

Laboratorio de Bases de Datos Facultade de Informática Universidade da Coruña

Departamento de Ciencias de la Computación Universidad de Chile

Huffman-Compressed Wavelet Trees for Large Alphabets

Gonzalo Navarro (DCC)
Alberto Ordóñez (LBD)

WCTA 2012: SPIRE 2012 Workshop on Compression, Text, and Algorithms

- Introduction
- Compressing-permutations
- Compressing the mapping of Canonical Huffman shaped Wavelet Tree
- Removing pointers from Canonical Huffman WT
- Results

Introduction

- We usually build self-indexes over texts (or sequences with large alphabets) using:
- An encoding for the indexed symbols (Canonical Huffman encoding, Hu-Tucker encoding, ...)
- A WT to support operations

Introduction

- In this work we show:
- How we can compress the mapping of a canonical Huffman encoding (mapping: code \rightarrow symbol and symbol \rightarrow code)
- How we can reduce the size of a canonical Huffman WT without using pointers

Compressing permutations

Compressing the mapping of a canonical Huffman encoding

Compressing permutations

- Previous definitions

- pi(i): returns symbol in $\mathbf{P}[\mathbf{i}]$
- invPi(i): returns the position in \mathbf{P} where \mathbf{i} is located
[STACS09] compresses \mathbf{P} and access pi(i) and invPi(i) efficiently
$\mathrm{m}=4$ increasing runs

Compressing permutations

- [STACS09]
- J. Barbay and G. Navarro: "Compressed Representations of Permutations, and Applications", Proc. 26th International Symposium on Theoretical Aspects of Computer Science (STACS). Pp. 111-122 (2009)
- Lets consider a permutation P[1..p] with \mathbf{m} increasing runs, then [STACS09] obtains a compressed representation for \mathbf{P} that:
- If we consider only the number of increasing runs \mathbf{m} :
- $p \log m(1+o(1))+O(m \log p)$ bits and solves $\mathrm{pi}(\mathrm{i})$ and invPi(i) in $O(\log m)$ time
- If we conider the entropy of the runs (being Runs[1..m] a vector that contains the length of each run):
- $n(2+H($ Runs $))(1+o(1))+O(m \log n)$ bits and solves pi(i) and invPi(i) in O (H(Runs) +1) time, H (Runs) $<=\log \mathrm{m}$

Compressing permutations

- [STACS09]
- Example: building a compressed permutation using [STACS09]
- Given a permutation $P[1 . .8]=[2,7,6,8,1,3,4,5]$, with $m=4$ increasing runs...
- It recursively takes pairs of runs and merge them following a "merge sort" strategy

2768345

Compressing permutations

- [STACS09]
- Example: building a compressed permutation using [STACS09]
- Given a permutation $P[1 . .8]=[2,7,6,8,1,3,4,5]$, with $m=4$ increasing runs...
- It recursively takes pairs of runs and merge them following a "merge sort" strategy

Compressing permutations

- [STACS09]
- Example: building a compressed permutation using [STACS09]
- Given a permutation $\mathrm{P}[1 . .8]=[2,7,6,8,1,3,4,5]$, with $\mathrm{m}=4$ increasing runs...
- It recursively takes pairs of runs and merge them following a "merge sort" strategy

Compressing permutations

- [STACS09]
- Example: building a compressed permutation using [STACS09]
- Given a permutation $\mathrm{P}[1 . .8]=[2,7,6,8,1,3,4,5]$, with $\mathrm{m}=4$ increasing runs...
- It recursively takes pairs of runs and merge them following a "merge sort" strategy

Shadowed are not stored

Compressing permutations

- [STACS09]

Example: operations over a compressed permutation with [STACS09]

- pi(3):
- Locate position 3 in the leaves
- Bottom-up transversal performing select
- $\mathrm{pi}(3)=6$

Compressing permutations

- [STACS09]

Example: operations over a compressed permutation with [STACS09]

- invPi(6):
- Top-down transversal of the tree performing rank
- returns the offset
- $\quad \operatorname{invPi}(6)=3$

Compressing permutations

- [STACS09]
- J. Barbay and G. Navarro: "Compressed Representations of Permutations, and Applications", Proc. 26th International Symposium on Theoretical Aspects of Computer Science (STACS). Pp. 111-122 (2009)
- We know that:
[STACS09] can solve pi(i) and invPi(i)
- [STACS09] performs better when:
- The number of increasing runs is low (p log m (1+o1(1))...)
- H (Runs) is low

Compressing the mapping of Canonical Huffman shaped Wavelet Tree

- How we can use [STACS09] to reduce the size of a canonical Huffman mapping?
Mapping
$1 \rightarrow 1101$
$2 \rightarrow 01$
$3 \rightarrow 1111$
$4 \rightarrow 1100$
$5 \rightarrow 1110$
$6 \rightarrow 100$
$7 \rightarrow 00$
$8 \rightarrow 101$

- Codes of the same length are consecutives
- \mathbf{S} different symbols
- $O(\log n)$ is the max. Length of a Huffman code (being n the length of the indexed sequence)
- Mapping takes
- O(s $\log n)$ bits

Compressing the mapping of Canonical Huffman shaped Wavelet Tree

- How we can convert the mapping into a permutation?
- Read Huffman tree leaves from left to right

$$
P[1 . .8]=7,2,6,8,4,1,5,3
$$

$$
\text { with } m=5 \text { increasing runs }
$$

Compressing the mapping of Canonical Huffman shaped Wavelet Tree

- Using [STACS09] we obtain better performance as the number of runs becomes smaller.
- How we can reduce the number of runs?

Compressing the mapping of Canonical Huffman shaped Wavelet Tree

- Using [STACS09] we obtain better performance as the number becomes smaller.
- How we can reduce the number of runs?
- KEY: Huffman assigns a code-length to each symbol, NOT A CODE

Compressing the mapping of Canonical Huffman shaped Wavelet Tree

- Reducing the number of runs
- Sort symbols in increasing order for each code length (for each Huffman tree level)

Both encodings are optimal

Compressing the mapping of Canonical Huffman shaped Wavelet Tree

- Result:
- As the maximum code length of a canonical Huffman encoding is $O(\log n)$ (the Huffman tree has $O(\log n)$ levels) we can obtain, reorganizing symbols at each level, at most $O(\log n)$ increasing runs. So:
- Considering only the number of runs, we can compress the mapping from $O(s \log n)$ bits to $O(s \log \log n)+O\left(\log ^{2} n\right)$ bits and solve symbol \rightarrow code and code \rightarrow symbol in $O(\log \log n)$ time using [STACS09]
- $O\left(\log ^{2} n\right)$ bits to:

Store where each run starts in P: iniRuns O(log s $\log n$)
Store the first code of each level: C ($\log ^{2} n$) (Codes of the same length are consecutives in canonical Huffman encoding)

Compressing the mapping of Canonical Huffman shaped Wavelet Tree

- 6

Canonical Huffman Tree (NOT STORED)

- Obtaining symbol \rightarrow code
- Applying invPi(symbol) we obtain:
- the position pos in P of symbol and
- the run where pos belongs
- Return code $=$ C[run] + pos - iniRuns[run]

- invPi(6):

- $\operatorname{pos}=3$, run $=2$
- Code =

$$
\begin{aligned}
& C[2]+\text { iniRuns }[2]-\text { pos }= \\
& 4+3-3=4 \rightarrow
\end{aligned}
$$

- Code $=4_{(10}, 100_{(2}$

Compressing the mapping of Canonical Huffman shaped Wavelet Tree

C 6

- Obtaining (code, len) \rightarrow symbol
- Locate the position in P where code is located:
- From len we can obtain the run
(data structure that takes $O(\log n \log \log n$) bits)
- pos = iniRuns[run] + code - C[run]

- Return symbol $=\mathrm{pi}(\mathrm{pos})$
- $(100,3) \rightarrow$ symbol?

- Len $3 \rightarrow$ run 2
- Pos $=$ iniRuns[2] $+4-\mathrm{C}[2]=3$ $+4-4=3$
- Apply pi(pos) $=\mathrm{pi}(3)=6$
- Code $\mathbf{1 0 0}_{(2} \rightarrow$ symbol 6

Removing pointers from Canonical Huffman WT

Removing pointers from a Canonical Huffman Wavelet Tree

Removing pointers from Canonical Huffman WT

- How to represent a canonical Huffman WT without using pointers?

Keys:

- Canonical Huffman implies that codes at the same

Removing pointers from Canonical Huffman WT

- How to represent a canonical Huffman WT without using pointers?

Keys:

- Canonical Huffman implies that codes at the same level are consecutives

- Shortest codes are located in the left-most part of the WT

Removing pointers from Canonical Huffman WT

- Levelwise canonical Huffman WT

Canonical Huffman WT using pointers

Canonical Huffman WT without pointers

```
2177628473228657
0100101101001110
2772722716843865
0110100110011001
68861435
01100101
1345
0101
```


Removing pointers from Canonical Huffman WT

- Levelwise canonical Huffman WT

$$
\begin{aligned}
& 2177628473228657 \\
& \mathrm{~B}_{1}= \\
& 0100101101001110 \\
& 2772722716843865 \\
& \mathrm{~B}_{2}=0110100110011001
\end{aligned}
$$

$$
\mathrm{B}_{3}=\begin{aligned}
& 68861435 \\
& 01100101
\end{aligned}
$$

$$
1345
$$

$$
B_{4}=0101
$$

- $\mathrm{F}[\mathrm{i}]=$ how many elements finish at level ;
- $C(i)=$ first code of each level
- $\mathrm{N}(\mathrm{i})=$ \#codes per level

$$
\begin{aligned}
& C[1]=0, C[2]=0, C[3]=100, C[4]=1100 \\
& N[1]=0, N[2]=2, N[3]=2, N[4]=4 \\
& F[1]=0, F[2]=8, F[3]=4, F[4]=4
\end{aligned}
$$

Removing pointers from Canonical Huffman WT

- Solving rank
- $\operatorname{rank}_{3}(12)=\# 3$ up to position 12
- Operations over on a WT turn into operations on bitmaps

Move to right:

$$
\begin{aligned}
& \mathrm{n}_{0}=\operatorname{rank}_{0}\left(B_{1}, e\right)-\operatorname{rank}_{0}\left(B_{1}, s\right)=8- \\
& \quad 0=8 ; \\
& \mathrm{s}=\mathrm{s}+\mathrm{n}_{0}-\mathrm{F}[1]=0+8-0=8 ; \\
& \operatorname{pos}=\mathrm{s}+\operatorname{rank}_{1}(12)-\operatorname{rank}_{1}(\mathrm{~s})=8 \\
& \quad+5-0=13 ;
\end{aligned}
$$

Removing pointers from Canonical Huffman WT

- Solving rank
- $\operatorname{rank}_{3}(12)=\# 3$ up to position 12
- Operations over on a WT turn into operations on bitmaps

68861435
$B_{3}=01100101 \quad F[3]=4$

$$
B_{4}=0101 \quad F[4]=4
$$

Symbol $3 \rightarrow$ Code $=1101$, len $=4$
$\mathrm{s}=8$;
e = 16;
pos = 13;

Move to right:

$$
\begin{aligned}
& \mathrm{n}_{0}=\operatorname{rank}_{0}\left(\mathrm{~B}_{2}, \mathrm{e}\right)-\operatorname{rank}_{0}\left(\mathrm{~B}_{2}, \mathrm{~s}\right)=8- \\
& \quad 4=4 ; \\
& \mathrm{s}=\mathrm{s}+\mathrm{n}_{0}-\mathrm{F}[2]=8+4-8=4 \\
& \operatorname{pos}=\mathrm{s}+\operatorname{rank}_{1}(\operatorname{pos})-\operatorname{rank}_{1}(\mathrm{~s})= \\
& \quad 4+7-4=7
\end{aligned}
$$

Removing pointers from Canonical Huffman WT

- Solving rank
- $\operatorname{rank}_{3}(12)=\# 3$ up to position 12
- Operations over on a WT turn into operations on bitmaps

Symbol $3 \rightarrow$ Code $=1101$, len $=4$

$$
\begin{aligned}
& s=4 ; \\
& e=8 \\
& \text { pos }=7
\end{aligned}
$$

Move to left:

$$
\begin{aligned}
& n_{0}=\operatorname{rank}_{0}\left(B_{3}, e\right)-\operatorname{rank}_{0}\left(B_{3}, s\right)=4- \\
& \quad 0=4 ; \\
& s=s-F[3]=4-4=0 ; \\
& e=s+n_{0}=0+4=4 \\
& \operatorname{pos}=\operatorname{rank}_{0}(\text { pos })-\operatorname{rank}_{0}(s)=0 \\
& \quad+4-2=2
\end{aligned}
$$

Removing pointers from Canonical Huffman WT

- Solving rank
- $\operatorname{rank}_{3}(12)=\# 3$ up to position 12
- Operations over on a WT turn into operations on bitmaps

Symbol $3 \rightarrow$ Code $=1101$, len $=4$

$$
s=0
$$

$$
e=4
$$

$$
\text { pos }=2 ;
$$

return

$$
\begin{aligned}
& \operatorname{rank}_{1}(\mathrm{pos})-\operatorname{rank}_{1}(\mathrm{~s})=1-0 \\
& =1
\end{aligned}
$$

Experimental evaluation

- Set up
- CR (from TREC)
- Machine: Inter®Xeon ${ }^{\circledR}-E 5446 @ 2.00 G H z$ with $16 G B$ of RAM, Ubuntu 9.10. gcc 4.4 .3 with flag -O9 set on.
- Queries: count, select and access
- Wavelet Trees:
- Huffman Shaped WT with pointers: WT-PTR
- Levelwise WT without pointers and without Huffman: WT-NOPTR
- Levelwise Canonical Huffman WT without pointers with O(s $\log \mathrm{n})$
$+\mathrm{O}(\mathrm{s} \log \mathrm{s})$ bits to store the model and solve the mapping in $\mathrm{O}(1)$
- Levelwise Canonical Huffman WT without pointers that uses a permutation to compress the model: WT-MP
- WT-MP-PLAIN\#: WT-MP using uncompressed bitmaps. Sampling rate on bitmaps of \#.
- WT-PLAIN-RRR\#: WT-MP using the Raman, Raman, and Rao technique to compress bitmaps. Sampling rate of \#.

Experimental evaluation

- Count

Count

Experimental evaluation

- Select

Select

Experimental evaluation

- Access

Access

Experimental evaluation

- Model size:

Huffman model sizes

-MP-RRR4 -MP-PLAIN4 "MT

MT (Model using a Table) takes more than $\mathbf{7}$ times the size of the compressed model using permutations (MP).

Questions?

