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Abstract

We present a new variable-length encoding scheme for seqseri integersDirectly Ad-
dressable Codes (DAGs)hich enables direct access to any element of the encodetisee
without the need of any sampling method. Our proposal is d &ifrimplicit data structure that
introduces synchronism in the encoded sequence withoog asiymptotically any extra space.
We show some experiments demonstrating that the techréauoe only simple, but also compet-
itive in time and space with existing solutions in severagllagations, such as the representation
of LCP arrays or high-order entropy-compressed sequences.

Keywords: Variable length codes, Random access

1. Introduction

Variable-length coding is at the heart of Data CompressRiarér, 1988; Bell et al., 1990;
Witten et al., 1999; M@iat and Turpin, 2002; Solomon, 2007). It is used, for exanipjesta-
tistical compression methods, which assign shorter cotssto more frequent symbols. It also
arises when representing integers from an unbounded seivéYell-known codes like- and
6-codes are used when smaller integers are to be represemgdewer bits.

A problem that frequently arises when variable-length sate used to encode a sequence of
symbols is that it is not possible to access directlyittteencoded element, because its position
in the encoded sequence depends on the sum of the lengtlegaéthious codewords. This is not
an issue if the data is to be decoded from the beginning, asnymompression scenarios. Yet,
the problem arises recurrently in the fieldaafmpressed data structureshere the compressed
data should be randomly accessible and manipulable in cssed form. A typical scenario is
that of an array of integers containing mostly small valbes still being there a few large values
that prevent simply allocating a few bits for each cell.

The typical solution to provide direct access to a varidetegth encoded sequence is to regu-
larly sample it and store the position of the samples in tle@dad sequence, so that decompres-
sion from the last sample is necessary. This introduces@espal time penalty to the encoding
that hinders the use of variable-length coding in many cagese it would be beneficial.
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In this article we present a new variable-length encoditgste for sequences of integers
that supports fast direct access to any element. This setiydies variable-length codewords
coming from compression methods. We show experimentadiydhr technique is advantageous
compared to other encoding schemes that support directscCair implementations are avail-
able athttp://1bd.udc.es/research/DACS/.

2. Variable-Length Encodings

Statistical encodinglLet X = x;X;...X, be a sequence of symbols to represent. A way to
compressX is to order the distinct symbol values by their frequencyinand identify each
value x; with its positionp; in the ordering, so that smaller positions occur more fratye
Hence the problem is how to encode the into variable-length bit streants = c(p;) (called
codewordy, giving shorter codewords to smaller values fifhen coding (H&Eman, 1952) is the
best code (i.e., achieving the minimum total length) thamnisocally decodable.

Coding integers.In some applications, thgs are directly the numbers to be encoded, such
that the smaller values are assumed to be more frequent. @netidl use Hifman, but if
the set of distinct numbers is too large, the overhead ofrgfdhe HuUfman codec(-) may be
prohibitive. In this case one can directly encode the nusbéth a fixed prefix code that gives
shorter codewords to smaller numbers, such-asdesg-codes, and Rice codes, to name a few
(Witten et al., 1999; Solomon, 2007).

If we could assign just the minimum number of bits requiredefaresent each number> 1,
the total length of the representation wouldMe = Y 1., (Llogx ] + 1) bits. Note thatNg <
H + n, whereH = Iog(ﬁ) andu = Y 1.y Xi. The (at mosth extra bits of the encoding owe to
the need of using an integral number of bits per code (hundzerde packed and represented as
tuples to reduce this overhead). Thermodes achievdl < 2Ny bits by representingog x| in
unary and ther; in optimal form without its most significant 1-bit. For largaumbersg-codes
perform better by representiri¢pg x| usingy-codes instead of unary codes, thus achieving
N < No + 2nlog(No/n) + O(n) bits. Rice codes are parameterized bgdix r, so that the lowest
r bits of x; are represented verbatim, precededXy2" | in unary.

Vhbyte coding (Williams and Zobel, 1999)his is a particularly interesting code for this article.
In its general variant, the code splits tHeg x; | + 1 bits needed to represextinto blocks ofb
bits and stores each block intehunkof b+ 1 bits. The highest bit is 0 in the chunk holding the
most significant bits ok;, and 1 in the rest of the chunks. For exampleg i 25 = 1100% and
b = 3, we need two chunks and the representatio®is1q001.

Compared to an optimal encoding|ddg x; | + 1 bits, Vbyte code loses one bit pebits of
X, plus possibly an almost empty final chunk, for a total spddd & [Np(1 + 1/b)] + nb bits.
The best choice for the upper boundis +/No/n, achievingN < Ng + 2n+/No/n, which is still
worse thars-encoding’s performance. In exchange, Vbyte codes arefastyo decode.

Fast decodable representationSimple9 (Anh and Méat, 2005), Simple16 and PforDelta (Zukowski
et al., 2006) are recent techniques to achieve fast decadiddittle space. The general idea is

to pack a number of small integers in a computer word, usiegitimber of bits needed by the
largest number. Simple9 packs the sequence into words oit24t each point of the encod-

ing process, it regards the next numbers and computes thienmaxthat can be included in a
word using the same number of bits for all. For example it cacode 28 1-bit numbers, 14
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2-bit numbers, 9 3-bit numbers, and so on. Four bits of ther82eserved to encode which
format was chosen for that word. Simplel6 uses a similahgii more sophisticated, packing.
In PForDelta one uses many more than 32 bits (say, 256), aeatttre 10% largest numbers as
exceptions that are encoded separately. In a worst-caserseg|these representations may pose
a very high space overhead, but in practical situations pleeform very well.

3. PreviousWork

We now outline several solutions to the problem of givingediraccess to a sequencenof
concatenated variable-length codes, that is, extractipgieefficiently, giveni. Let us calIN the
length in bits of the encoded sequence.

Sparse samplingThis classical solution samples the sequence and storefuibpointers to
the sampled elements, that is, to edeth element of the sequence. Access to the @)-th
element, for O< d < h, is done by decodind codewords starting from thieth sample. This
involves a space overhead[oifh][log N7 bits and a time overhead 6f(h) to access an element,
assuming we can decode each symbol in constant time.

Dense sampling (Ferragina and Venturini, 2007his technique representsusing just log x; |

bits, and sets pointers &veryelement in the encoded sequence, which delimits each edcode
value and gives constant-time access to it. By using twddesfepointers (absolute ones every
®(log N) values and relative ones for the rest) the extra space équaimters iO(n(loglogN +

log logM)), whereM is the maximum number stored in the sequence.

Elias-Fano-based representation (Elias, 1974; Fano, 1)97This is a representation for a se-
guencey; of n strictly increasing numbers endingat= y,. It usesnlog(u/n) + O(n) bits and
gives constant-time access to any The representation separates the lower[log(u/n)] bits

of each element from the remaining upper bits, and storesethawer bits contiguously in an
array ofsn bits. The upper bits are represented in another bit arrayzefet most 8, where
the bits at positiongy;/2°] + i, for eachi < n, are set. By using more recent techniques to find
thei-th bit set in a bitmap in constant time an¢h) extra space (Munro, 1996; Okanohara and
Sadakane, 2007), aiyycan be obtained i®(1) time.

This representation can be used to encode a sequence d@rsiteg 1, by concatenating
the binary representations of numbers- 1, and excluding their most significant 1-bits, into a
bit sequence&X. The starting positions of the encoded numberX iforms a strictly increasing
sequence; that is stored using the Elias-Fano representation destébove. Thus we obtain
y; andyi,1 in constant time and these are the limiting positions where 1 (deprived of its
highest 1-bit) is to be found iXX. Overall, the technique achiev€®1) time access an <
No + nlog(No/n) + O(n) bits of space.

Interpolative coding (Mgiat and Stuiver, 2000; Teuhola, 2011Jhis is a technique to encode
integer sequences using variable-length codes, s@fag n)-time access is supported not only
by position (as is our focus), but also by content (i.e., fimel position where the sum of thxes
exceeds a threshold). The idea is to set up a virtual balameedaver the sequence of encoded
values. The encoding of a subtree is preceded by the sumw#vahd encoding size of the left
subtree. The number of bits needed for this header is lintijetthe sizes of the parent headers.
By letting the tree leaves hand®logn) values, the space overhead is j@hlog(N)/log(n))
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bits. The solution fiers a good combination of space- and tinfigeéency for both operations.
However, as shown in the extensive experiments by TeuhOEL(2 the codes we present in this
article are orders of magnitude faster when accessing htigras

Wavelet tree (Grossi et al., 2003Yhis is a data structure that represents a sequence of sym-
bols, and can be adapted to a variable-length represemtatithem (Grossi et al. showed
how to adapt it to Hfman coding, but their idea can be generalized (Navarro, 20112t
c(X1), c(X2), . . ., ¢(Xn) be the codewords (i.e., bit streams) of thr&ymbols, for a prefix-free func-
tion c(-). The root of the wavelet tree holds a bitmap with the firsbbigach codewordh(bits in
total). If there are some 0-bits in this bitmap, then the d¢éitd of the root contains the second
bit of those codewords starting with a 0-bit. Similarly,ietre are some 1-bits in the root bitmap,
then the right child of the root contains the second bit osthoodewords starting with a 1-bit.
This continues recursively at both children. The total nemdf bits in the wavelet tree is exactly
N, and the wavelet tree replaces the encoded sequence.

In order to access, we read thé-th bit of the root bitmay. If this bit completes a codeword,
then this bit isc(x;) and we are done. If not, we continue by the left chil@jif] = 0, and by the
right child if B[i] = 1. The new position at the left child i5§= ranky(B, i) and at the right child
isi’ = ranky(B, i), whererank,(B, i) denotes the number of occurrences of thebliit the prefix
B[1,i] (we useb = 1 by default). Queryank can be computed in constant time using jost)
extra bits on top oB (Jacobson, 1989; Clark, 1996; Munro, 1996). Using suclcsiras over
all the bitmaps, the time to extract aryis O(Jc(x;)|) and the total space N + o(N) bits, plus
the pointers for the tree structure, which depend on thetimmc(-) (if this is a Hufman coding
the size is equivalent to that of a Hinan table).

A variant of wavelet trees that is closely related to our apph are the Wavelet Trees on
ByteCodes (Brisaboa et al., 2008). Those also encode theseg and provide direct access.
They are, however, more complex than necessary for thiscapipin. They allow one to compute
frequencies of numbers in arbitrary ranges of the sequamecktrack the positions of individual
values in the sequence. Our arrangement, which focuse®omlirect access, is simpler and has
better locality of reference.

4. Directly Addressable Codes (DACS)

4.1. Conceptual description

Given a sequence of integexXs= xq, Xo, . . ., Xn, We describe our new encoding scheme that
enables direct access to any element of the encoded sequence

We make use of the generalized Vbyte coding described inddezt We first encode thes
into a sequence ob(+ 1)-bit chunks. Next we separate thdéfdirent chunks of each codeword.
Assumey; is assigned a codeword composedpghunksCi,,, ..., Ci2, Ci1. Afirst streamCy,
will contain then; = nleast significant chunks (i.e., rightmost) of every codelvét second one,
C,, will contain then, second chunks of every codeword (so that there are mngodewords
using more than one chunk). We proceed similarly v@th and so on. Being/ the maximum
integer of the sequence, we nded [log(M)/b] stream<Cy.

Each streanCy will be separated into two parts. The lowésbits of the chunks will be
stored contiguously in an arrady (of b - ng bits), whereas the highest bits will be concatenated
into a bitmapBy of ny bits. Figure 1 illustrates the reorganization of the churfkg sequence of
five codewords.



C= [Ci2Ci11]|C1|C35C52C51 |CanCay [Csy-o

We denote each C; j-B;j: Ajj

C Ay Ay Ag Asy Ay As
B, 1 0 1 1 0
C2 AZ Al‘z A3,2 A4,2
B, 0 1 0
Cs As Az
B; 0

Figure 1: Example of reorganization of the chunks of eactewodd.

The bits in eachBy identify whether there is a chunk of that codewordlip;. To find the
position of the corresponding chunk @y, we need-ank queries on théy bitmap. We set up
data structures on tHgy bitmaps that answeankin constant time usin@(2%'22%9N) extra bits

logN
of space, being\ the length in bits of the encoded sequénce

The overall structure is composed by Bebitmaps, theirank structures, théy arrays, and
pointers to those bitmaps and arrays. These pointers @gdéag(M)/b1[logN7) = O(logM)
bits overall, and this space is in practice negligible. laltthere are), nk = % chunks in the
encoding gnoteN is a multiple ofb + 1), and thus the extra space for tfzenk data structures is
just O(NL"Iggo,ﬂN) = o(N/b). Therefore the space is essentially that of the Vbyte sepreation of
the sequence, plus (significantly) lower-order terms.

Extraction of the-th value of the sequence is carried out as follows. We stifintiv= i and
get its first chunlC; 1 = By[i1] : Aqfi1]. If By[iz] = O we are done with; = Aq[i1]. Otherwise
we seti, = rank(By, i1), which gives us the correct position of the second chunk of C,, and
getCi2 = By[ig] : Agfiz]. If Bfiz] = 0, we are done with; = Aqfi1] + Agliz] - 2b. Otherwise we
setiz = rank(By, i2) and so on.

Extraction of a random codeword requifé$/(n(b + 1))] accesses; the worst case is at most
log(M)/b] accesses. Thus, in case the numbers to represent come friatistical variable-
length coding, and the sequence is accessed at unifornttijpdied positions, we have the addi-
tional benefit that shorter codewords are accessed morreartbare cheaper to decode.

4.2. Implementation considerations

Our implementation uses the variant of Vbytes designedeidrd¢ompression called ETDC
(Brisaboa et al., 2007), which can make use of all the contioing.of chunks and obtains slightly
better space In addition, the last bitmajB, is not stored in the final representation of the
sequence of integers, since all the bit8inare zero.

We implementank operations over th8 bitmaps using the 5%-extra space data structure
by Gonzalez et al. (2005) (note that this is space oveBfHgitmaps, whose size is alreadytl

1This is achieved by using blocks éﬂog N bits in therank directories (Jacobson, 1989; Clark, 1996; Munro, 1996).
2Note that the highest chunk of the Vbyte encoding cannot beeabs. This wastes a combination in the highest
chunk, and consequently the representation does not dh&lmest possible space usage.
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of the total size). The times faank using such extra space are of a few microseconds. If we
denoter the space overhead for the structure, the time for answemleoperation iS0(1/¢).

The extraction of consecutive codewords can be performed in a méieient way than
justr independent accesses to the encoded sequence. By usingiatex pt each levek of
the representation, indicating the last chunk read at thedl Ir consecutive codewords can be
extracted by computing at mogbg(M)/b] rank operations to initialize those pointers and de-
coding sequentially the corresponding chunks at each.level

4.3. Minimizing the space

We have presented DACs using a fixed paramigterhich remains constant for every level
of the representation. However, the valuebafould be chosen ferently at each levely, in
order to fit some goal. In particular, we can chooselihgalues with the goal of optimizing
compression. This goal, however, can lead to a high numbvels L, which worsens the
access time. In this section we present algorithms to chbasel b, so that we just optimize
the space without further restrictions, or we optimize spahile limiting the worst-case access
time L, or we optimize space while limiting the average case time.

Without restrictions. The optimal values can be obtained using a dynamic programaigo-
rithm that obtains the values farandby, k < L, that minimize the size of the representation of
the given sequence.

In our dynamic programming algorithm, a subprobleeonsists in encoding in the best way
all the valuesx; that are greater than or equal tg Bynoring theirt lowest bits. We start by
solving trivially the casé = m = [logM] + 1 and go down untit = 0, which represents the
solution to the original problem (i.e., encoding all the raars without ignoring bits).

Given at, we can choose for eath< i < m, to encode from theth to the (- 1)-th bit of the
numbers in a single level, and then solve the subprolflemi using further levels. The space
required per element encoded wouldibet bits for sequencéy, and 1+ ¢ bits for By, wheree
is the space overhead for thenk structure. Because the last level does not store the biBgap
the costisin+ 1) — t bits per element if we choose to encode fromttie to the last if+-th) bits
in a single level.

Algorithm 1 gives the pseudocode that obtains the optimatlver of levelsL and theby
values,k < L. It receivesm and a vectocf of cumulative frequencies of siza + 1, that is,
cf[t] is the number of values; that are greater than or equal to Zhe optimal number of bits
achieved for subprobletris stored in vectost], the corresponding number of levels|[t], and
the value ob for the first level of such optimal representatiorb[t]. The optimization costs just
O(log? M) time (plusO(n) to computecf) andO(log M) space.

A byte-aligned variation of this algorithm can generate presentation of the sequence
where each chunk is completely contained in a unique byt ,d@ecompression and accesses
can be implemented moréieiently in practice.

Limiting the number of levels to usdf we restrict the number of levels of the representation,
we are limiting the worst-case access time (i.e., the adomgsfor the maximum value of the
sequence). We can obtain the optimal space restricted ng @asmaximum number of levels
by including a new parameter in the optimization algorithmattgives the remaining number of
levels available. When only one level remains, we are fotoestiore all the bits, from theth to
them-th, in a single level. Since the maximum number of level3(i®g M), the time complexity
raises taO(log® M).
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Algorithm 1: Optimize(m, cf)
fort=m...0do
minSize— +oo, MiNPoS— m
fori=t+1...mdo
currentSize— di] + cf[t] - ((i —t) + (1 + €))
if minSize> currentSizehen
| minSize— currentSize minPos« i
end
end
if minSize< cf[t] - ((m+ 1) —t) then
| dt] « minSize I[t] « I[minPo§ + 1, b[t] « minPos-t
else
| gt] « cf[t] - (m+21)-1), I[t] « 1, b[t] « (M+1)-t
end

end
L « 1[0]
t<20
for k=1...1[0] do
bk < b[t]
t «— t+ b[t]
end
returnL,by,...,b.

Limiting the number of rank operationst is also possible to limit the average access time
of the representation by restricting the average numbeami operations, or equivalently, by
restricting},.. Nk < C. Once again, we are forced to create one single final levehetjig > C,
else we can create one level up to theX)-th bit and solve subprobleth= i with limit C—cf[t].
The time become®(C log® M) time, which can be reduced by quantizing the precisio@.of

5. Experimental Evaluation

The Directly Addressable Codes (DACs) are practical andbmasuccessfully used in nu-
merous applications where direct access is required oeerdpresentation of a sequence of
integers. This requirement is frequent in compressed diatetsres, such as fix trees, arrays,
and inverted indexes, to name just a few. We show experirietitat DACs dfer a competitive
alternative to other encoding schemes that support diceess.

In Section 5.1 we compare DACs with other solutions to prewdilect access to sequences of
integers: sparse sampling ovecodes;y-codes, Rice codes, Vbyte codes, Simple9, PForDelta,
and Elias-Fano monotone lists. We use LCP arrays as an ezahpkquences of integers to
encode.

Sections 5.2 and 5.3 describe scenarios where we have segueharbitrary symbols in-
stead of sequences of integers. We compare the behavior 66 DAthis scenario with other
statistical encodings such as bit- and byte-orienteffthlan encodings, which require a sparse
sampling to provide direct access over the sequence. Wecalepare our technique with the
dense sampling of Ferragina and Venturini, explained iri&e8, and with a Hfman-shaped
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Table 1: Description of the LCP arrays used.

number of | maximum| average| median| most freq.
data elements value value | value value
dblp 104,857,600 1,084 28.22 32| 10(2.15%)
dna 104,857,600 17,772 16.75 13 | 13 (24.59%)
proteins | 104,857,600 35,246| 195.32 6 | 6(28.75%)

wavelet tree, which compactly represents a sequence ofdgrfiom an arbitrary alphabet and
supports #icient access to any element of the sequence.

For all the experiments the machine used is a AMD Phenom(tm%1955 Processor (4
cores) with 8 GB RAM. It ran Ubuntu GNUWUinux with kernel version 2.6.31-22-server (64
bits). We compiled with gcc version 4.4.1 and the optan.

5.1. LCP array representation

The Longest Common Prefix (LCR)ray is a central data structure in stringology and text
indexing (Manber and Myers, 1993). Consider a fE)t, n] of lengthn, and all the sffixes of
the text, that isT[i, n] with 1 < i < n. Assume that we have all thoseflsxes lexicographically
sorted. The LCP array stores, for eaclffis,) how many symbols it has in common with the
previous stfix, that is, the length of the longest common prefix betweerh eaffix and its
predecessor. Most LCP values are small, but some can beargg. IHence, a variable-length
encoding scheme is a good solution to represent this sequéitegers.

Our experiments were performed on 100 MB of the XML, DNA andtpin texts from
Pizza&Chili corpus (httgipizzachili.dcc.uchile.cl). We denotiblp the LCP array obtained
from the XML file, which contains bibliographic informaticmn major computer science jour-
nals and proceedings. We denate the LCP array obtained from the DNA text, which contains
gene DNA sequences consisting of uppercase letters A,Ga@dlsome other few occurrences
of special characters. We den@teoteins the LCP array obtained from the protein text, which
contains protein sequences where each of the 20 amino acid&led as one uppercase letter.
Some interesting information about this dataset is showmailole 1. The first column indi-
cates the number of elements of the LCP array. The second, ahd fourth columns show,
respectively, the maximum, average, and median integaesaltored in the LCP array. The last
column shows the most frequent integer value and its frezuen

We use several configurations for DACs. “DACs opt” standsther alternative that uses
the optimal value fob at each level of the representation without restrictioris addition, we
built several configurations limiting the number of levelenoted “DACs opt-max levels”, and
limiting the average cost, denoted “DACs opt-avg cost”.

We compare the space and tinfe@ency of DACs with some integer encodings, more con-
cretely: 6-codes,y-codes, Rice codes using thevalue that minimizes the spdteSimple9,
PForDelta, and byte codes (Vbyte codes Witk 7). To support direct access over the com-
pressed representation of the LCP array we attach a spargsirsg to the encoded sequence
obtained by all these integer encoding schemes.

3The optimal values arb = 6,1,1,1,2 for dblp, b = 4,1,1,1,2,2,2,2 for dna, andb = 3,3,2,2,2,1,1, 2 for
proteins.
“These are = 5 for dblp, r = 4 for dna, andr = 7 for proteins.
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Table 2: Space for encoding thred¢fdient LCP arrays and decompression time undéerint schemes.
Text dblp dna proteins

Method Space Time Space Time| Space Time
(bitge) (sec.)| (bits/e) (sec.)| (bits’e) (sec.)
6- codes 9.5421 1.04| 8.3908 1.04| 7.8635 1.31
v-codes | 10.0834 1.19 7.7517 1.15| 8.2899 1.40
Rice codes 6.9194 0.91| 6.0493 0.89| 9.5556 0.93
Simple9 7.3565 0.17 | 5.6542 0.8 | 7.6135 0.23
PForDelta | 6.2829 0.18| 51408 0.21| 6.7323 0.33
byte codes| 8.4024 0.44| 8.0612 0.43| 9.2683 0.51
DACs opt 7.5222 1.41] 5.5434 1.35| 6.5797 2.01

We also compare our structure with the representation af¢lg@ience of integers using the
Elias-Fano monotone lists and also using interpolativéngdd For the Elias-Fano represen-
tation, we use the implementation from the Sux4J préjédigna, 2008), compiling with java
version 1.6.018.

We measure the space required by each technique in bitsgmeeet (bitge), and decompres-
sion and access time. Decompression time measures thedsaoeeded to retrieve the original
LCP array in plain form. Access time is measured in microedsmer access as the average
time to retrieve the elements at random positions of the LiC&ya

Table 5.1 shows the space requiredsbgodes;y-codes, Rice codes, Simple9, PForDelta and
byte codes (without any sampling) to represent the threrdint LCP arrays, and the space oc-
cupied by “DACs opt”. We also include the decompression fimseconds. We can observe that
DACs obtain the best space among all the alternativepfoteins, while PForDelta obtains
the smallest representation for the rest. Rice codes afastest bit-oriented alternative, while
Simple9 obtains the best decompression time while actgealso very compact spaces.

The main goal of our proposal is to provide fast direct acteskse encoded sequence. We
tested the &iciency of DACs by accessing all the positions of each LCPyaimaandom or-
der. Figure 2 shows the spaces and times achievedbfos (top right),dna (bottom left), and
proteins (bottom right) LCP arrays. The space for the integer enagxlincludes the space
for the sparse sampling, where we varied the sample periotitain the spagéme trade-@".
We also include Elias-Fano representation and interpel&ivding in this comparison. Notice
that interpolative coding supports log-time access bytmwsibut also by content, which is not
efficiently supported by the rest of the encodings.

DACs obtain the most compact space among all the altersatitreen using the optimal
values folb onproteins. They are slightly superseded by PForDeltaian, and clearly super-
seded ondblp, where Rice codes also achieve slightly less space. In@dketleases, however,
DACs are faster, by a factor of 1.4 to 2.0. Variants “DACs opx levels” and “DACs opt-avg

5Thanks to J. Teuhola for providing us the code.

Bhttpy/sux.dsi.unimi.it

“In most encodings it is not necessary to fully decode theg@rse from the last sample to the one preceding the
desired value; just partial information fiiges to skip them. We used a distinct optimized skipping mioce for each
encoding.
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Figure 2: Space and average access time tfaéadifferent configurations of DACs and other integer encodingswhe
accessing random positions of three LCP arrays. yTdrds represents the average time per access (in microsgcond

cost” can achieve better times at the expense of worsenggdimpression ratio, the latter per-
forming slightly better. The union of the DAC variants outjpem all the other solutions in space
and time.

5.2. High-Order Entropy-Compressed Sequences

Ferragina and Venturini (2007) gave a simple scheme (F\Vgpoasent a sequence of sym-
bolsS = S;S,... S, sothatitis compressed to its high-order empirical entaopyanyO(log n)-
bit substring ofS can be decoded in constant time. This is extremely usefidusecit permits
replacingany sequence by its compressed variant, and any kind of accéssrider the RAM
model of computation retains the original time complexitiien, the compressed representation
of the sequence permits us to answer various types of qustiel as obtaining substrings or
approximate queries, irfficient time without decompressing the whole compressed data

The idea of Ferragina and Venturini is to split the sequé&holengthn into blocksof % logn
bits, and then sort the blocks by frequency. Then, each lido@presented by one integar the
relative position of the block among the sorted list of bieckhe next step consists in replacing
each block in the sequence by the assigned integer such seguance of integers is obtained.
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Table 3: Size of the vocabulary composedtiples for three dierent texts.

k xml | sources | english

1 96 230 225
2 6,676 9,183 9,416
3| 11,4643 208,235 77,617
4 | 585,599| 1,114,490, 382,398

Then, the sequence is stored using a dense sampling, amexiila Section 3.

For the experiments of this section, we use blocks Gedint sizes by regarding the texts
as sequences @ftuples, that is, we consider substrings composddaifaracters as the source
symbols of the text. We process the text obtaining the vdeapof k-tuples that appear in the
text, compute their frequency and sort them by frequencytaio thep; values. We obtain the
representation of the text as the concatenation of all tdewords of thé-tuples of the text, the
vocabulary of symbols and the codeword assignment if negded

We took the first 200 MB of three fferent texts from Pizza&Chili corpus. We used an XML
text, denotednl, containing bibliographic information on major computeiesice journals and
proceedingd We also used a text that contains source program code gleywiurces, formed
by the concatenation of some .c, .h, .C and .java files fromdCJama source code. Finally, we
also used a natural language text, denetegl i sh, which contains some English text files. Ta-
ble 3 shows the size of the vocabulary for each text when derisig tuples of lengtlk, with
k=12 3,4. We compared DACs with solutions using dense and sparsglisgm

We implemented the scheme FV proposed in the paper of Fagagid Venturini (2007),
and optimized it for each scenario. Using the encoding seherplained in Section 3, where an
integery; is represented withlog x; |, the longest block description (corresponding to the least
frequent block in the sorted vocabulary) requires féedént numbel of bits depending on the
size of the vocabulary obtained. We use a two-level dens@l#zgm storing absolute pointers
everyc blocks and relative pointers ¢fog((c — 1) - I)] bits for each block inside each of those
superblocks of blocks. We adjust this setting for each text &ndlue to obtain the best possible
space. Fortextml, c = 20 fork = 1,2, ¢ = 30 fork = 3 andc = 26 fork = 4. For textsources,
c=18fork=1,2,c = 30 fork = 3 andc = 24 fork = 4. For textenglish,c =20 fork = 1,2,

c =30 fork = 3 andc = 28 fork = 4.

We also implemented the classical solution to provide tliaecess to any block of the se-
guence, by encoding theftirent blocks with bit-oriented and byte-orientedffduan codes and
setting absolute samples evdrgodewordsh = {16, 32 64, 128 256}, so that partial decoding
is needed to extract each value. This gives us a space-titeds. We also include a Himan-
shaped wavelet tree as a solution to provide direct accemséguence of arbitrary symbadfs.

80ur DACs and Ferragina and Venturini's encoding do not megahy additional information about the codeword
assignment, since this assignment does not depend on thebiites of the symbols and a dense encoding is used (the
codewords are consecutively assigned).ffhhan-based encodings do require the storage of the codewsighenent
as they need to reconstruct the fifnan tree to properly encode and decode. However, this additinformation is
minimal when canonical Himan is used, which is our case.

9This XML text is the same text used to obtain the LCP array tehdblp in Section 5.1.

10we use the implementation available at the Compact DatatBtes Library (libcds), httplibcds.recoded. gl
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For the comparison, we create several binarffidan-shaped wavelet trees, varying the size for
the extra structure used to compute fast binary rank opersti

We compare those solutions with several configurations o€8AWe use thé values ob-
tained with the optimization algorithm, including the caufiations where we restrict the number
of levels of the representation and the average number kfoperations.

We measure the space required by each alternative in terrosngression ratio and the
average access time (in microseconds per accdstigule) by computing the time to access
all the k-tuples of the text in random order. We illustrate in the fegithe spagdéme traded
of Ferragina and Venturini’'s dense sampling proposal (“F\dense sampl.”), bit- and byte-
oriented Héfman code plus sparse sampling (“bit4Hu sparse sampl.” and “byte-Hli+ sparse
sampl.”), Simple9 and PForDelta plus sparse sampling (88w sampl.” and “PForDelta
sampl.”), the binary Hfiman-shaped wavelet tree (“fitwt”) and our DACs using the optimal
values that minimize the space (“DACs opt”, “DACs opt-mavdis”, and “DACs opt-avg cost”).

Figure 3 shows the spatiene trade-df for all the alternatives applied over the texisl,
sources andenglish, respectively, fok = 1 andk = 4. The binary Hfman-shaped wavelet
tree is not shown in the figures since this method obtainsaigkss times and its curve lies out
of the plot range. We can observe that wiés increased from 1 to 4, the compression obtained
is generally better, since we are compressing the text tk-éler entropy. However, if we
kept increasind, we would obtain poorer compression ratios, due to the sggpéred to store
the vocabulary. The size of the vocabulary causes that geerecess times are also higher for
largek values for some of the solutions compared (e.g., it inceti'enumber of levels of the
representation when DACs and wavelet tree are used). Giheiosns do not sfier the influence
of this parameter, such as FV, where constant time is oltalpoe to the dense sampling.

The original FV method, implemented as such, poses muclespaehead due to the dense
sampling, achieving almost no compression. This, as egded alleviated by the bit-oriented
Huffman coding with sparse sampling, but the access times sereansiderably. The FV
method extracts each block in constant time, while someaeldcoding is always needed with
the sparse sampling. Byte-orientedfffoan encoding with sparse sampling obtains better times
than bit-oriented Hffiman encoding, yet worsening the compression ratio. Howévisrbyte-
oriented alternative outperforms FV in space while beingarable in time. The binary Hitman-
shaped wavelet tree behaves similarly to bit-orienteéfiiHan coding with sparse sampling for
low k values, however its compression and tinffeceencies degrade as the size of the vocabulary
grows. Simple9 and PForDelta with sparse sampling obtaiilasi results to HFman codes for
k = 1, whereas Simple9 is not competitive foe 4.

DACs improve the compression ratio when the optilmahlues are computed without any
restriction, adjusted according to the distribution oégpers. “DACs opt” obtains a very compet-
itive performance, and its variants dominate most of thegpme traded.

As we can see, DACs can obtain good compression ratio wheg tis¢ optimab values,
but sparse sampling can get slightly lower spaces. Howthisigomes at the price much higher
access times. Hence, DACs become a very attractive solifitiirect access must be provided
to an encoded sequence, since it obtains very fast timeslaradtaminimal space.

5.3. Natural language text compression

In this section we consider a sequence of integers thatgepte a natural language text,
regarding the text as a sequence of words. The integer atqroisof the sequence represents
the word at position of the text, and the integer is assigned after sorting tffergint words of

12
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Figure 3: Space usage and average access time for seveiglcations of DACs versus several encodings that represent
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the sequence d&ktuples for textsml (top).english (center), andources (bottom), withk = 1 (left) andk = 4 (right).
They axis represents the average time per access (in microsgcond
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Table 4: Description of the corpora used.

CORPUS size (bytes)] numwords| voc. size
CR 51,085,545 10,113,143 117,713
ZIFF 185,220,211 40,627,131 237,622
ALL 1,080,720,303 228,707,250 885,630

the text by decreasing frequency, such that smaller insesyerassigned to more frequent words.
Various activities in a text database require to accessetkieat random word positions, and
DACs give a direct solution to this problem. The fastestraliéive is obtained wheb = 8, that

is, when bytes are used as chunks, since it avoids bit-wisetipns and takes advantage of the
byte alignments.

We compare our fastest alternative, denoted “DAES8™ with byte-oriented HEman en-
coding?, which is also faster than any bit-oriented encoding. As veatwo directly access
random words of the original text, we include a sparse sargpiver the compressed sequence
obtained by Plain Hfiman. We denote this alternative “PHsampl”.

We used three corpora: fZData 1989-1990 (ZIFF) fromrec-2, Congressional Record 1993
(CR) fromtrec-4, and a large corpora (ALL), with around 1GB, created byragating Zif Data
1989-1990 (ZIFF) and AP Newswire 1988 fromec-2, Congressional Record 1993 (CR) and
Financial Times 1991 to 1994 fromkc-4, in addition to the small Calgary corpds

Table 4 presents the main characteristics of the corpoi Udee first column indicates the
name of the corpus and the second its size (in bytes). The ¢biumn indicates the number
of words that compose the corpus, and finally the fourth colshows the number of filerent
words in the text.

Table 5 shows the compression ratio (in %), decompressma (in seconds) and access
time (microseconds per access) for the two alternativesal/éthe corpora considered. “DACs
b=8" uses theank structure that occupies 5%-extra space over the sequerechavé adjusted
the sampling parameter of the alternative “RHsampl” to obtain the same compression ratio
than “DACs b=8". The value of this parameter is shown in the table for eagh twe store one
sample each 24 codewords for CR corpus, one sample each @&¢aat for ZIFF corpus and
one sample each 36 codewords for ALL corpus.

The decompression time includes the time, in seconds, wndess the whole text, retriev-
ing an exact copy of the original text. This procedure dogsrequire the use of samples in
the case of “PH+ sampl”, nor does it require the use of rank operations whelC®b=8" is
used, since all the levels of the representation can be séglgprocessed and the synchroniza-
tion between the bytes of the same codeword can be carriagsg one pointer at each level,
indicating the last byte read.

Decompression is faster for PH than for DACs. For PH, decesgion just involves a se-
guential decoding of all the bytes of the encoded sequeraeDRCs, it requires reading bytes
at different levels of the representation, which are not contiglydacated in memory, and thus

11The byte-oriented Hiiman compressor that uses words as source symbols, insteidmaiters, is calleBlain
Huffman(Moura et al., 2000).
L2httpy/www.data-compression.inf@orporgCalgaryCorpus
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Table 5: Space and time performance for DACs and byte-@tehiiffman code (PH) when representing the sequence
of words of three natural language texts.

DACs b=8 PH + samp
ratio | t dec|t access | ratio | words pert dec|t access
Text | (%) | (S) (us) (%) | sample | (s) | (us)
CR |33.45 0.42| 0.0544| |33.53 24 0.34| 0.1938
ZIFF|35.57| 1.53| 0.0761| |35.62] 26 1.26| 0.2581
ALL |35.24/10.12 0.1088| |35.23 32 8.57| 0.2838

have less locality of reference. In addition, the compréssguence using PH (without taking

into account the sparse sampling) is shorter than the caspdesequence using DACs. Hence,
PH processes a smaller number of bytes during the decongurgsscedure, which also speeds
up decompression.

The access time was computed as the average time to acc889,000 words at random
positions of the text. We can observe that “DAGs3D obtains considerably better access times
than “PH+ sampl”, around 3-4 times faster. It is also noticeable floatyoth alternatives, larger
corpora obtain worse results than smaller corpora. In tee o&“DACs b=8" this is due to the
size of the vocabulary: since there are mofféadent words in a larger text, there are many words
that obtain longer codewords, and consequently the nunfbilevals is bigger than for smaller
corpora, which causes a higher number of rank operations wkieacting those codewords. In
the case of “PH+ sampl”, the sample period used is bigger for larger corpasaye can see in
Table 5, and this slows down the accesses to random words téxth

Our proposal obtains better access time to individual wofdise text, but it becomes slower
when decompressing the whole text. We now analyze the tiopgined by each alternative to
accesg random consecutive positions of the text, as when extrgetisnippet. Figure 4 shows
the average time to retrieveconsecutive words for the three corpora CR, ZIFF and ALL gisin
“DACs b=8"and “PH+ samp”, where the sampling used is the same as in Table 5. \Eewatia
the figure that “DACs B8” outperforms “PH+ samp” when the value dfis small, that is, when
we access a few consecutive words of the text. As we inctettsebenefits of PH encoding, that
is, its higher locality of reference, becomes noticealhe, ‘®H + samp” outperforms “DACs
b=8". For instance, if we want to decompress 25 consecutivelsydiPH + samp” becomes
the preferred alternative. However, when accessing fewamirtive words, such as five or less,
“DACs b=8" obtains better time results.

This shows that DACs may not be the best choice if we are istiedldn extracting snippets,
which are longer than a few words. However, there is anothportant activity in text databases
where time is more critical, and where just a few words haveetaccessed: When phrases are
sought, we can carry out the intersections on the inverstsl dif the text collection, if they store
the exact word fisets of all the occurrences of each word. However, it is bgtiad case that
some lists are much longer than others, and better tharsétting the lists is to directly access
the occurrences of the shorter list and check their surriognaords in the text. This becomes
even more interesting when looking for phrases of more tvanwords. For this problem DACs
are preferable over PH samp.
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PH + samp —— PH + samp —— PH +samp ——
DACs b=8 - DACS b=8 - DACS b=8 -

0.8 08 r 0.8 -

0.6 - 0.6 0.6 -

0.4 r 04 r 0.4 r

Time per access (ps/word)
Time per access (us/word)
Time per access (ps/word)

02 " 02" 02

0 0 0
5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Number of consecutive accessed words Number of consecutive accessed words Number of consecutive accessed words

Figure 4: Accessing consecutive words for DACs8pand PH (with sampling).

6. Conclusions

We have introduced th®irectly Addressable Codes (DACS) new storage scheme for
variable-length encoded sequences (including unboumdegers and statistical encodings) that
enables easy and direct access to any element of the sequiesaigeves very compact spaces,
usually better than most alternative representationsiranzh faster direct access. This is an im-
portant achievement because the need of random accesstiol@dength codes is ubiquitous in
many sorts of applications, particularly in compressed dauctures, but also arises in everyday
programming. Using bitmaps aligned to the codes in orderdtkrtheir beginnings is a folklore
idea that has been used many times (Fano, 1971; Culpepp#atiat, 2006; Fredriksson and
Grabowski, 2006; Grabowski et al., 2006; Brisaboa et alg72@vith various purposes, but as
far as we know, our scheme to provide direct access is uni@uemethod is simple to program
and is space- and timefeient, which makes it an attractive practical choice in msegnarios.

Since its original publication (Brisaboa et al., 2009), BARave proved to be relevant in
many applications related to compact data structures:

Compressed suffix trees. A new practical compressedfiiu tree (Canovas and Navarro, 2010)
includes the representation of the LCP array. DACs were tesprbvide fast direct access
to any value of the encoded LCP array, which made the newseptation faster than pre-
vious existing implementations (including some that needenspace), withinfiordable
space.

Efficient representation of grammars. DACs have also been used for representing the rules gen-
erated by Re-Pair (Larsson and Wat, 2000) in a compressed index specialized on search-
ing short substrings (q-grams) over highly repetitive sgegpes (Claude et al., 2010). Specif-
ically, DACs were used to store the lengths of the rules (robsthich are short), consid-
erably reducing the space.

Lempel-Ziv-based indexing. A textindex oriented to repetitive text collections (Kraftd Navarro,
2011), based on the Lempel-Ziv 1977 parsing (Ziv and Lent#1,7), uses various com-
pact data structures to achieve space reductions of up t0-fod. DACs have been
successfully used to store the skips of the tries that sterd.€mpel-Ziv phrases, where
most skips are very short.
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Direct access to grammar-compressed strings. In a practical study of dictionary representations
(Brisaboa et al., 2011), Re-Pair compression of the stuvagsan alternative. DACs were
used to regard each word, compressed into a sequence ofmardts, as a variable-length
representation of an element to which direct access wasdatyv

The first three applications illustrate the use of DACs aghrti&ue to represent a sequence
of numbers, most of which are expected to be small. Our owmel@on natural language
text compression show how statistical encodings can becegfjwia sorting by frequency, to
encoding a sequence of numbers as well. However, the latatin listed above is dierent.

It shows how DACs can be used, in general, to provide direp¢seto any encoded sequence
of symbols obtained after using a variable-length encotéingnique. In the case the underlying
variable-length code is Vbyte (Williams and Zobel, 1999)r method can be regarded as just
a reorganization of the bytes of the compressed data (pjusgstically negligible extra space
for rank structures), that enables direct access to it.
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