
Efficient Similarity Search by Combining
Indexing and Caching Strategies?

Nieves R. Brisaboa1, Ana Cerdeira-Pena1, Veronica Gil-Costa3,
Mauricio Marin2 and Oscar Pedreira1

1 Database Lab., Facultade de Informática, Universidade da Coruña, Spain.
{brisaboa,acerdeira,opedreira}@udc.es

2 CITIAPS, DIINF, University of Santiago, Chile.
mauricio.marin@usach.cl

3 DCC, National University of San Luis, Argentina.
gvcosta@unsl.edu.ar

Abstract. A critical issue in large scale search engines is to efficiently
handle sudden peaks of incoming query traffic. Research in metric spaces
has addressed this problem from the point of view of creating caches that
provide information to, if possible, exactly/approximately answer a query
very quickly without needing to further process an index. However, one of
the problems of that approach is that, if the cache is not able to provide
an answer, the distances computed up to that moment are wasted, and
the search must proceed through the index structure. In this paper we
present an index structure that serves a twofold role: that of a cache and
an index in the same structure. In this way, if we are not able to provide
a quick approximate answer for the query, the distances computed up to
that moment are used to query the index. We present an experimental
evaluation of the performance obtained with our structure.

1 Introduction

New applications for search engines demand the use of data more complex than
plain-text. Metric spaces have proven useful and practical for performing sim-
ilarity search on very-large collections of complex objects. In this case, queries
are objects of the same type of those stored in the database where, for example,
one is interested in retrieving the k most similar objects to a given query. The
similarity between any two objects is calculated by an application-dependent dis-
tance function, which is usually expensive to compute. The database is indexed
using pre-computed distances to reduce comparisons during the search.

One of the critical issues in large scale search engines is efficiently handling
sudden peaks in incoming query traffic. Typically, a large search engine is com-
posed of one or more front-service (FS) machines and a collection of P processors

? Partially funded by: MICIN ref. TIN2009-14560-C03-02 (PGE & FEDER), Xunta
de Galicia ref. GRC2013/053 (FEDER), and CDTI-MINECO-Axencia Galega de
Innovación EXP 00064563/ITC-20133062 for authors in UDC1. FONDEF IDeA
CA12i10314 for M. Maŕın. Mincyt-Conicyt CH1204 for V. Gil-Costa.

forming a distributed memory system. The Front-Service is in charge of receiving
and sending queries to processors for results calculation. Each processor is seen
as a search node which is in charge of a fraction of the whole object collection.
Efficient search is supported by an index data structure that is distributed onto
the P processors and parallel query processing is performed by sending the query
to a number of processors. For systems under heavy query traffic it is critical to
reduce the number of computations and yet to maintain an efficient throughput
(number of queries entirely solved per unit time).

Research in metric-space similarity search has mainly focused on optimizing
the execution of single queries. In multiple query settings, where query arrival
rate can drastically change in intensity, and query content can become dynam-
ically skewed in unpredictable ways, a relevant question is how we can make
current queries benefit from previous query results so that they can be answered
with approximate results. The underlying assumption is that approximate an-
swers can be computed with much less computing cycles than regular answers
so that servers are able to cope with drastic increase in incoming query traffic.

Caching query results is a feasible solution, and strategies such as QCache
and RCache [1] have been proposed. However, they fail to reduce overall comput-
ing cycles as they treat independently caching and indexing. Namely, incoming
queries that do not benefit from the cache are redirected to the metric index
so query answers are computed from scratch. Our experiments show that the
cost of accessing the cache in previous strategies can be even more expensive (or
similar) than computing the answer for a query from the index itself.

To illustrate the above claim we performed experiments under the setting
described in Section 4. We used a query log on the following three cases: (1)
each query is sent to a RCache [1] and if the cache fails to produce the top-k
results, the query is solved with an M-Tree [2] index, (2) each query is sent
to a QCache [1], (a variation of the RCache) and if the cache fails to produce
the top-k results, the query is sent to the M-Tree index and, (3) each query is
directly solved with the M-Tree index. In each case we computed the running
time and the number of distance evaluations required to process the full query
log. Figure 1 shows the results normalized to 1. Cache sizes were set to 1%,
3% and 6% of the number of queries, which produces cache hit ratios of 15% ,
22% and 33% respectively. The results show that the running time and distance
evaluations when using caches are a significant part of the search cost.

In this paper we propose a strategy which contains a cache embedded in the
index so that computing cycles are not wasted when cache contents are not able
to produce good approximate results. In such a case, previous computations for
the query are used to continue the traversal of the index in order to produce
approximate query results as fast as possible.

The remaining of this paper is organized as follows. Section 2 reviews related
work on similarity search and caching. In Section 3 we present a new index
structure that combines indexing and caching strategies. Section 4 presents the
results obtained in the experimental evaluation of our structure. Finally, Section
5 summarizes the main conclusions from our work.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 3 6

N
o

rm
al

iz
ed

 R
u

n
n

in
g

 T
im

e

Cache Size (%)

QCache
RCache
M-tree

(a) Running Time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 3 6

N
o

rm
a
li

z
e
d

 D
is

ta
n

c
e
 E

v
a
lu

a
ti

o
n

s

Cache Size (%)

QCache
RCache
M-Tree

(b) Distance Evaluations

Fig. 1. Performance achieved by different cache strategies.

2 Related Work

A metric space (U, d) is composed of a universe of objects U and a metric, a
function d : U × U → R+ that measures the dissimilarity between any two
objects and that holds the properties of strictly positiveness (d(x, y) > 0 and if
d(x, y) = 0 then x = y), symmetry (d(x, y) = d(y, x)), and the triangle inequality
(d(x, z) ≤ d(x, y)+d(y, z)). The database or collection of objects is a finite subset
X ⊆ U , with size n = |X|.

There are two main queries of interest: (a) range search, RX(q, r), that re-
trieves all the objects u ∈ X within a search radius r of the query q, and (b)
k-nearest neighbors search, kNNX(q), that retrieves the set k most similar ob-
jects to q. Given a query q ∈ U , the goal is to retrieve the most similar objects
to q with the minimum number of object comparisons.

Many metric index structures have been proposed and studied (see [3, 4]). The
proposals of this paper make use of one of those structures, the List of Clusters
(LC) [5], which has shown to outperform well-known alternative metric-space
indexes [6]. LC partitions the collection into a set of disjoint clusters as follows.
We first choose a cluster center c ∈ X and a radius rc. The cluster ball (c, rc)
contains the subset of elements of X at distance at most rc from c. We define
IX,c,rc = {u ∈ X−{c}, d(c, u) ≤ rc} as the cluster of internal elements which lie
inside (c, rc), and EX,c,rc = {u ∈ X, d(c, u) > rc} as the external elements. The
clustering process is recursively applied in E. As shown in [5] a good policy for
selecting the next center is to choose the object in the collection that maximizes
the sum of distances to previous centers.

Given a query Rx(q, r), q is sequentially compared with the cluster centers of
the LC. Given a center c, we exhaustively scan its cluster I (that is, we compare
q with the objects u ∈ I) if the query ball (q, r) intersects the cluster ball (c, rc).
The search then continues with the next cluster in LC. At any point of the search,
the search stops if the query ball (q, r) is totally and strictly contained in the
cluster ball (c, rc), since the construction process ensures that all the elements
that are inside the query ball (q, r) have been inserted in I (as shown in line

Search(LC, q, r)
1. If LC is empty Then Return

2. Let LC = (c, rc, I) : E
3. Compute the distance d(c, q)
4. If d(c, q) ≤ r Add c to the set of

results

5. If d(c, q) ≤ rc + r Then Search I
exhaustively

6. If d(c, q) > rc − r Then Search(E, q, r)

(c1,r1)

I

(c2,r2)
E

I

E

q

List of Cluster

(a) LC search algorithm. (b) LC example.

Fig. 2. The List of Clusters (LC) strategy.

6 of Figure 2.a). Figure 2.b shows three clusters and a query RX(q, r). In this
example, q has to be compared with the objects in the clusters with centers c2
and c3, but the cluster with center c1 is directly discarded.

The selection of effective pivot /cluster centers for metric indexes has been
deeply studied. One of the existing proposals for center selection is SSS [7, 8] that
selects a new object as a center if it is far enough from those already selected.
Being M the maximum distance between any two objects in the space, and α a
parameter such that 0 ≤ α ≤ 1, an object in the collection is selected as a new
center if its distance to the previously selected centers is greater than M × α.
In [9] it has been shown that the most effective pivots for a given object of the
database are the nearest and furthest pivots.

2.1 Parallel Processing for List of Clusters

We assume a parallel architecture in which a front-service receives queries and
evenly distributes their processing onto the processors. The work in [6] studied
various forms of parallelization of the LC strategy concluding that a global in-
dexing strategy called GG, which stands for Global Index and Global Centers,
achieves the best performance.

The GG strategy builds a LC and distributes it uniformly at random the
clusters of the LC onto the processors. Upon reception of a query q, the broker
sends it to a circularly selected processor. This processor becomes the ranker for
that query. It calculates the query plan, that is, the list of clusters that intersect
(q, r). To this end, it broadcasts the query to all processors and they calculate in
parallel a fraction 1/P of the query plan. Then they send their nq/P pieces of the
global plan to the ranker, which merges them to get the global plan with clusters
sorted in construction order. The then ranker sends the query q and its plan to
the processor i containing the first cluster to be visited. This processor i goes
directly to the GG clusters that intersect with q, compares q against the objects
stored in them, and returns to the ranker those within (q, r). The remaining part
of the query plan is passed to the next processor j and so on, till completing the
processing of the query.

2.2 Metric Space Cache

A metric space cache C consists of a set of past queries with their respective
results. Let qi ∈ C, if the query along with all results in kNNX (qi , k) are in the
cache. Also oi ∈ C denotes that the object oi ∈ X is stored in the cache and thus
belongs to at least one set kNNX(qi, k) associated with a cached query qi. Let
rq denote the radius of the smallest hyper-sphere centered in q which contains
all objects in kNNX(q, k). The safe radius sq [1, 10] of the query q with respect
to a query qi ∈ C is the radius rqi minus the distance from q to qi, namely
sq(qi) = rqi − d(q, qi). Every cached query qi gives complete knowledge of the
space up to distance rqi from qi. If q is inside the hypersphere centered in qi with
radius rqi , then as long as we restrict ourselves to look inside this hypersphere,
we have complete knowledge of the k′ ≤ k nearest neighbours of q.

Thus, if the safe radius sq(qi) of a query q ∈ U with respect to a query
qi ∈ C is a positive value, then every object in the range query RX(q, sq(qi)) is
also in the cache C and thus can be solved over the cache with the range query
RC(q, sq(qi)). Furthermore, the k′ objects in RC(q, sq(qi)) are also the k′ nearest
neighbours of q in the whole database X.

In [1, 10, 11] two different metric-space cache algorithms were presented:
RCache (Result Cache) and QCache (Query Cache). RCache uses a hash ta-
ble H where, for each query qi ∈ C, it stores tuples of the form (qi, kNN(qi, k)),
being the object qi the hash key. If the query is not in C, then it attempts to give
an approximate answer. To search for an approximated answer, RCache uses a
metric-space indexM to perform a kANNC(q, k) search of the k closest objects
to qi which are currently stored in C. QCache builds the metric index M over
the query objects instead of indexing every single object returned by the queries
in the cache, as the RCache algorithm does. This reduces by a factor of k the
number of indexed objects. The main idea is to search sets of suitable cached
queries first and then to use the cached results of those queries to find an ap-
proximate answer. According to the experimental results reported in [1, 10], the
quality of the approximate results returned by both algorithms are comparable.

In [12] a caching metric-space index called D-File was proposed. D-File uses a
hash table with entries [o1, o2, d(o1, o2)], where o1 and o2 are the objects identifier
and the third component is the computed distance between them. D-File is
kept in main memory in order to reduce the number of distance computations
performed over a second index like the M-tree [2]. This goal is achieved when
the distance d(o1, o2) is in the D-File, or by obtaining a lower or upper bound of
d(o1, o2) and thereby improving the pruning over the M-tree. However, as shown
in [13], D-File suffers from a too high internal processing cost because of the
hash table. Recently, SnakeTable [13] was specifically proposed for scenarios in
which queries are received in streams of very similar queries.

3 Combining Indexing and Caching

One of the problems of previous proposals in caching for searching in metric
spaces is the cost of processing the cache in terms of distance computations. If

the cache succeeds in providing an answer, the distance computations to process
the cache save the distance computations needed to solve the query with an
index. However, if the cache fails, those distance computations for processing
the cache are wasted and add up to the overall search cost.

In this section we present a variant of the list of clusters that combines
indexing and caching policies into the same structure so, if the cache cannot
provide an exact or approximate answer for the query, at least the distance
computations needed to process the cache are not wasted, since they would be
necessary anyway in order to solve the query in the index.

3.1 Index Structure and Construction

The index structure is that of a LC in which cluster centers are not selected
among the objects in the database, but among the queries received in search
time. Therefore, there is no index built until the system starts receiving queries.
This implies that the search cost will be higher for the first queries. To avoid this
in a real scenario, we can make use of an additional index at the beginning of
the process that would be dropped when the new index structure has stabilized.

Since queries are dynamic, it is not possible to follow the center selection
policy of LC. We use SSS [7], that adapts to the dynamic nature of the queries,
and guarantees that the centers will be well distributed in the space. Therefore,
if the distance from a new query q to existing cluster centers is greater than
M × α, q will become a new cluster center and the index will be restructured
accordingly. The cluster corresponding to the new cluster center q may be empty
if no object in the collection is closer to q than to any other past query used as a
cluster center. In this case, the cluster would be removed. As in LC, each object
belongs to, and only to, the cluster formed by its closest cluster center.

Reorganizing the index when a new query is selected as a cluster center has
a cost in terms of distance computations. However, SSS guarantees that the
number of pivots will stabilize at some point, so the cost of that reorganization
will be amortized among all processed queries.

The reason for choosing the cluster centers among the queries received by
the system is that, in this way, they will better cover the portion of the space
defined by the queries, which is not necessarily the same space defined by the
objects in the database. This would benefit the algorithms for range and kNN
search since the cluster centers would be more similar to future queries.

In addition, we keep additional information in each cluster. Instead of storing
only the cluster center, the list of objects belonging to the cluster, and the
covering radius, we keep the distances from the center to each of the objects in
the cluster, as proposed in [14]. In this way, the cluster centers also play the
role of a pivot during the search. As shown in [9], the nearest pivot is the most
promising for each object, so using the cluster center as a pivot for each of the
objects belonging to that cluster should be the most effective choice. In addition,
keeping the distances from the cluster center to each object in the cluster will
also make possible to return approximate results to queries sufficiently similar
to one of the pivots.

3.2 Index as a Cache for Approximate Search

The main motivation for this index structure is that it can be used as a classical
index or as a cache that may help to quickly provide approximate answers to
queries when the system is receiving a huge number of queries. When a new
query is submitted to the system, the first step consists in comparing the query
object with the cluster centers. Since these objects are past queries, they reflect
the space defined by the queries, and it is probable that new queries are equal
or similar to some of the cluster centers. The higher the number of past queries
used as cluster centers, the more the chances that a new query is sufficiently
similar to a past query used as a cluster center.

If d(q, ci) = 0 for some ci, the approximate answer to q will be extracted by
just using the information contained in Ci. This may leave some objects out of
the answer, but it would not require additional distance computations.

The case in which a new query is exactly equal to a past query used as a
cluster center will happen very few times. However, it is still possible to provide
an approximate result if q is sufficiently close to some cluster center ci. Notice
that by selecting the cluster centers with SSS, all of them are at least at a
distance M × α. Therefore, the covering radius of each cluster will be at most
M×α

2 . We consider that q is sufficiently similar to the cluster center ci if:

d(q, ci) ≤
M × α

2
× ρ

where 0 ≤ ρ ≤ 1. Therefore, ρ determines how close a query has to be to a past
query in order to return an approximate answer. Since the structure of the index
does not depend on ρ, this parameter can be easily changed during the search
phase depending on the processing demands on the system.

3.3 Searching

Algorithm 1 shows the pseudocode of the algorithm for range search. Given
R(q, r), and being I the index, the search process proceeds as follows:

– In a first step, the query q is compared with the center of each of the clusters
of I (lines 2 and 3). This comparison allows us to determine if q will become a
new cluster center or not. If the d(q, pi) > M ×α for all pivots pi, q becomes
a new cluster center (lines 4 and 5). In this case, it is necessary to restructure
the index so the objects that are closer to this new pivot are assigned to its
cluster. The procedure AddNewCluster(I, q) carries out this restructuring.

Notice that it is possible to carry out this reorganization without compar-
ing q with all objects in the database, since the distances from each object x
to its cluster center provides us with lower bounds on d(q, x) so it may not
be necessary to compute d(q, x).

– After comparing the query q with each of the cluster centers, we can use this
information and the index as a cache (lines 6-8). First, if d(q, ci) = 0 for some
pi, we can answer the query with the information contained in the cluster

1 Algorithm: RangeSearch (I, q, r)

Data: I: Index structure; q: query object; r: search radius;
2 for i = 1 to I.size do
3 d[i] = d(q, pi) ;
4 if ∀i, d[i] ≥M × α then
5 AddNewCluster(I,q);
6 else
7 if ∃pi / d[i] ≤ M×α

2
× ρ then

8 ApproximateRangeSearch(I.ci, q, r);
9 else

10 for i = 1 to I.size do
11 if d[i]− cri ≤ r then
12 foreach xj ∈ I.Ci do
13 if |d[i]− d(ci, xj)| ≤ r then
14 if d(q, xj) < r then
15 Result← Result ∪ {xj}
Algorithm 1: Pseudocode for range search with approximate search.

formed by ci. Even if an exact match does not occur, the information of the
index allows us to provide an approximate answer. If d(q, ci) ≤ M×α

2 × ρ for
some ci, we will also build the answer to q from the information contained
in the cluster formed by ci. In that case, we restrict the search to the cluster
of ci. Since the index stores the distances d(x, ci) for all the objects in the
cluster, we can use these distances to obtain lower bounds for d(q, x) and
discard some objects x without comparing them with q.

– If cannot provide an approximate answer, the search continues exploiting the
rest of information in the index by combining cluster and pivot criteria to
discard the objects in the clusters (lines 9-15). Notice that at this point we
already have the distance from q to the cluster centers. Those clusters that
do not intersect the query ball (q, r) are directly discarded from the result.
For those clusters that cannot be completely discarded, we use the distances
from the center to the objects x in the cluster to obtain lower bounds on
d(q, x). In those cases in which these lower bounds do not allow us to directly
discard x, we finally have to compute the distance d(q, x).

With this algorithm, if the structure is not able to provide an approximate
answer for a query (thus acting like a cache), the distances computed up to that
moment are not wasted, since they are the same needed to search using the
index. As in proposals in which the cache is a component separated from the
index, in the proposed algorithm it is also possible to activate/deactivate the use
of the cache in function of the processing requirements of the system. Actually,
the parameter ρ allows us to control the degree to which the cache will be used
(and in consequence, the quality of the approximate answers).

Although we have only explained the algorithm for range search, adapting it
for the case of kNN search is straightforward. Given a new query q, its list of k

Fig. 3. Search and update cost for range queries in English.

nearest neighbors can be initialized with the first objects it is compared with.
Then, the search proceeds as a range search, but updating the range at each
step if necessary as the distance from q to its current kth nearest neighbor.

4 Experimental Results

In this section we provide experimental results on different aspects of our struc-
ture. We implemented it using the Metric Spaces Library [15]. We used two
collections from the library, widely used in the state of the art, namely English,
a dictionary containing 69, 069 words, and Nasa, a collection of 40, 151 images
represented by feature vectors of dimension 20. The edit distance was used for
English, and the Euclidean distance for Nasa.

For each collection, 90% of the objects were used as the database, and the
remaining 10% were used as base queries. The query sets were created from
the base queries in order to reflect the typical human behavior in real search
engines. To do so, the base queries were replicated following the same distribution
obtained from a set of real queries obtained from a web search engine. In this
way, the queries have a biased distribution that matches that we would obtain in
a real system. Following this procedure, we generated files with 10, 000 queries
for each collection. The query range for English was set to 2, and for Nasa we
used a range that retrieves an average of 0.01% of the collection for each query.

In a first set of experiments, we analyzed how the structure performance
evolves when the first queries are submitted to the system. To do this, we ran
the 10, 000 queries for each collection with an initially empty index. In order to

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0.2

0.4

0.6

0.8

1

1.2

#D
is

ta
nc

es
 (

pe
r

qu
er

y)

#Queries

x104

Range TWOC
Range RWOC
Range TWC
Range RWC
Range UWC / UWOC

Fig. 4. Search and update cost for range queries in Nasa.

focus on the cost of solving queries and updating the index, the parameter ρ was
set to 0 in these experiments when the cache was used, which means that the
cache is used only when a new query is exactly equal to a past query. Figures
3 and 4 show for each collection the number of distances needed to answer the
range queries with and without using the cache part of the algorithm (RWC and
RWOC respectively), the number of distances needed to update the index with and
without cache (UWC and UWOC respectively), and the sum of these two numbers
(TWOC and TWC). The results are shown in terms of the number of queries received
by the system (from 0 to 10, 000). As we can see in the results, the cost of solving
a query decreases in all cases as the index gets more information. In the case
of Nasa, which needs a smaller number of centers, we can see how the cost of
updating the index quickly decreases as the number of past queries increases.

We conducted experiments to analyze the performance when we use the
structure as a cache and an index at the same time, providing approximate but
quick answers when possible. In order to leave the cost of updating the index out
of the results so it does not interfere with the purpose of these experiments, we
ran the 10, 000 queries twice for each collection: the first one allows the index to
build and stabilize (which has been analyzed in the previous experiments), and
the second one allows us to measure search performance when very few changes in
the index happen. Figure 5 shows the average number of distance computations
to solve range queries and 4-NN queries for different values of the parameter ρ.
The results reflect only the performance in the second phase. The figure shows for
each value of ρ the cost of solving the query using the cache (English-TWC and
Nasa-TWC) and without using it (English-TWOC and Nasa-TWOC). As the value

rho=0 rho=0.25 rho=0.5 rho=0.75 rho=0.9 rho=1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2
x104

#D
is

ta
nc

es
 (

pe
r

qu
er

y)

English − TWOC English − TWC Nasa − TWOC Nasa − TWC

(a) Range search

rho=0 rho=0.25 rho=0.5 rho=0.75 rho=0.9 rho=1
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
x104

#D
is

ta
nc

es
 (

pe
r

qu
er

y)

English − TWOC English − TWC Nasa − TWOC Nasa − TWC

(b) 4-NN

Fig. 5. Cost for range and 4-NN search using the structure as a cache and as an index.

of ρ grows, the requirements for a query to be solved using only information of
its closest cluster are lower, which results in less distance computations. Even
for the smallest values of ρ, the improvement with respect to the version that
does not use the cache is very significant.

5 Conclusions

We have presented a metric structure for similarity search that allows us to use
it as a cache or a classic metric index. One of the main differences with the
original List of Clusters structure is that cluster centers are selected among past
queries instead of among the objects in the collection, and that they are selected
with a criterion that ensures they will be distributed in the space. In addition,
each cluster stores the distances from the center to each of its objects. Given a
new query, we provide an approximate result if it is equal or very similar to one
of the past queries we keep in the index. If we cannot provide an approximate
result, the distances computations needed to examine past queries are used to
continue the search in the index, and to prune part of the search space.

The main advantage of this metric structure is that it can work as a cache
and an index at the same time. Since the cluster centers are past queries, the

comparison of each query with them allows us to provide an approximate but
quick result. Even if the first step cannot return an approximate answer, those
distance computations carried out to that moment are not wasted work, since
they would be necessary anyway to query the index. Therefore, the main differ-
ence with previous proposals is that the cache is integrated with the index, not
requiring any additional processing.

Some lines for future work are still open. We are working on replacement
policy to dynamically update the past queries kept in the index as cluster centers.
This can be important if the distribution of the queries received by the system
are very skewed in certain and short periods of time.

References

1. Falchi, F., Lucchese, C., Orlando, S., Perego, R., Rabitti, F.: Caching content-
based queries for robust and efficient image retrieval. In: Procs. of EDBT. (2009)
780–790

2. Ciaccia, P., Patella, M., Zezula, P.: M-tree: An efficient access method for similarity
search in metric spaces. In: Procs. of VLDB. (1997) 426–435

3. Chávez, E., Navarro, G., Baeza-Yates, R., Marroqúın, J.L.: Searching in metric
spaces. ACM Computing Surveys 33 (2001) 273–321

4. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity search. The metric space
approach. Volume 32 of Advances in Database Systems. Springer (2006)

5. Chavez, E., Navarro, G.: A compact space decomposition for effective metric
indexing. Pattern Recognition Letters 26(9) (2005) 1363–1376

6. Gil-Costa, V., Marin, M., Reyes, N.: Parallel query processing on distributed
clustering indexes. Journal of Discrete Algorithms 7(1) (2009) 3–17

7. Brisaboa, N., Pedreira, O.: Spatial selection of sparse pivots for similarity search
in metric spaces. In: Procs. of SOFSEM’07 - Current Trends in Computer Science.
Volume LNCS 4362., Springer (2007) 434–445

8. Bustos, B., Pedreira, O., Brisaboa, N.: A dynamic pivot selection technique for
similarity search in metric spaces. In: Procs. of SISAP, IEEE Press (2008) 105–112

9. Ares, L.G., Brisaboa, N.R., Esteller, M.F., Pedreira, O., ngeles S. Places: Optimal
pivots to minimize the index size for metric access methods. In: Procs. of SISAP,
IEEE Press (2009) 74–80

10. Falchi, F., Lucchese, C., Orlando, S., Perego, R., Rabitti, F.: A metric cache for
similarity search. In: Procs. of LSDS-IR. (2008) 43–50

11. Falchi, F., Lucchese, C., Orlando, S., Perego, R., Rabitti, F.: Similarity caching in
large-scale image retrieval. Information Processing and Management (2011)

12. Skopal, T., Lokoc, J., Bustos, B.: D-cache: Universal distance cache for metric
access methods. Transactions on Knowledge and Data Engineering 99 (2011)

13. Barrios, J., Bustos, B., Skopal, T.: Snake table: A dynamic pivot table for streams
of k-nn searches. In: Procs. of SISAP. Volume LNCS 7404., Springer (2012) 25–39

14. Marin, M., Gil-Costa, V., Bonacic, C.: A search engine index for multimedia
content. In: Procs. of Euro-Par. Volume LNCS 5168., Springer (2008) 866–875

15. Figueroa, K., Navarro, G., Chávez, E.: Metric spaces library (2007) Available at
http://www.sisap.org/Metric Space Library.html.

