
Huffman-Compressed Wavelet
Trees for Large Alphabets

Gonzalo Navarro (DCC)

Alberto Ordóñez (LBD)

Laboratorio de Bases de Datos
Facultade de Informática
Universidade da Coruña

Departamento de Ciencias de
la Computación

Universidad de Chile

WCTA 2012: SPIRE 2012 Workshop on Compression, Text,
and Algorithms

 Introduction

 Compressing-permutations

 Compressing the mapping of Canonical Huffman shaped Wavelet Tree

 Removing pointers from Canonical Huffman WT

 Results

Outline

Introduction

 We usually build self-indexes over texts (or sequences with large
alphabets) using:

 An encoding for the indexed symbols (Canonical Huffman
encoding, Hu-Tucker encoding, …)

 A WT to support operations

Introduction

 In this work we show:

 How we can compress the mapping of a canonical Huffman
encoding (mapping: code symbol and symbol code)

 How we can reduce the size of a canonical Huffman WT
without using pointers

Compressing permutations

Compressing the mapping of a canonical
Huffman encoding

Compressing permutations

 Previous definitions

 pi(i): returns symbol in P[i]

 invPi(i): returns the position in
P where i is located

[STACS09] compresses P and
access pi(i) and invPi(i)
efficiently

m = 4 increasing runs

1 2 3 4 5 6 7 8

P[1..8]= 2 7 6 8 3 1 4 5

pi(3)=6

invP
i(6

)=3

Compressing permutations

 [STACS09]
 J. Barbay and G. Navarro: “Compressed Representations of

Permutations, and Applications”, Proc. 26th International Symposium on
Theoretical Aspects of Computer Science (STACS). Pp. 111-122 (2009)

 Lets consider a permutation P[1..p] with m increasing runs,
then [STACS09] obtains a compressed representation for P that:
 If we consider only the number of increasing runs m:

 p log m (1+o(1))+ O(m log p) bits and solves pi(i) and invPi(i) in
O(log m) time

 If we conider the entropy of the runs (being Runs[1..m] a vector that
contains the length of each run):
 n(2+H(Runs))(1+o(1))+O(m log n) bits and solves pi(i) and invPi(i) in

O(H(Runs)+1) time, H(Runs) <= log m

Compressing permutations

 [STACS09]
 Example: building a compressed permutation using [STACS09]

 Given a permutation P [1..8]=[2, 7, 6, 8, 1, 3, 4, 5] ,with m=4
increasing runs…

 It recursively takes pairs of runs and merge them following a
“merge sort” strategy

2 7 6 8 3 1 4 5

Compressing permutations

 [STACS09]
 Example: building a compressed permutation using [STACS09]

 Given a permutation P [1..8]=[2, 7, 6, 8, 1, 3, 4, 5] ,with m=4
increasing runs…

 It recursively takes pairs of runs and merge them following a
“merge sort” strategy

2 7 6 8 3 1 4 5

2 6 7 8 1 3 4 5
1 0 1 10 1 0 1

0 01 1

Compressing permutations

 [STACS09]
 Example: building a compressed permutation using [STACS09]

 Given a permutation P [1..8]=[2, 7, 6, 8, 1, 3, 4, 5] ,with m=4
increasing runs…

 It recursively takes pairs of runs and merge them following a
“merge sort” strategy

2 7 6 8 3 1 4 5

2 6 7 8 1 3 4 5
1 0 1 10 1 0 1

0 01 1

1 2 3 4 5 6 7 8
1 0 1 1 1 0 0 0

0 1

Compressing permutations

 [STACS09]
 Example: building a compressed permutation using [STACS09]

 Given a permutation P [1..8]=[2, 7, 6, 8, 1, 3, 4, 5] ,with m=4
increasing runs…

 It recursively takes pairs of runs and merge them following a
“merge sort” strategy

2 7 6 8 3 1 4 5

2 6 7 8 1 3 4 5
1 0 1 10 1 0 1

0 01 1

1 2 3 4 5 6 7 8
1 0 1 1 1 0 0 0

0 1

2 7 6 8 3 1 4 5

2 6 7 8 1 3 4 5
1 0 1 10 1 0 1

0 01 1

1 2 3 4 5 6 7 8
1 0 1 1 1 0 0 0

0 1

Shadowed are not stored

Compressing permutations

 [STACS09]
 Example: operations over a compressed permutation with [STACS09]

 pi(3):
 Locate position 3 in the

leaves
 Bottom-up transversal

performing select
 pi(3) = 6

2 7 6 8 3 1 4 5

2 6 7 8 1 3 4 5
1 0 1 10 1 0 1

0 01 1

1 2 3 4 5 6 7 8
1 0 1 1 1 0 0 0

0 1

Compressing permutations

 [STACS09]
 Example: operations over a compressed permutation with [STACS09]

 invPi(6):
 Top-down transversal of the

tree performing rank
 returns the offset

 invPi(6) = 3

1 2 3

2 7 6 8 3 1 4 5

2 6 7 8 1 3 4 5
1 0 1 10 1 0 1

0 01 1

1 2 3 4 5 6 7 8
1 0 1 1 1 0 0 0

0 1

Compressing permutations

 [STACS09]
 J. Barbay and G. Navarro: “Compressed Representations of

Permutations, and Applications”, Proc. 26th International
Symposium on Theoretical Aspects of Computer Science
(STACS). Pp. 111-122 (2009)

 We know that:
 [STACS09] can solve pi(i) and invPi(i)
 [STACS09] performs better when:
 The number of increasing runs is low (p log m (1+o1(1))…)
 H(Runs) is low

Compressing the mapping of Canonical
Huffman shaped Wavelet Tree

4 1 5 3

6 8

7 2

0

0

0 0

0

0

0 1

1 1

1

1

1

1

 How we can use [STACS09] to reduce the size of a canonical
Huffman mapping?

Mapping
1 1101
2 01
3 1111
4 1100
5 1110
6 100
7 00
8 101

 Codes of the same length are consecutives
 s different symbols
 O(log n) is the max. Length of a Huffman code

(being n the length of the indexed sequence)
 Mapping takes

 O(s log n) bits

Canonical Huffman Tree

 How we can convert the mapping into a permutation?
 Read Huffman tree leaves from left to right

P[1..8] = 7, 2, 6, 8, 4, 1, 5, 3
with m = 5 increasing runs

Compressing the mapping of Canonical
Huffman shaped Wavelet Tree

4 1 5 3

6 8

7 2

0

0

0 0

0

0

0 1

1 1

1

1

1

1

Compressing the mapping of Canonical
Huffman shaped Wavelet Tree

 Using [STACS09] we obtain better performance as the number of
runs becomes smaller.

 How we can reduce the number of runs?

 Using [STACS09] we obtain better performance as the number
becomes smaller.

 How we can reduce the number of runs?

 KEY: Huffman assigns a code-length to each symbol, NOT A
CODE

Compressing the mapping of Canonical
Huffman shaped Wavelet Tree

Compressing the mapping of Canonical
Huffman shaped Wavelet Tree

 Reducing the number of runs
 Sort symbols in increasing order for each code length (for each Huffman

tree level)

P[1..8] = 7, 2, 6, 8, 4, 1, 5, 3
m = 5 increasing runs

P[1..8] = 2, 7, 6, 8, 1, 3, 4, 5
m = 3 increasing runs

= Max. code length

4 1 5 3

6 8

7 2

0

0

0 0

0

0

0 1

1 1

1

1

1

1

1 3 4 5

6 8

2 7

0

0

0 0

0

0

0 1

1 1

1

1

1

1

Both encodings are optimal

 Result:
 As the maximum code length of a canonical Huffman

encoding is O(log n) (the Huffman tree has O(log n)
levels) we can obtain, reorganizing symbols at each
level, at most O(log n) increasing runs. So:

 Considering only the number of runs, we can compress the mapping
from O(s log n) bits to O(s log log n) + O(log2n) bits and solve
symbolcode and codesymbol in O(log log n) time using
[STACS09]
 O(log2n) bits to:

 Store where each run starts in P: iniRuns O(log s log n)
 Store the first code of each level: C (log2n) (Codes of the same length are

consecutives in canonical Huffman encoding)

Compressing the mapping of Canonical
Huffman shaped Wavelet Tree

 Obtaining symbolcode
 Applying invPi(symbol) we obtain:

 the position pos in P of symbol and
 the run where pos belongs

 Return code = C[run] + pos – iniRuns[run]

Compressing the mapping of Canonical
Huffman shaped Wavelet Tree

 invPi(6):
 pos = 3, run = 2

 Code =
C[2] + iniRuns[2] – pos =
4 + 3 – 3 = 4

 Code = 4(10, 100(2

Canonical Huffman Tree (NOT STORED)

2 7

6 8

1 3 4 5

0

0

0 0

0 0

1

01 1

1 1

1 1

Compressing the mapping of Canonical
Huffman shaped Wavelet Tree

 Obtaining (code, len)symbol
 Locate the position in P where code is located:

 From len we can obtain the run
(data structure that takes O (log n log log n) bits)

 pos = iniRuns[run] + code – C[run]

 Return symbol = pi(pos)

 (100, 3) symbol?
 Len 3 run 2

 Pos = iniRuns[2] + 4 – C[2] = 3
+ 4 – 4 = 3

 Apply pi(pos) = pi(3) = 6

 Code 100(2 symbol 6

Canonical Huffman Tree (NOT STORED)

2 7

6 8

1 3 4 5

0

0

0 0

0 0

1

01 1

1 1

1 1

Removing pointers from Canonical
Huffman WT

Removing pointers from a Canonical Huffman
Wavelet Tree

Removing pointers from Canonical
Huffman WT

 How to represent a canonical Huffman WT
without using pointers?

Keys:
 Canonical Huffman implies

that codes at the same
level are consecutives

2 1 7 7 6 2 8 4 7 3 2 2 8 6 5 7
0 1 0 0 1 0 1 1 0 1 0 0 1 1 1 0

2 7 7 2 7 2 2 7
0 1 1 0 1 0 0 1

1 6 8 4 3 8 6 5
1 0 0 1 1 0 0 1

6 8 8 6
0 1 1 0

1 4 3 5
0 1 0 1

1 3
0 1

4 5
0 1

0

0

0

1

1

1

Removing pointers from Canonical
Huffman WT

 How to represent a canonical Huffman WT
without using pointers?

Keys:
 Canonical Huffman implies

that codes at the same
level are consecutives

 Shortest codes are located
in the left-most part of the
WT

2 1 7 7 6 2 8 4 7 3 2 2 8 6 5 7
0 1 0 0 1 0 1 1 0 1 0 0 1 1 1 0

2 7 7 2 7 2 2 7
0 1 1 0 1 0 0 1

1 6 8 4 3 8 6 5
1 0 0 1 1 0 0 1

6 8 8 6
0 1 1 0

1 4 3 5
0 1 0 1

1 3
0 1

4 5
0 1

0

0

0

1

1

1

Removing pointers from Canonical
Huffman WT

 Levelwise canonical Huffman WT

Canonical Huffman WT using pointers Canonical Huffman WT without pointers

2 1 7 7 6 2 8 4 7 3 2 2 8 6 5 7
0 1 0 0 1 0 1 1 0 1 0 0 1 1 1 0

2 7 7 2 7 2 2 7
0 1 1 0 1 0 0 1

1 6 8 4 3 8 6 5
1 0 0 1 1 0 0 1

6 8 8 6
0 1 1 0

1 4 3 5
0 1 0 1

1 3
0 1

4 5
0 1

0

0

0

1

1

1

2 1 7 7 6 2 8 4 7 3 2 2 8 6 5 7
0 1 0 0 1 0 1 1 0 1 0 0 1 1 1 0

2 7 7 2 7 2 2 7 1 6 8 4 3 8 6 5
0 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1

6 8 8 6 1 4 3 5
0 1 1 0 0 1 0 1

1 3 4 5
0 1 0 1

Removing pointers from Canonical
Huffman WT

 Levelwise canonical Huffman WT

 F[i] = how many
elements finish at
level i

 C(i) = first code of
each level

 N(i) = #codes per
level

i in [1..O(log n)]C[1]=0, C[2]=0, C[3]=100, C[4]=1100
N[1]=0, N[2]=2, N[3]=2, N[4]=4
F[1]=0, F[2]=8, F[3]=4, F[4]=4

2 1 7 7 6 2 8 4 7 3 2 2 8 6 5 7
0 1 0 0 1 0 1 1 0 1 0 0 1 1 1 0

2 7 7 2 7 2 2 7 1 6 8 4 3 8 6 5
0 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1

6 8 8 6 1 4 3 5
0 1 1 0 0 1 0 1

1 3 4 5
0 1 0 1

B1=

B2=

B3=

B4=

Removing pointers from Canonical
Huffman WT

 Solving rank
 rank3(12) = #3 up to position 12

 Operations over on a WT turn into operations on bitmaps

Symbol 3 Code = 1101, len=4
s = 0;
e = 16;
pos = 12;

Move to right:
n0=rank0(B1,e) – rank0(B1,s) = 8-

0 = 8;
s = s +n0 – F[1]= 0 + 8 - 0= 8;
pos = s+ rank1(12) - rank1(s) = 8

+ 5 - 0 = 13;

2 1 7 7 6 2 8 4 7 3 2 2 8 6 5 7
0 1 0 0 1 0 1 1 0 1 0 0 1 1 1 0

2 7 7 2 7 2 2 7 1 6 8 4 3 8 6 5
0 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1

6 8 8 6 1 4 3 5
0 1 1 0 0 1 0 1

1 3 4 5
0 1 0 1

F[1]=0

F[2]=8

F[3]=4

F[4]=4

B1=

B2=

B3=

B4=

rank1(12) = 5

s=0 e=16

2 1 7 7 6 2 8 4 7 3 2 2 8 6 5 7
0 1 0 0 1 0 1 1 0 1 0 0 1 1 1 0

2 7 7 2 7 2 2 7
0 1 1 0 1 0 0 1

1 6 8 4 3 8 6 5
1 0 0 1 1 0 0 1

6 8 8 6
0 1 1 0

1 4 3 5
0 1 0 1

0

0

1

1

Only for ill
ustration purpose

Removing pointers from Canonical
Huffman WT

 Solving rank
 rank3(12) = #3 up to position 12

 Operations over on a WT turn into operations on bitmaps

Symbol 3 Code = 1101, len=4
s = 8;
e = 16;
pos = 13;

Move to right:
n0=rank0(B2,e) – rank0(B2,s) = 8-

4 = 4;
s = s + n0 - F[2] = 8 + 4 – 8 = 4
pos = s + rank1(pos) - rank1(s) =

4 + 7 – 4 = 7;

2 7 7 2 7 2 2 7 1 6 8 4 3 8 6 5
0 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1

6 8 8 6 1 4 3 5
0 1 1 0 0 1 0 1

1 3 4 5
0 1 0 1

F[2]=8

F[3]=4

F[4]=4

B2=

B3=

B4=

s=8 e=16
pos=13

2 1 7 7 6 2 8 4 7 3 2 2 8 6 5 7
0 1 0 0 1 0 1 1 0 1 0 0 1 1 1 0

2 7 7 2 7 2 2 7
0 1 1 0 1 0 0 1

1 6 8 4 3 8 6 5
1 0 0 1 1 0 0 1

6 8 8 6
0 1 1 0

1 4 3 5
0 1 0 1

1 3
0 1

4 5
0 1

0

0

0

1

1

1

Only fo
r il

lustra
tio

n purpose

Removing pointers from Canonical
Huffman WT

 Solving rank
 rank3(12) = #3 up to position 12

 Operations over on a WT turn into operations on bitmaps
Symbol 3 Code = 1101, len=4
s = 4;
e = 8;
pos = 7;

Move to left:
n0=rank0(B3,e) – rank0(B3,s) = 4-

0 = 4;
s = s – F[3] = 4 – 4 = 0;
e = s + n0 = 0 + 4 = 4
pos = rank0(pos) – rank0(s) = 0

+ 4 – 2 = 2

6 8 8 6 1 4 3 5
0 1 1 0 0 1 0 1

1 3 4 5
0 1 0 1

F[3]=4

F[4]=4

B3=

B4=

s=4
e=8

pos=7

2 1 7 7 6 2 8 4 7 3 2 2 8 6 5 7
0 1 0 0 1 0 1 1 0 1 0 0 1 1 1 0

2 7 7 2 7 2 2 7
0 1 1 0 1 0 0 1

1 6 8 4 3 8 6 5
1 0 0 1 1 0 0 1

6 8 8 6
0 1 1 0

1 4 3 5
0 1 0 1

1 3
0 1

4 5
0 1

0

0

0

1

1

1

Only fo
r il

lustra
tio

n purpose

Removing pointers from Canonical
Huffman WT

 Solving rank
 rank3(12) = #3 up to position 12

 Operations over on a WT turn into operations on bitmaps

Symbol 3 Code = 1101, len=4
s = 0;
e = 4;
pos = 2;

return
rank1(pos) – rank1(s) = 1 – 0
= 1

1 3 4 5
0 1 0 1 F[4]=4B4=

s=0 e=4

pos=2

2 1 7 7 6 2 8 4 7 3 2 2 8 6 5 7
0 1 0 0 1 0 1 1 0 1 0 0 1 1 1 0

2 7 7 2 7 2 2 7
0 1 1 0 1 0 0 1

1 6 8 4 3 8 6 5
1 0 0 1 1 0 0 1

6 8 8 6
0 1 1 0

1 4 3 5
0 1 0 1

1 3
0 1

4 5
0 1

0

0

0

1

1

1

Only for ill
ustration purpose

Experimental evaluation
 Set up

 CR (from TREC)
 Machine: Inter®Xeon®-E5446@2.00GHz with 16GB of

RAM, Ubuntu 9.10. gcc 4.4.3 with flag –O9 set on.
 Queries: count, select and access
 Wavelet Trees:

 Huffman Shaped WT with pointers: WT-PTR
 Levelwise WT without pointers and without Huffman: WT-NOPTR
 Levelwise Canonical Huffman WT without pointers with O(s log n)

+ O(s log s) bits to store the model and solve the mapping in O(1)
 Levelwise Canonical Huffman WT without pointers that uses a

permutation to compress the model: WT-MP
 WT-MP-PLAIN#: WT-MP using uncompressed bitmaps. Sampling rate

on bitmaps of #.
 WT-PLAIN-RRR#: WT-MP using the Raman, Raman, and Rao

technique to compress bitmaps. Sampling rate of #.

Experimental evaluation

 Count

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.2 0.25 0.3 0.35 0.4 0.45 0.5

m
se

c/
oc

c

Compression ratio (%)

Count

WT-NOPTR
WT-PTR

WT-MT
WT-MP-RRR4

WT-MP-RRR16
WT-MP-PLAIN16

Experimental evaluation

 Select

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.2 0.25 0.3 0.35 0.4 0.45 0.5

m
se

c/
oc

c

Compression ratio (%)

 Select

WT-NOPTR
WT-PTR
WT-MT

WT-MP-RRR4
WT-MP-RRR16

WT-MP-PLAIN16

Experimental evaluation

 Access

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0.022

 0.2 0.25 0.3 0.35 0.4 0.45 0.5

m
se

c/
oc

c

Compression ratio (%)

 Access

WT-NOPTR
WT-PTR
WT-MT

WT-MP-RRR4
WT-MP-RRR16

WT-MP-PLAIN16

Experimental evaluation

 Model size:

MP-RRR4
MP-PLAIN4
MT

MT (Model using a Table) takes more than 7 times the size of the compressed model
using permutations (MP).

Questions?

	Huffman-Compressed Wavelet Trees for Large Alphabets
	Outline
	Introduction
	Introduction
	Compressing permutations
	Compressing permutations
	Compressing permutations
	Compressing permutations
	Compressing permutations
	Compressing permutations
	Compressing permutations
	Compressing permutations
	Compressing permutations
	Compressing permutations
	Compressing the mapping of Canonical Huffman shaped Wavelet Tree
	Compressing the mapping of Canonical Huffman shaped Wavelet Tree
	Compressing the mapping of Canonical Huffman shaped Wavelet Tree
	Compressing the mapping of Canonical Huffman shaped Wavelet Tree
	Compressing the mapping of Canonical Huffman shaped Wavelet Tree
	Compressing the mapping of Canonical Huffman shaped Wavelet Tree
	Compressing the mapping of Canonical Huffman shaped Wavelet Tree
	Compressing the mapping of Canonical Huffman shaped Wavelet Tree
	Removing pointers from Canonical Huffman WT
	Removing pointers from Canonical Huffman WT
	Removing pointers from Canonical Huffman WT
	Removing pointers from Canonical Huffman WT
	Removing pointers from Canonical Huffman WT
	Removing pointers from Canonical Huffman WT
	Removing pointers from Canonical Huffman WT
	Removing pointers from Canonical Huffman WT
	Removing pointers from Canonical Huffman WT
	Experimental evaluation
	Experimental evaluation
	Experimental evaluation
	Experimental evaluation
	Experimental evaluation
	Número de diapositiva 42

