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Abstract

We present a new variable-length encoding scheme for sequences of integers,Directly Ad-
dressable Codes (DACs), which enables direct access to any element of the encoded sequence
without the need of any sampling method. Our proposal is a kind of implicit data structure that
introduces synchronism in the encoded sequence without using asymptotically any extra space.
We show some experiments demonstrating that the technique is not only simple, but also compet-
itive in time and space with existing solutions in several applications, such as the representation
of LCP arrays or high-order entropy-compressed sequences.
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1. Introduction

Variable-length coding is at the heart of Data Compression (Storer, 1988; Bell et al., 1990;
Witten et al., 1999; Moffat and Turpin, 2002; Solomon, 2007). It is used, for example,by sta-
tistical compression methods, which assign shorter codewords to more frequent symbols. It also
arises when representing integers from an unbounded universe: Well-known codes likeγ- and
δ-codes are used when smaller integers are to be represented using fewer bits.

A problem that frequently arises when variable-length codes are used to encode a sequence of
symbols is that it is not possible to access directly thei-th encoded element, because its position
in the encoded sequence depends on the sum of the lengths of the previous codewords. This is not
an issue if the data is to be decoded from the beginning, as in many compression scenarios. Yet,
the problem arises recurrently in the field ofcompressed data structures, where the compressed
data should be randomly accessible and manipulable in compressed form. A typical scenario is
that of an array of integers containing mostly small values,but still being there a few large values
that prevent simply allocating a few bits for each cell.

The typical solution to provide direct access to a variable-length encoded sequence is to regu-
larly sample it and store the position of the samples in the encoded sequence, so that decompres-
sion from the last sample is necessary. This introduces a space and time penalty to the encoding
that hinders the use of variable-length coding in many caseswhere it would be beneficial.
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In this article we present a new variable-length encoding scheme for sequences of integers
that supports fast direct access to any element. This setup includes variable-length codewords
coming from compression methods. We show experimentally that our technique is advantageous
compared to other encoding schemes that support direct access. Our implementations are avail-
able athttp://lbd.udc.es/research/DACS/.

2. Variable-Length Encodings

Statistical encoding.Let X = x1x2 . . . xn be a sequence of symbols to represent. A way to
compressX is to order the distinct symbol values by their frequency inX, and identify each
value xi with its position pi in the ordering, so that smaller positions occur more frequently.
Hence the problem is how to encode thepis into variable-length bit streamsci = c(pi) (called
codewords), giving shorter codewords to smaller values. Huffman coding (Huffman, 1952) is the
best code (i.e., achieving the minimum total length) that isunivocally decodable.

Coding integers.In some applications, thexis are directly the numberspi to be encoded, such
that the smaller values are assumed to be more frequent. One can still use Huffman, but if
the set of distinct numbers is too large, the overhead of storing the Huffman codec(·) may be
prohibitive. In this case one can directly encode the numbers with a fixed prefix code that gives
shorter codewords to smaller numbers, such asγ-codes,δ-codes, and Rice codes, to name a few
(Witten et al., 1999; Solomon, 2007).

If we could assign just the minimum number of bits required torepresent each numberxi ≥ 1,
the total length of the representation would beN0 =

∑

1≤i≤n
(

⌊log xi⌋ + 1
)

bits. Note thatN0 <

H + n, whereH = log
(

u
n

)

andu =
∑

1≤i≤n xi . The (at most)n extra bits of the encoding owe to
the need of using an integral number of bits per code (numberscan be packed and represented as
tuples to reduce this overhead). Then,γ-codes achieveN ≤ 2N0 bits by representing⌊log xi⌋ in
unary and thenxi in optimal form without its most significant 1-bit. For larger numbers,δ-codes
perform better by representing⌊log xi⌋ using γ-codes instead of unary codes, thus achieving
N ≤ N0 + 2n log(N0/n)+O(n) bits. Rice codes are parameterized by aradix r, so that the lowest
r bits of xi are represented verbatim, preceded by⌊xi/2r⌋ in unary.

Vbyte coding (Williams and Zobel, 1999).This is a particularly interesting code for this article.
In its general variant, the code splits the⌊log xi⌋ + 1 bits needed to representxi into blocks ofb
bits and stores each block into achunkof b+ 1 bits. The highest bit is 0 in the chunk holding the
most significant bits ofxi , and 1 in the rest of the chunks. For example, ifxi = 25= 110012 and
b = 3, we need two chunks and the representation is 0011 1001.

Compared to an optimal encoding of⌊log xi⌋ + 1 bits, Vbyte code loses one bit perb bits of
xi , plus possibly an almost empty final chunk, for a total space of N ≤ ⌈N0(1+ 1/b)⌉ + nb bits.
The best choice for the upper bound isb =

√
N0/n, achievingN ≤ N0 + 2n

√
N0/n, which is still

worse thanδ-encoding’s performance. In exchange, Vbyte codes are veryfast to decode.

Fast decodable representations.Simple9 (Anh and Moffat, 2005), Simple16 and PforDelta (Zukowski
et al., 2006) are recent techniques to achieve fast decodingand little space. The general idea is
to pack a number of small integers in a computer word, using the number of bits needed by the
largest number. Simple9 packs the sequence into words of 32 bits. At each point of the encod-
ing process, it regards the next numbers and computes the maximum that can be included in a
word using the same number of bits for all. For example it can encode 28 1-bit numbers, 14
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2-bit numbers, 9 3-bit numbers, and so on. Four bits of the 32 are reserved to encode which
format was chosen for that word. Simple16 uses a similar, slightly more sophisticated, packing.
In PForDelta one uses many more than 32 bits (say, 256), and treat the 10% largest numbers as
exceptions that are encoded separately. In a worst-case sequence these representations may pose
a very high space overhead, but in practical situations theyperform very well.

3. Previous Work

We now outline several solutions to the problem of giving direct access to a sequence ofn
concatenated variable-length codes, that is, extracting any xi efficiently, giveni. Let us callN the
length in bits of the encoded sequence.

Sparse sampling.This classical solution samples the sequence and stores absolute pointers to
the sampled elements, that is, to eachh-th element of the sequence. Access to the (h + d)-th
element, for 0≤ d < h, is done by decodingd codewords starting from theh-th sample. This
involves a space overhead of⌈n/h⌉⌈logN⌉ bits and a time overhead ofO(h) to access an element,
assuming we can decode each symbol in constant time.

Dense sampling (Ferragina and Venturini, 2007).This technique representsxi using just⌊log xi⌋
bits, and sets pointers toeveryelement in the encoded sequence, which delimits each encoded
value and gives constant-time access to it. By using two levels of pointers (absolute ones every
Θ(logN) values and relative ones for the rest) the extra space for the pointers isO(n(log logN +
log logM)), whereM is the maximum number stored in the sequence.

Elias-Fano-based representation (Elias, 1974; Fano, 1971). This is a representation for a se-
quenceyi of n strictly increasing numbers ending atu = yn. It usesn log(u/n) + O(n) bits and
gives constant-time access to anyyi . The representation separates the lowers = ⌈log(u/n)⌉ bits
of each element from the remaining upper bits, and stores those lower bits contiguously in an
array of sn bits. The upper bits are represented in another bit array of size at most 2n, where
the bits at positions⌊yi/2s⌋ + i, for eachi ≤ n, are set. By using more recent techniques to find
the i-th bit set in a bitmap in constant time ando(n) extra space (Munro, 1996; Okanohara and
Sadakane, 2007), anyyi can be obtained inO(1) time.

This representation can be used to encode a sequence of integersxi ≥ 1, by concatenating
the binary representations of numbersxi + 1, and excluding their most significant 1-bits, into a
bit sequenceX. The starting positions of the encoded numbers inX forms a strictly increasing
sequenceyi that is stored using the Elias-Fano representation described above. Thus we obtain
yi andyi+1 in constant time and these are the limiting positions wherexi + 1 (deprived of its
highest 1-bit) is to be found inX. Overall, the technique achievesO(1) time access andN ≤
N0 + n log(N0/n) +O(n) bits of space.

Interpolative coding (Moffat and Stuiver, 2000; Teuhola, 2011).This is a technique to encode
integer sequences using variable-length codes, so thatO(logn)-time access is supported not only
by position (as is our focus), but also by content (i.e., find the position where the sum of thexis
exceeds a threshold). The idea is to set up a virtual balancedtree over the sequence of encoded
values. The encoding of a subtree is preceded by the sum of values and encoding size of the left
subtree. The number of bits needed for this header is limitedby the sizes of the parent headers.
By letting the tree leaves handleO(logn) values, the space overhead is justO(n log(N)/ log(n))
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bits. The solution offers a good combination of space- and time-efficiency for both operations.
However, as shown in the extensive experiments by Teuhola (2011), the codes we present in this
article are orders of magnitude faster when accessing by position.

Wavelet tree (Grossi et al., 2003).This is a data structure that represents a sequence of sym-
bols, and can be adapted to a variable-length representation of them (Grossi et al. showed
how to adapt it to Huffman coding, but their idea can be generalized (Navarro, 2012)). Let
c(x1), c(x2), . . . , c(xn) be the codewords (i.e., bit streams) of then symbols, for a prefix-free func-
tion c(·). The root of the wavelet tree holds a bitmap with the first bitof each codeword (n bits in
total). If there are some 0-bits in this bitmap, then the leftchild of the root contains the second
bit of those codewords starting with a 0-bit. Similarly, if there are some 1-bits in the root bitmap,
then the right child of the root contains the second bit of those codewords starting with a 1-bit.
This continues recursively at both children. The total number of bits in the wavelet tree is exactly
N, and the wavelet tree replaces the encoded sequence.

In order to accessxi , we read thei-th bit of the root bitmapB. If this bit completes a codeword,
then this bit isc(xi) and we are done. If not, we continue by the left child ifB[i] = 0, and by the
right child if B[i] = 1. The new position at the left child isi′ = rank0(B, i) and at the right child
is i′ = rank1(B, i), whererankb(B, i) denotes the number of occurrences of the bitb in the prefix
B[1, i] (we useb = 1 by default). Queryrank can be computed in constant time using justo(n)
extra bits on top ofB (Jacobson, 1989; Clark, 1996; Munro, 1996). Using such structures over
all the bitmaps, the time to extract anyxi is O(|c(xi)|) and the total space isN + o(N) bits, plus
the pointers for the tree structure, which depend on the function c(·) (if this is a Huffman coding
the size is equivalent to that of a Huffman table).

A variant of wavelet trees that is closely related to our approach are the Wavelet Trees on
ByteCodes (Brisaboa et al., 2008). Those also encode the sequence and provide direct access.
They are, however, more complex than necessary for this application. They allow one to compute
frequencies of numbers in arbitrary ranges of the sequence,and track the positions of individual
values in the sequence. Our arrangement, which focuses onlyon direct access, is simpler and has
better locality of reference.

4. Directly Addressable Codes (DACs)

4.1. Conceptual description

Given a sequence of integersX = x1, x2, . . . , xn, we describe our new encoding scheme that
enables direct access to any element of the encoded sequence.

We make use of the generalized Vbyte coding described in Section 2. We first encode thexis
into a sequence of (b+ 1)-bit chunks. Next we separate the different chunks of each codeword.
Assumexi is assigned a codeword composed byr i chunksCi,r i , . . . ,Ci,2,Ci,1. A first stream,C1,
will contain then1 = n least significant chunks (i.e., rightmost) of every codeword. A second one,
C2, will contain then2 second chunks of every codeword (so that there are onlyn2 codewords
using more than one chunk). We proceed similarly withC3, and so on. BeingM the maximum
integer of the sequence, we needL ≤ ⌈log(M)/b⌉ streamsCk.

Each streamCk will be separated into two parts. The lowestb bits of the chunks will be
stored contiguously in an arrayAk (of b · nk bits), whereas the highest bits will be concatenated
into a bitmapBk of nk bits. Figure 1 illustrates the reorganization of the chunksof a sequence of
five codewords.
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We denote each Ci,,j = Bi,j : Ai,j

A1 A1,1 A2,1 A3,1 A4,1 A5,1 ···
C1

B1 1 0 1 1 0 ···

A2 A1,2 A3,2 A4,2 ···
C2

B2 0 1 0 ···

A3 A3,3 ···
C3

B3 0 ···

C= C1,2 C1,1 C2,1 C3,3 C3,2 C3,1 C4,2 C4,1 C5,1 · · ·

Figure 1: Example of reorganization of the chunks of each codeword.

The bits in eachBk identify whether there is a chunk of that codeword inCk+1. To find the
position of the corresponding chunk inCk+1 we needrank queries on theBk bitmap. We set up
data structures on theBk bitmaps that answerrank in constant time usingO( nk log logN

logN ) extra bits

of space, beingN the length in bits of the encoded sequence1.
The overall structure is composed by theBk bitmaps, theirrankstructures, theAk arrays, and

pointers to those bitmaps and arrays. These pointers needO(⌈log(M)/b⌉⌈logN⌉) = O(log M)
bits overall, and this space is in practice negligible. In total there are

∑

k nk =
N

b+1 chunks in the
encoding (noteN is a multiple ofb+ 1), and thus the extra space for therank data structures is
just O( N log logN

b logN ) = o(N/b). Therefore the space is essentially that of the Vbyte representation of
the sequence, plus (significantly) lower-order terms.

Extraction of thei-th value of the sequence is carried out as follows. We start with i1 = i and
get its first chunkCi,1 = B1[i1] : A1[i1]. If B1[i1] = 0 we are done withxi = A1[i1]. Otherwise
we seti2 = rank(B1, i1), which gives us the correct position of the second chunk ofxi in C2, and
getCi,2 = B2[i2] : A2[i2]. If B2[i2] = 0, we are done withxi = A1[i1] + A2[i2] · 2b. Otherwise we
seti3 = rank(B2, i2) and so on.

Extraction of a random codeword requires⌈N/(n(b+ 1))⌉ accesses; the worst case is at most
⌈log(M)/b⌉ accesses. Thus, in case the numbers to represent come from a statistical variable-
length coding, and the sequence is accessed at uniformly distributed positions, we have the addi-
tional benefit that shorter codewords are accessed more often and are cheaper to decode.

4.2. Implementation considerations

Our implementation uses the variant of Vbytes designed for text compression called ETDC
(Brisaboa et al., 2007), which can make use of all the combinations of chunks and obtains slightly
better space2. In addition, the last bitmapBL is not stored in the final representation of the
sequence of integers, since all the bits inBL are zero.

We implementrank operations over theBk bitmaps using the 5%-extra space data structure
by González et al. (2005) (note that this is space over theBk bitmaps, whose size is already 1/b

1This is achieved by using blocks of1
2 log N bits in therankdirectories (Jacobson, 1989; Clark, 1996; Munro, 1996).

2Note that the highest chunk of the Vbyte encoding cannot be all zeros. This wastes a combination in the highest
chunk, and consequently the representation does not obtainthe best possible space usage.
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of the total size). The times forrank using such extra space are of a few microseconds. If we
denoteǫ the space overhead for the structure, the time for answer arank operation isO(1/ǫ).

The extraction ofr consecutive codewords can be performed in a more efficient way than
just r independent accesses to the encoded sequence. By using one pointer at each levelk of
the representation, indicating the last chunk read at that level, r consecutive codewords can be
extracted by computing at most⌈log(M)/b⌉ rank operations to initialize those pointers and de-
coding sequentially the corresponding chunks at each level.

4.3. Minimizing the space

We have presented DACs using a fixed parameterb, which remains constant for every level
of the representation. However, the value ofb could be chosen differently at each level,bk, in
order to fit some goal. In particular, we can choose thebk values with the goal of optimizing
compression. This goal, however, can lead to a high number oflevels L, which worsens the
access time. In this section we present algorithms to chooseL andbk so that we just optimize
the space without further restrictions, or we optimize space while limiting the worst-case access
time L, or we optimize space while limiting the average case time.

Without restrictions.The optimal values can be obtained using a dynamic programming algo-
rithm that obtains the values forL andbk, k ≤ L, that minimize the size of the representation of
the given sequence.

In our dynamic programming algorithm, a subproblemt consists in encoding in the best way
all the valuesxi that are greater than or equal to 2t, ignoring theirt lowest bits. We start by
solving trivially the caset = m = ⌊log M⌋ + 1 and go down untilt = 0, which represents the
solution to the original problem (i.e., encoding all the numbers without ignoring bits).

Given at, we can choose for eacht < i ≤ m, to encode from thet-th to the (i −1)-th bit of the
numbers in a single level, and then solve the subproblemt′ = i using further levels. The space
required per element encoded would bei − t bits for sequenceAk, and 1+ ǫ bits for Bk, whereǫ
is the space overhead for therank structure. Because the last level does not store the bitmapBk,
the cost is (m+ 1)− t bits per element if we choose to encode from thet-th to the last (m-th) bits
in a single level.

Algorithm 1 gives the pseudocode that obtains the optimal number of levelsL and thebk

values,k ≤ L. It receivesm and a vectorcf of cumulative frequencies of sizem+ 1, that is,
cf [t] is the number of valuesxi that are greater than or equal to 2t. The optimal number of bits
achieved for subproblemt is stored in vectors[t], the corresponding number of levels inl[t], and
the value ofb for the first level of such optimal representation inb[t]. The optimization costs just
O(log2 M) time (plusO(n) to computecf) andO(log M) space.

A byte-aligned variation of this algorithm can generate a representation of the sequence
where each chunk is completely contained in a unique byte, and decompression and accesses
can be implemented more efficiently in practice.

Limiting the number of levels to use.If we restrict the number of levels of the representation,
we are limiting the worst-case access time (i.e., the accesstime for the maximum value of the
sequence). We can obtain the optimal space restricted to using a maximum number of levels
by including a new parameter in the optimization algorithm that gives the remaining number of
levels available. When only one level remains, we are forcedto store all the bits, from thet-th to
them-th, in a single level. Since the maximum number of levels isO(log M), the time complexity
raises toO(log3 M).
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Algorithm 1: Optimize(m, cf)

for t = m. . .0 do
minSize← +∞, minPos← m
for i = t + 1 . . .mdo

currentSize← s[i] + cf [t] · ((i − t) + (1+ ǫ))
if minSize> currentSizethen

minSize← currentSize, minPos← i
end

end
if minSize< cf [t] · ((m+ 1)− t) then

s[t] ← minSize, l[t] ← l[minPos] + 1, b[t] ← minPos− t
else

s[t] ← cf [t] · ((m+ 1)− t), l[t] ← 1, b[t] ← (m+ 1)− t
end

end
L← l[0]
t← 0
for k = 1 . . . l[0] do

bk← b[t]
t← t + b[t]

end
return L, b1, . . . , bL

Limiting the number of rank operations.It is also possible to limit the average access time
of the representation by restricting the average number ofrank operations, or equivalently, by
restricting

∑

k<L nk ≤ C. Once again, we are forced to create one single final level when cf [t] > C,
else we can create one level up to the (i−1)-th bit and solve subproblemt′ = i with limit C−cf [t].
The time becomesO(C log2 M) time, which can be reduced by quantizing the precision ofC.

5. Experimental Evaluation

The Directly Addressable Codes (DACs) are practical and canbe successfully used in nu-
merous applications where direct access is required over the representation of a sequence of
integers. This requirement is frequent in compressed data structures, such as suffix trees, arrays,
and inverted indexes, to name just a few. We show experimentally that DACs offer a competitive
alternative to other encoding schemes that support direct access.

In Section 5.1 we compare DACs with other solutions to provide direct access to sequences of
integers: sparse sampling overδ-codes,γ-codes, Rice codes, Vbyte codes, Simple9, PForDelta,
and Elias-Fano monotone lists. We use LCP arrays as an example of sequences of integers to
encode.

Sections 5.2 and 5.3 describe scenarios where we have sequences of arbitrary symbols in-
stead of sequences of integers. We compare the behavior of DACs in this scenario with other
statistical encodings such as bit- and byte-oriented Huffman encodings, which require a sparse
sampling to provide direct access over the sequence. We alsocompare our technique with the
dense sampling of Ferragina and Venturini, explained in Section 3, and with a Huffman-shaped
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Table 1: Description of the LCP arrays used.

number of maximum average median most freq.
data elements value value value value
dblp 104,857,600 1,084 28.22 32 10 (2.15%)
dna 104,857,600 17,772 16.75 13 13 (24.59%)
proteins 104,857,600 35,246 195.32 6 6 (28.75%)

wavelet tree, which compactly represents a sequence of symbols from an arbitrary alphabet and
supports efficient access to any element of the sequence.

For all the experiments the machine used is a AMD Phenom(tm) II X4 955 Processor (4
cores) with 8 GB RAM. It ran Ubuntu GNU/Linux with kernel version 2.6.31-22-server (64
bits). We compiled with gcc version 4.4.1 and the option-O9.

5.1. LCP array representation

TheLongest Common Prefix (LCP)array is a central data structure in stringology and text
indexing (Manber and Myers, 1993). Consider a textT[1, n] of lengthn, and all the suffixes of
the text, that is,T[i, n] with 1 ≤ i ≤ n. Assume that we have all those suffixes lexicographically
sorted. The LCP array stores, for each suffix, how many symbols it has in common with the
previous suffix, that is, the length of the longest common prefix between each suffix and its
predecessor. Most LCP values are small, but some can be very large. Hence, a variable-length
encoding scheme is a good solution to represent this sequence of integers.

Our experiments were performed on 100 MB of the XML, DNA and protein texts from
Pizza&Chili corpus (http://pizzachili.dcc.uchile.cl). We denotedblp the LCP array obtained
from the XML file, which contains bibliographic informationon major computer science jour-
nals and proceedings. We denotedna the LCP array obtained from the DNA text, which contains
gene DNA sequences consisting of uppercase letters A,G,C,T, and some other few occurrences
of special characters. We denoteproteins the LCP array obtained from the protein text, which
contains protein sequences where each of the 20 amino acids is coded as one uppercase letter.
Some interesting information about this dataset is shown inTable 1. The first column indi-
cates the number of elements of the LCP array. The second, third and fourth columns show,
respectively, the maximum, average, and median integer values stored in the LCP array. The last
column shows the most frequent integer value and its frequency.

We use several configurations for DACs. “DACs opt” stands forthe alternative that uses
the optimal value forb at each level of the representation without restrictions3. In addition, we
built several configurations limiting the number of levels,denoted “DACs opt-max levels”, and
limiting the average cost, denoted “DACs opt-avg cost”.

We compare the space and time efficiency of DACs with some integer encodings, more con-
cretely: δ-codes,γ-codes, Rice codes using ther value that minimizes the space4, Simple9,
PForDelta, and byte codes (Vbyte codes withb = 7). To support direct access over the com-
pressed representation of the LCP array we attach a sparse sampling to the encoded sequence
obtained by all these integer encoding schemes.

3The optimal values areb = 6, 1, 1, 1, 2 for dblp, b = 4, 1, 1, 1, 2, 2, 2, 2 for dna, andb = 3,3, 2, 2, 2, 1, 1, 2 for
proteins.

4These arer = 5 for dblp, r = 4 for dna, andr = 7 for proteins.
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Table 2: Space for encoding three different LCP arrays and decompression time under different schemes.

Text dblp dna proteins

Method Space Time Space Time Space Time
(bits/e) (sec.) (bits/e) (sec.) (bits/e) (sec.)

δ- codes 9.5421 1.04 8.3908 1.04 7.8635 1.31
γ- codes 10.0834 1.19 7.7517 1.15 8.2899 1.40
Rice codes 6.9194 0.91 6.0493 0.89 9.5556 0.93
Simple9 7.3565 0.17 5.6542 0.18 7.6135 0.23
PForDelta 6.2829 0.18 5.1408 0.21 6.7323 0.33
byte codes 8.4024 0.44 8.0612 0.43 9.2683 0.51
DACs opt 7.5222 1.41 5.5434 1.35 6.5797 2.01

We also compare our structure with the representation of thesequence of integers using the
Elias-Fano monotone lists and also using interpolative coding5. For the Elias-Fano represen-
tation, we use the implementation from the Sux4J project6 (Vigna, 2008), compiling with java
version 1.6.018.

We measure the space required by each technique in bits per element (bits/e), and decompres-
sion and access time. Decompression time measures the seconds needed to retrieve the original
LCP array in plain form. Access time is measured in microseconds per access as the average
time to retrieve the elements at random positions of the LCP array.

Table 5.1 shows the space required byδ-codes,γ-codes, Rice codes, Simple9, PForDelta and
byte codes (without any sampling) to represent the three different LCP arrays, and the space oc-
cupied by “DACs opt”. We also include the decompression timein seconds. We can observe that
DACs obtain the best space among all the alternatives forproteins, while PForDelta obtains
the smallest representation for the rest. Rice codes are thefastest bit-oriented alternative, while
Simple9 obtains the best decompression time while achieving also very compact spaces.

The main goal of our proposal is to provide fast direct accessto the encoded sequence. We
tested the efficiency of DACs by accessing all the positions of each LCP array in random or-
der. Figure 2 shows the spaces and times achieved fordblp (top right),dna (bottom left), and
proteins (bottom right) LCP arrays. The space for the integer encodings includes the space
for the sparse sampling, where we varied the sample period toobtain the space/time trade-off7.
We also include Elias-Fano representation and interpolative coding in this comparison. Notice
that interpolative coding supports log-time access by position, but also by content, which is not
efficiently supported by the rest of the encodings.

DACs obtain the most compact space among all the alternatives when using the optimal
values forb onproteins. They are slightly superseded by PForDelta ondna, and clearly super-
seded ondblp, where Rice codes also achieve slightly less space. In all those cases, however,
DACs are faster, by a factor of 1.4 to 2.0. Variants “DACs opt-max levels” and “DACs opt-avg

5Thanks to J. Teuhola for providing us the code.
6http://sux.dsi.unimi.it/
7In most encodings it is not necessary to fully decode the integers from the last sample to the one preceding the

desired value; just partial information suffices to skip them. We used a distinct optimized skipping procedure for each
encoding.
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DACs opt-max levels
DACs opt-avg cost

DACs opt (b=3,3,2,2,2,1,1,2)
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Figure 2: Space and average access time tradeoff for different configurations of DACs and other integer encodings when
accessing random positions of three LCP arrays. They axis represents the average time per access (in microseconds).

cost” can achieve better times at the expense of worsening the compression ratio, the latter per-
forming slightly better. The union of the DAC variants outperform all the other solutions in space
and time.

5.2. High-Order Entropy-Compressed Sequences

Ferragina and Venturini (2007) gave a simple scheme (FV) to represent a sequence of sym-
bolsS = S1S2 . . .Sn so that it is compressed to its high-order empirical entropyand anyO(logn)-
bit substring ofS can be decoded in constant time. This is extremely useful because it permits
replacinganysequence by its compressed variant, and any kind of access toit under the RAM
model of computation retains the original time complexity.Then, the compressed representation
of the sequence permits us to answer various types of queries, such as obtaining substrings or
approximate queries, in efficient time without decompressing the whole compressed data.

The idea of Ferragina and Venturini is to split the sequenceS of lengthn into blocksof 1
2 logn

bits, and then sort the blocks by frequency. Then, each blockis represented by one integerpi : the
relative position of the block among the sorted list of blocks. The next step consists in replacing
each block in the sequence by the assigned integer such that asequence of integers is obtained.
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Table 3: Size of the vocabulary composed ofk-tuples for three different texts.

k xml sources english

1 96 230 225
2 6,676 9,183 9,416
3 11,4643 208,235 77,617
4 585,599 1,114,490 382,398

Then, the sequence is stored using a dense sampling, as explained in Section 3.

For the experiments of this section, we use blocks of different sizes by regarding the texts
as sequences ofk-tuples, that is, we consider substrings composed ofk characters as the source
symbols of the text. We process the text obtaining the vocabulary of k-tuples that appear in the
text, compute their frequency and sort them by frequency to obtain thepi values. We obtain the
representation of the text as the concatenation of all the codewords of thek-tuples of the text, the
vocabulary of symbols and the codeword assignment if needed.8

We took the first 200 MB of three different texts from Pizza&Chili corpus. We used an XML
text, denotedxml, containing bibliographic information on major computer science journals and
proceedings9. We also used a text that contains source program code, denote bysources, formed
by the concatenation of some .c, .h, .C and .java files from C and Java source code. Finally, we
also used a natural language text, denotedenglish, which contains some English text files. Ta-
ble 3 shows the size of the vocabulary for each text when considering tuples of lengthk, with
k = 1, 2, 3, 4. We compared DACs with solutions using dense and sparse sampling.

We implemented the scheme FV proposed in the paper of Ferragina and Venturini (2007),
and optimized it for each scenario. Using the encoding scheme explained in Section 3, where an
integerxi is represented with⌊log xi⌋, the longest block description (corresponding to the least
frequent block in the sorted vocabulary) requires a different numberl of bits depending on the
size of the vocabulary obtained. We use a two-level dense sampling, storing absolute pointers
everyc blocks and relative pointers of⌈log((c − 1) · l)⌉ bits for each block inside each of those
superblocks ofc blocks. We adjust this setting for each text andk value to obtain the best possible
space. For textxml, c = 20 fork = 1, 2,c = 30 fork = 3 andc = 26 fork = 4. For textsources,
c = 18 fork = 1, 2, c = 30 fork = 3 andc = 24 fork = 4. For textenglish, c = 20 fork = 1, 2,
c = 30 fork = 3 andc = 28 fork = 4.

We also implemented the classical solution to provide direct access to any block of the se-
quence, by encoding the different blocks with bit-oriented and byte-oriented Huffman codes and
setting absolute samples everyh codewords,h = {16, 32, 64, 128, 256}, so that partial decoding
is needed to extract each value. This gives us a space-time tradeoff. We also include a Huffman-
shaped wavelet tree as a solution to provide direct access toa sequence of arbitrary symbols.10

8Our DACs and Ferragina and Venturini’s encoding do not require any additional information about the codeword
assignment, since this assignment does not depend on the probabilities of the symbols and a dense encoding is used (the
codewords are consecutively assigned). Huffman-based encodings do require the storage of the codeword assignment
as they need to reconstruct the Huffman tree to properly encode and decode. However, this additional information is
minimal when canonical Huffman is used, which is our case.

9This XML text is the same text used to obtain the LCP array denoteddblp in Section 5.1.
10We use the implementation available at the Compact Data Structures Library (libcds), http://libcds.recoded.cl/
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For the comparison, we create several binary Huffman-shaped wavelet trees, varying the size for
the extra structure used to compute fast binary rank operations.

We compare those solutions with several configurations of DACs. We use theb values ob-
tained with the optimization algorithm, including the configurations where we restrict the number
of levels of the representation and the average number of rank operations.

We measure the space required by each alternative in terms ofcompression ratio and the
average access time (in microseconds per accessedk-tuple) by computing the time to access
all the k-tuples of the text in random order. We illustrate in the figures the space/time tradeoff
of Ferragina and Venturini’s dense sampling proposal (“FV+ dense sampl.”), bit- and byte-
oriented Huffman code plus sparse sampling (“bit-Huff + sparse sampl.” and “byte-Huff + sparse
sampl.”), Simple9 and PForDelta plus sparse sampling (“Simple9+ sampl.” and “PForDelta+
sampl.”), the binary Huffman-shaped wavelet tree (“huff-wt”) and our DACs using the optimalb
values that minimize the space (“DACs opt”, “DACs opt-max levels”, and “DACs opt-avg cost”).

Figure 3 shows the space/time trade-off for all the alternatives applied over the textsxml,
sources andenglish, respectively, fork = 1 andk = 4. The binary Huffman-shaped wavelet
tree is not shown in the figures since this method obtains highaccess times and its curve lies out
of the plot range. We can observe that whenk is increased from 1 to 4, the compression obtained
is generally better, since we are compressing the text to itsk-order entropy. However, if we
kept increasingk, we would obtain poorer compression ratios, due to the spacerequired to store
the vocabulary. The size of the vocabulary causes that average access times are also higher for
largek values for some of the solutions compared (e.g., it increases the number of levels of the
representation when DACs and wavelet tree are used). Other solutions do not suffer the influence
of this parameter, such as FV, where constant time is obtained due to the dense sampling.

The original FV method, implemented as such, poses much space overhead due to the dense
sampling, achieving almost no compression. This, as expected, is alleviated by the bit-oriented
Huffman coding with sparse sampling, but the access times increase considerably. The FV
method extracts each block in constant time, while some extra decoding is always needed with
the sparse sampling. Byte-oriented Huffman encoding with sparse sampling obtains better times
than bit-oriented Huffman encoding, yet worsening the compression ratio. However, this byte-
oriented alternative outperforms FV in space while being comparable in time. The binary Huffman-
shaped wavelet tree behaves similarly to bit-oriented Huffman coding with sparse sampling for
low k values, however its compression and time efficiencies degrade as the size of the vocabulary
grows. Simple9 and PForDelta with sparse sampling obtain similar results to Huffman codes for
k = 1, whereas Simple9 is not competitive fork = 4.

DACs improve the compression ratio when the optimalb values are computed without any
restriction, adjusted according to the distribution of integers. “DACs opt” obtains a very compet-
itive performance, and its variants dominate most of the space/time tradeoff.

As we can see, DACs can obtain good compression ratio when using the optimalb values,
but sparse sampling can get slightly lower spaces. However,this comes at the price much higher
access times. Hence, DACs become a very attractive solutionif direct access must be provided
to an encoded sequence, since it obtains very fast times and almost minimal space.

5.3. Natural language text compression

In this section we consider a sequence of integers that represents a natural language text,
regarding the text as a sequence of words. The integer at position i of the sequence represents
the word at positioni of the text, and the integer is assigned after sorting the different words of
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Figure 3: Space usage and average access time for several configurations of DACs versus several encodings that represent
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Table 4: Description of the corpora used.

CORPUS size (bytes) num words voc. size
CR 51,085,545 10,113,143 117,713
ZIFF 185,220,211 40,627,131 237,622
ALL 1,080,720,303 228,707,250 885,630

the text by decreasing frequency, such that smaller integers are assigned to more frequent words.
Various activities in a text database require to access the text at random word positions, and
DACs give a direct solution to this problem. The fastest alternative is obtained whenb = 8, that
is, when bytes are used as chunks, since it avoids bit-wise operations and takes advantage of the
byte alignments.

We compare our fastest alternative, denoted “DACs b=8”, with byte-oriented Huffman en-
coding11, which is also faster than any bit-oriented encoding. As we want to directly access
random words of the original text, we include a sparse sampling over the compressed sequence
obtained by Plain Huffman. We denote this alternative “PH+ sampl”.

We used three corpora: ZiffData 1989-1990 (ZIFF) fromtrec-2, Congressional Record 1993
(CR) fromtrec-4, and a large corpora (ALL), with around 1GB, created by aggregating ZiffData
1989-1990 (ZIFF) and AP Newswire 1988 fromtrec-2, Congressional Record 1993 (CR) and
Financial Times 1991 to 1994 fromtrec-4, in addition to the small Calgary corpus12.

Table 4 presents the main characteristics of the corpora used. The first column indicates the
name of the corpus and the second its size (in bytes). The third column indicates the number
of words that compose the corpus, and finally the fourth column shows the number of different
words in the text.

Table 5 shows the compression ratio (in %), decompression time (in seconds) and access
time (microseconds per access) for the two alternatives over all the corpora considered. “DACs
b=8” uses therank structure that occupies 5%-extra space over the sequence. We have adjusted
the sampling parameter of the alternative “PH+ sampl” to obtain the same compression ratio
than “DACs b=8”. The value of this parameter is shown in the table for each text: we store one
sample each 24 codewords for CR corpus, one sample each 26 codewords for ZIFF corpus and
one sample each 36 codewords for ALL corpus.

The decompression time includes the time, in seconds, to decompress the whole text, retriev-
ing an exact copy of the original text. This procedure does not require the use of samples in
the case of “PH+ sampl”, nor does it require the use of rank operations when “DACs b=8” is
used, since all the levels of the representation can be sequentially processed and the synchroniza-
tion between the bytes of the same codeword can be carried outusing one pointer at each level,
indicating the last byte read.

Decompression is faster for PH than for DACs. For PH, decompression just involves a se-
quential decoding of all the bytes of the encoded sequence. For DACs, it requires reading bytes
at different levels of the representation, which are not contiguously located in memory, and thus

11The byte-oriented Huffman compressor that uses words as source symbols, instead ofcharacters, is calledPlain
Huffman(Moura et al., 2000).

12http://www.data-compression.info/Corpora/CalgaryCorpus/
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Table 5: Space and time performance for DACs and byte-oriented Huffman code (PH) when representing the sequence
of words of three natural language texts.

DACs b=8 PH+ samp
ratio t dec t access ratio words per t dec t access

Text (%) (s) (µs) (%) sample (s) (µs)
CR 33.45 0.42 0.0544 33.53 24 0.34 0.1938
ZIFF 35.57 1.53 0.0761 35.62 26 1.26 0.2581
ALL 35.24 10.12 0.1088 35.23 32 8.57 0.2838

have less locality of reference. In addition, the compressed sequence using PH (without taking
into account the sparse sampling) is shorter than the compressed sequence using DACs. Hence,
PH processes a smaller number of bytes during the decompression procedure, which also speeds
up decompression.

The access time was computed as the average time to access 10,000,000 words at random
positions of the text. We can observe that “DACs b=8” obtains considerably better access times
than “PH+ sampl”, around 3-4 times faster. It is also noticeable that,for both alternatives, larger
corpora obtain worse results than smaller corpora. In the case of “DACs b=8” this is due to the
size of the vocabulary: since there are more different words in a larger text, there are many words
that obtain longer codewords, and consequently the number of levels is bigger than for smaller
corpora, which causes a higher number of rank operations when extracting those codewords. In
the case of “PH+ sampl”, the sample period used is bigger for larger corpora,as we can see in
Table 5, and this slows down the accesses to random words of the text.

Our proposal obtains better access time to individual wordsof the text, but it becomes slower
when decompressing the whole text. We now analyze the time required by each alternative to
accesst random consecutive positions of the text, as when extracting a snippet. Figure 4 shows
the average time to retrievet consecutive words for the three corpora CR, ZIFF and ALL using
“DACs b=8” and “PH+ samp”, where the sampling used is the same as in Table 5. We observe in
the figure that “DACs b=8” outperforms “PH+ samp” when the value oft is small, that is, when
we access a few consecutive words of the text. As we increaset, the benefits of PH encoding, that
is, its higher locality of reference, becomes noticeable, and “PH + samp” outperforms “DACs
b=8”. For instance, if we want to decompress 25 consecutive words, “PH+ samp” becomes
the preferred alternative. However, when accessing few consecutive words, such as five or less,
“DACs b=8” obtains better time results.

This shows that DACs may not be the best choice if we are interested in extracting snippets,
which are longer than a few words. However, there is another important activity in text databases
where time is more critical, and where just a few words have tobe accessed: When phrases are
sought, we can carry out the intersections on the inverted lists of the text collection, if they store
the exact word offsets of all the occurrences of each word. However, it is usually the case that
some lists are much longer than others, and better than intersecting the lists is to directly access
the occurrences of the shorter list and check their surrounding words in the text. This becomes
even more interesting when looking for phrases of more than two words. For this problem DACs
are preferable over PH+ samp.
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Figure 4: Accessing consecutive words for DACs (b=8) and PH (with sampling).

6. Conclusions

We have introduced theDirectly Addressable Codes (DACs), a new storage scheme for
variable-length encoded sequences (including unbounded integers and statistical encodings) that
enables easy and direct access to any element of the sequence. It achieves very compact spaces,
usually better than most alternative representations, andmuch faster direct access. This is an im-
portant achievement because the need of random access to variable-length codes is ubiquitous in
many sorts of applications, particularly in compressed data structures, but also arises in everyday
programming. Using bitmaps aligned to the codes in order to mark their beginnings is a folklore
idea that has been used many times (Fano, 1971; Culpepper andMoffat, 2006; Fredriksson and
Grabowski, 2006; Grabowski et al., 2006; Brisaboa et al., 2007) with various purposes, but as
far as we know, our scheme to provide direct access is unique.Our method is simple to program
and is space- and time-efficient, which makes it an attractive practical choice in manyscenarios.

Since its original publication (Brisaboa et al., 2009), DACs have proved to be relevant in
many applications related to compact data structures:

Compressed suffix trees. A new practical compressed suffix tree (Cánovas and Navarro, 2010)
includes the representation of the LCP array. DACs were usedto provide fast direct access
to any value of the encoded LCP array, which made the new representation faster than pre-
vious existing implementations (including some that need more space), within affordable
space.

Efficient representation of grammars. DACs have also been used for representing the rules gen-
erated by Re-Pair (Larsson and Moffat, 2000) in a compressed index specialized on search-
ing short substrings (q-grams) over highly repetitive sequences (Claude et al., 2010). Specif-
ically, DACs were used to store the lengths of the rules (mostof which are short), consid-
erably reducing the space.

Lempel-Ziv-based indexing. A text index oriented to repetitive text collections (Kreftand Navarro,
2011), based on the Lempel-Ziv 1977 parsing (Ziv and Lempel,1977), uses various com-
pact data structures to achieve space reductions of up to 1000-fold. DACs have been
successfully used to store the skips of the tries that store the Lempel-Ziv phrases, where
most skips are very short.
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Direct access to grammar-compressed strings. In a practical study of dictionary representations
(Brisaboa et al., 2011), Re-Pair compression of the stringswas an alternative. DACs were
used to regard each word, compressed into a sequence of nonterminals, as a variable-length
representation of an element to which direct access was provided.

The first three applications illustrate the use of DACs as a technique to represent a sequence
of numbers, most of which are expected to be small. Our own example on natural language
text compression show how statistical encodings can be reduced, via sorting by frequency, to
encoding a sequence of numbers as well. However, the last application listed above is different.
It shows how DACs can be used, in general, to provide direct access to any encoded sequence
of symbols obtained after using a variable-length encodingtechnique. In the case the underlying
variable-length code is Vbyte (Williams and Zobel, 1999), our method can be regarded as just
a reorganization of the bytes of the compressed data (plus asymptotically negligible extra space
for rank structures), that enables direct access to it.
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