has usually been discarded in favour of features such
as the aforementioned immediate feedback.

The tool we are introducing extends the traditional spreadsheet model,
in which cell contents are either constant or the result of operating with the
contents of other cells, with the possibility of stating relations between cell
contents. This can alleviate some of the problems above. For example, if we
want to add a series of quantities and there is one which we do not yet know,
it is very likely that we end up forgetting about it and eventually taken as
zero (even if it stands for the price of a Ferrari). With our proposal, the cell
can be assigned a range (e.g. 150000 ≤ A5 ≤ 240000) that will be reflected in
the summation with a corresponding range. Mutual relations between cells,
that often lead to unexpected results in many systems, can also be used in
combination with partial information. Imagine that now we want to add the
prices of several items, but some come in dollars and others in euros. We
could have each item in a different row and reserve one column for the price
in dollars and the next one for the price in euros. That means that, initially,
the only information in these cells reflect the currency exchange rate. If we
receive a price in euros then we can update the cell in the right column and
the quantity in the left one will be recalculated, reducing the possibility of
mixing currencies inadvertently.

244

Fernández-Soriano, Mariño, Herranz

Fig. 1. A typical spreadsheet for an invoice, including amount, purchase price and discount rate
for several items.

A more elaborate example is shown in Figure 1. The discount rate applied
is 10% for all the products. The total price for the invoice is 143,94e. Imagine
that we have a constraint of total price 140,00e, for example, due to marketing
reasons. The problem is to recalculate the discount rate to apply to each
product. Even more, imagine that we cannot apply more than 10% to one of
the products. How to recalculate then the discount rate for the rest of the
items? In a traditional spreadsheet system we can only do iteratively changes
in different values of the invoice in order to approximate the solution but
we cannot “ask” the spreadsheet for a solution that fits the constraint. The
application of our tool to this example will be shown in Section 5.

Our system works by translating the cell contents into a logic program
written in a Prolog dialect capable of reasoning about linear inequalities of ra-
tionals. A formal description of the cell language and its translation is given in
Section 3. An advantage of the constraint logic programming (CLP) approach
is that it allows for a uniform treatment of several application domains, so the
solution presented here for rationals could be adapted to solve combinatorial
problems instead. The framework that allows for this genericity is discussed
in Section 2. An overview of the tool’s architecture is provided in Section 4.

There have been previous proposals for the extension of spreadsheets with
deductive capabilities. Due to lack of space, the reader is referred to [4] for a
quick survey of the field. While building our own system implied reimplement-
ing some of the functionality in earlier tools, we consider the effort worthwhile
as it has provided us with an extensible platform for applying the ideas in this
paper to more complex domains.

2 Preliminaries: Constraints and Logic Programming

The reader is referred to [3] for a formal, detailed presentation of the para-
metric Constraint Logic Programming framework (CLP(X)). In what follows

245

Fernández-Soriano, Mariño, Herranz

we present an informal account of some features of the framework relevant
to our work. CLP(X) stands for an extension of logic programming in which
atomic formulae can be either the application of user-defined predicates to
tuples of terms or a new category of formulae (the constraints, L) written in
a separate first-order signature Σ and provided with a first-order structure
D as standard interpretation. L is closed under conjunction and existential
quantification. The pair (D,L) is called a constraint domain and is used to
enrich a host logic programming language with some domain-specific intelli-
gence that would be inefficient to implement using the standard deduction
mechanisms of the host. CLP(D) denotes a particular instance of the generic
scheme for the constraint domain given. Traditional Prolog can be seen as an
instance CLP(Herbrand) where the constraints are just syntactic equalities
of terms. The instance used in our prototype is called CLP(Q), where the
language of constraints allows linear inequalities interpreted over the rational
field. Another successful instance of the framework is CLP(FD), where the
constraints include arithmetic inequalities interpreted over a finite subset of
the integers. Constraint domains are expected to provide the following op-
erations and checks on constraints in order to be used in a CLP language
effectively: i) testing for consistency, D |= ∃ c; ii) checking the implication of
one constraint by another, D |= c → c ′; iii) projecting a constraint c onto a
set of variables x̂ in order to obtain a simpler, equivalent c ′: D |= c ′ ↔ ∃ x̂ .c;
and iv) detecting that a constraint c forces a single value for one of its free
variables: D |= ∃ z .∀ x , ŷ .c(x , ŷ)→ x = z . Availability of these operations is
used in our spreadsheet model to ensure the consistency of the set of cells and
also to compute the visualisation of the cells that is shown back to the user.

3 Formal Specification of the Translation Function

The main characteristics of the translation process are that cell references
are represented as logic variables in the CLP program and that cell content
is represented as constraints in the CLP program. Figure 2 illustrates the
essence of the translation: we show a pair of spreadsheets, their translation
into CLP programs and the result of their execution.

The first example, ssA, is a standard spreadsheet, each cell generates an
equality constraint and the CLP solver finds the solution. In the second exam-
ple, ssB, cell D3 contains an expression (100) but also establishes a constraint
on cell E3: D3 = 1.45∗E3 (perfectly could be a change rate euro-dollar). The
value for the cell E3 is, directly, E3, a way to establish no other constraint.
In this case, the cells generate two constraints: D3 = 100 and D3 = 1.45

* E3 and the solver finds the value for E3.

We formally describe the translation process as a mathematical function.
Previous to its formal definition we need a formal model for spreadsheets with

246

Fernández-Soriano, Mariño, Herranz

Spreadsheet CLP program and solution

ssA A B C

1 14 25 A1 + B1

?- { A1 = 14, B1 = 25, C1 = A1 + B1 }.
A1 = 14,
B1 = 25,
C1 = 39.

?-

ssB D E

3 100 | D3 = 1.45 ∗ E3 E3

?- { D3 = 100, D3 = 1.45 * E3 }.
D3 = 100.0,
E3 = 68.9655

?-

Fig. 2. Translation of spreadsheets into CLP programs

constraints, the domain of the translation function, and a formal model for
CLP programs, its codomain.

3.1 Abstract Syntax of Spreadsheets with Constraints

Conceptually, a spreadsheet is a partial function from cell references, pairs of
natural numbers representing row and column, into cell content, valid expres-
sions involving numbers and operations on cells. Our example ssA in Figure 2
could be represented by a mathematical object similar to this one:

ssA = {(1, 1) 7→ 14, (1, 2) 7→ 25, (1, 3) 7→ (1, 1) + (1, 2)}

where (1, 1) + (1, 2) is an informal representation of the cell content A1 + B1.

Our formal representation of spreadsheets is a partial function from Address,
the Cartesian product of natural numbers, into cell content:

Spreadsheet = Address 7→ Cell

Address = N× N

Cell content have two components: an expression and a constraint. Ex-
ample ssB follows this grammar:

Cell ::= Expr [| Constr]

where square brackets represents optionality of the constraint component.
Without any loss of generality, constraint omission is equivalent to a triv-
ial constraint (>), so we assume that the constraint always exists. Figure 3
shows the complete abstract syntax 2 for cell content.

2 For readability reasons, we present the components in the form of an ambiguous grammar.

247

Fernández-Soriano, Mariño, Herranz

Cell = Expr× Constr

Expr ::= ExprQ
Constr ::= > | Constr ∧ Constr | ConstrQ

ExprQ ::= Address | Q | UnaexprQ | BinexprQ
UnaexprQ ::= UnaopQ ExprQ

UnaopQ ::= + | −
BinexprQ ::= ExprQ BinopQ ExprQ

BinopQ ::= + | − | ∗ | /

ConstrQ ::= ExprQ RelopQ ExprQ
RelopQ ::= = |< |>

Fig. 3. Abstract syntax of spreadsheets with constraints

Since we are going to focus on linear constraints over rationals, the formal
model for constraints in Figure 3 have been defined as

Expr ::= ExprQ
Constr ::= . . . | ConstrQ

where ExprQ are arithmetic expressions on rational numbers and Constr are
built by mean of atomic constraints, application of predefined constraint pred-
icates to CLP(Q) terms (ExprQ), or conjunction of another constraints.

Nevertheless, our formalisation enables one to easily extend the set of
domains adding, for example, constraints on finite domains:

Expr ::= ExprQ | ExprZ
Constr ::= . . . | ConstrQ | FDConstrZ

The spreadsheet ssB presented at the begin of the section would be rep-
resented by the following mathematical object:

ssB = {(3, 4) 7→ (100, (3, 4) = 1.45 ∗ (3, 5)), (3, 5) 7→ (3, 5)}

3.2 Translation Function

We explain in this section the syntax-directed translation of a spreadsheet
into a CLP program. The abstract syntax of CLP Programs that our tool

248

Fernández-Soriano, Mariño, Herranz

Prog = PClause

Clause ::= Atom:-Goal.

Goal ::= Lit, . . . ,Lit

Lit ::= Atom | ¬Atom

Atom ::= PS(Term, . . . ,Term)

PS ::= globalcon | = | < | > | . . .
Term ::= Var | FS(Term, . . . ,Term)

Var ::= A1 | A2 | B1 | . . .
FS ::= Q | +/1 | -/1 | +/2 | -/2 | */2 | //2

Fig. 4. Abstract syntax of CLP programs

generates is defined in Figure 4. The CLP program generated has only one
clause and establishes a global constraint on all the cells simultaneously. We
generate a predicate called globalcon, that associates non null cells with
a unique variable corresponding with the solution for the cell, taking into
account the information contained in all the cells globally. The full definition
of the translation function can be found in [1]. Let us just show the resulting
CLP programs for the previous examples:

Example Automatically Generated CLP program

ssA
globalcon([(1,1,A1),(1,2,B1),(1,3,C1)]) :-

{ A1 = 14, B1 = 25, C1 = A1 + B1 }.

ssB
globalcon([(3,4,D3),(3,5,E3)]) :-

{ D3 = 100, D3 = 1.45 * E3 }.

4 Tool Architecture

We can see in Figure 5 that our application has five main components. Let
us briefly describe the functionality of each one. The Graphic User Interface
(GUI), a spreadsheet appearance, with cells arranged in a matrix of rows and
columns. To fill in a cell the user clicks on it and just writes down its con-
tent following a quite standard concrete syntax for cell content of spreadsheets
augmented with constraints. Once the user fills in a cell the “Front-end” com-
ponent processes each cell content in the spreadsheet: it checks the syntax is
correct and constructs an abstract syntax tree that implements the mathe-
matical objects defined in Section 3.1 (see Figure 6 for the UML model of the
abstract syntax trees). The “Back-end” component generates a CLP program
that is the implementation of the translation function in Section 3.2. It follows

249

Fernández-Soriano, Mariño, Herranz

Fig. 5. Tool architecture

Fig. 6. AST UML class diagram.

the layout of a Visitor pattern [2],

The “Prolog Constraint Solver” component starts a Prolog engine with the
CLP extension, loads the generated program and returns a solution following
the same concrete syntax of cell content. Finally, the solution is parsed by the
“Presenter” component that shows it in the GUI component to the user.

The application is written in Java, the GUI uses Java Swing components,
the Front-end has been implemented by using JavaCC and the Prolog engine
used is Ciao Prolog. 3 The prototype can be freely downloaded and tested:
http://babel.ls.fi.upm.es/software.

5 Using the Tool

We illustrate the interaction with our tool by solving two of the examples
stated in Section 1. In the invoice example (Fig. 1), the user would follow
these steps:

3 Available from http://www.ciaohome.org.

250

http://babel.ls.fi.upm.es/software
http://www.ciaohome.org

Fernández-Soriano, Mariño, Herranz

(i) Instead of iteratively changing the dis-
count rate until 140.00e is achieved,
the user types a constraint into E27:

E

27 E10 + . . . + E26 | E27 == 140

(ii) Then, the user removes the discount
rate of 10% from cell B29 or types the
following into it:

B

29 B29 | TRUE

(iii) The solver works out a solution to the
constraint system

(Discount)D10 = B10 ∗ C 10 ∗ B29/100,

(Subtotal)E10 = B10 ∗ C 10−D10,
...

E27 = E10 + . . . + E26,

E27 = 140,

B29 = B29

B

29 12.47

The “dollars vs. euros” example was about mutual dependency of cells in two
adjacent columns, say D and E:

(i) The user doesn’t know if prices for items are expressed in dollars (D) or
euros (E). It is enough to say how each currency depends on the value of
the other one:

Dollars Euros

3 = D3 | D3 == E3 ∗ 1.4501 = E3 | E3 == D3 ∗ 1/1.4501

(ii) Now it is possible to change the value in one column and get the appro-
priate currency in the other just by substituting the variable after the
equality symbol.

Dollars Euros

3 = D3 | D3 == E3 ∗ 1.4501 = 2 | E3 == D3 ∗ 1/1.4501

(iii) obtaining the following answer:

Dollars Euros

3 2.9002 2

6 Conclusions and Future Work

In this paper we have presented a tool that explores the integration of con-
straint solvers in spreadsheet applications. A minor extension to the standard

251

Fernández-Soriano, Mariño, Herranz

language of spreadsheets and the coordination with an existing CLP envi-
ronment allows our tool to effectively compute in the presence of incomplete
information. We have applied this capability to solve input cells in order to
reach some aims in the output cells. For example, the tool computes the dis-
count to be applied to a customer when we do not want to exceed the net
value of the invoice. Another immediate benefit is that the spreadsheet of-
fers a simple and sound solution to the problem of circular references in cell
formulas as shown in Section 5.

We can mention some extensions planned for our prototype:

• Other constraint domains and their integration. On one hand, this im-
provement requires to extend the abstract syntax and concrete grammars.
For the introduction of finite domains (CLP(FD)), for instance, we need to
extend the syntax to express intervals and membership. Such an extension
would be useful, for instance, to solve schedule problems, although user in-
teraction would be slightly more complex given that some mechanism to
iterate through different solutions would be necessary. Also, a type system
would be mandatory in the case of mixing different domains under the same
expression syntax, at least for ensuring that constraints are not used in a
potentially inconsistent way.

• Improving usability. For the sake of simplicity, our prototype allows to
write a constraint that affects any cell in the content of any other cell, and
we have not answered to some important questions on usability: should we
allow a set of constraints for every cell? should we allow just a global set of
constraints? should the system answer with any constraint that affect a cell
in the resulting content of that cell? should the application keep a separate
content for the user input and another for the answer of the solver?

A proper answer to these questions is crucial for the end-user adoption
of our proposal.

References

[1] Fernández-Soriano, A. M., “Una propuesta para la integración de restricciones en hojas de
cálculo,” Master’s thesis, Universidad Politécnica de Madrid (2010).

[2] Gamma, E., R. Helm, R. Johnson and J. Vlissides, “Design Patterns - Elements of Reusable
Object Oriented Software,” Addison-Wesley, 1995.

[3] Jaffar, J. and M. J. Maher, Constraint logic programming: A survey, Journal of Logic
Programming 19/20 (1994), pp. 503–581.

[4] Kassoff, M. and A. Valente, An introduction to logical spreadsheets., Knowledge Eng. Review
(2007), pp. 213–219.

[5] Lieberman, H., F. Paternò and W. Volker, editors, “End User Development,” Human-Computer
Interaction 9, Springer Verlag, 2006.

[6] Powell, S. G., K. R. Baker and B. Lawson, A critical review of the literature on spreadsheet
errors, Decis. Support Syst. 46 (2008), pp. 128–138.

252

	Introduction
	Preliminaries: Constraints and Logic Programming
	Formal Specification of the Translation Function
	Abstract Syntax of Spreadsheets with Constraints
	Translation Function

	Tool Architecture
	Using the Tool
	Conclusions and Future Work
	References

