
Storing and Clustering Large Spatial Datasets

Using Big Data Technologies⋆

Alejandro Cortiñas, Miguel R. Luaces, and Tirso Varela-Rodeiro

Universidade da Coruña
Laboratorio de Bases de Datos

A Coruña, Spain
{alejandro.cortinas, luaces, tirso.varela.rodeiro}@udc.es

Abstract. In this paper we present the architecture of a system to store,
query and visualize on the web large datasets of geographic information.
The architecture includes a component to simulate a large number of
drivers that report their position on a regular basis, an ingestion compo-
nent that is generic and can acommodate three different storage technolo-
gies, a query component that aggregates the results in order to reduce
the query time and the data transfered, and a web-based map viewer. In
addition, we define an evaluation methodology to be used to benchmark
and compare different alternatives for some components of the system,
and we validate the architecture with experiments using a dataset of 40
million locations of drivers.

Keywords: spatial big data, web-based GIS, software architectures

1 Motivation

Current technology makes the real-time collection of massive volumes of geo-
graphic information feasible. The computing power of current mobile devices is
similar to the one of a desktop computer from the last decade. They can be
used to measure different variables such as the geographic position using a GPS
receiver, or the user activity using an accelerometer. Mobile Workforce Manage-
ment (MWM) technologies will benefit especially from the information collected
using mobile devices, and they are gaining attention because they are used by
companies to manage and optimize the task scheduling of their workers and to
improve the performance of their business processes [3]. Hence, Mobile Work-
force Management is useful to detect patterns in the past activity of workers, or
to predict trends that can improve the future scheduling. For example, Mobile
Workforce Management can be used by a company to detect which tasks are

⋆ This work has been funded by MINECO (PGE & FEDER) [TIN2016-78011-C4-
1-R, TIN2016-77158-C4-3-R, TIN2015-69951-R]; CDTI and MINECO [Ref. IDI-
20141259, Ref. ITC-20151305, Ref. ITC-20151247]; Xunta de Galicia [ED431C
2017/58].



2

costly for the company, or to ensure that it has the lowest number of active
employees at any time of the day.

Datasets produced by mobile sensing and Mobile Workforce Management
technologies are large and complex. As an example, consider a carsharing ser-
vice like car2go. If each car produces a GPS position every 10 seconds (64 bytes
considering a device id, a timestamp, three geographic coordinates, speed, bear-
ing, and accuracy), it generates 552,900 bytes of data every day. Considering
that car2go in Madrid has 500 vehicles [1], it would require over than 263 MB
of storage each day. Larger systems, such as the taxi fleet (over 16,000 licenses
in the region of Madrid), or the inclusion of additional sensor data (such as
accelerometer data) would produce larger datasets.

Although the datasets are large, storage space is affordable and it does not
seem impossible to store all this information, but querying and visualizing these
datasets is a still difficult task. Current web-based GIS technology cannot deal
with this problem. Data management technologies have been working during
the last years to support horizontal scaling and distributed processing [7,2,8,5].
Therefore, storing and quering large geographic datasets can be achieved. How-
ever, middleware software such as map servers and visualization software such as
javascript-based map viewers are not addapted to large datasets and distributed
processing. Consider, for example the map server Geoserver [6]. It supports
querying multiple data souces, but the support for MongoDB is quite recent
and there is no support for other NoSQL technologies. Similarly, consider the
map viewer Leaflet [4]. It supports different types of data layers but it includes
plugins to aggregate large datasets to avoid cluttering the map display. However,
the aggregation is performed on the client side, thus requiring large datasets to
be transferred over the network and to be processed in the web browser. Hence,
in order to support the visualization of large geographic datasets, middleware
components and map viewers must support querying and aggregating geographic
data using distributed processing systems.

In this paper, we present the architecture of a system to store, query and
visualize on the web large datasets of geographic information (see Section 2).
Given that selecting the most appropriate technology to support these usage
scenarios is complicated, we have started to define an evaluation methodology
to be used to benchmark and compare different alternatives for some components
of the system (see Section 3). Therefore, the architecture includes a system to
simulate the real load on one of these systems by simulating a large number of
drivers that circulate through a road network and report their position to the
server on a regular basis. In addition, the system also provides a solution to feed
different storage subsystems in a simple way with the same set of data so that
they can be tested under the same load conditions and evaluate their perfor-
mance with the same queries. Finally, we also show preliminary results in which
we use the proposed system to store, query and visualize 40 million locations
of drivers in a relational spatial database management system (PostgreSQL +
PostGIS), a NoSQL database management system (MongoDB) and a Big Data



3

Route Simulator

<<component>>

DataProducer

Ingestion System

<<component>>

DataReceiver

DataWriter

Storage System

<<component>>

DataStorage [1..*] DataProvider

Query System

<<component>>

DataRetriever

DataQuerying Standard OGC Services

Web Map Viewer

<<component>>

DataLayer

Fig. 1: System architecture

tool for storing and querying OLAP data (Druid) (see Section 4). Finally, we
discuss the results and propose future work in Section 5).

2 Proposed Architecture

Figure 1 shows the main components of the system architecture. The Route

Simulator component runs on the client side of the system and it simulates a
collection of simultaneous drivers. Each driver starts at a random position in
the road network, it calculates a route to a random destination, and it generates
positions along the sections of the route with the specified periodicity assuming
a random speed expressed as a percentage of the maximum allowed speed. For
example, a driver can generate positions every second assuming that it always
circulates at 80 % of the maximum speed of the road, while another driver can
generate positions every five seconds running at 105 % of the maximum speed
of the road. The component Ingestion System runs on the server side and it
is responsible for collecting the data in real time. Its implementation is generic
so that it is very easy to implement extensions to the component that behave
differently simply by implementing a Java interface. The component Storage

System is in charge of storing the data in a database management system.

Regarding the querying and visualization funcionationaly of the architecture,
final users interact with the Web Map Viewer component, which is based on a
standard web-based map viewer. Additionally, considering that the datasets that
have to be visualized are extremely large, the information in these datasets is
clustered depending on the zoom level in order to avoid cluttering the map dis-
play. The process of query solving and data clustering is performed on the server
side by the Web Map Viewer component, which receives queries sent by the Web



4

Storage System

<<component>>

Ingestion System

<<component>>

DataReceiver

Streaming Platform (Apache Kafka)

<<component>>

Kafka Topic

PostgreSQL Writer

<<component>>

JDBC

Druid Writer

<<component>>

Tranquility

Druid Cluster

<<component>>

Indexing Service

DataWriter

PostgreSQL

<<component>>

SQL

PostGIS

<<component>> MongoDB

<<component>>

BSON

MongoDB Writer

<<component>>

MongoDB Java Driver

Fig. 2: Detailed ingestion architecture

Map Viewer component, delegates them on the Storage System component,
and sends the results back to the client.

Figure 2 shows a detailed view of the ingestion architecture components.
The components with a gray background are used without modifications. The
entry point of the Ingestion System component is a messaging system (Apache
Kafka) that is used to decouple the task of receiving large collections of data from
the storage. The Streaming Platform component consumes the Kafka events
and forwards them to different storage systems. Figure 3 shows an example of
an event received by the Ingestion System component. It consists of informa-
tion regarding the worker id, the GPS position of the worker, the timestamp of
the position, and additional information in JSON format that is specific of the
particular domain for which the architecture is being used.

The communication with the Storage System component is managed by a
component that implements the generic Data Writer interface. We have cur-
rently implemented three alternatives: one that stores the events in Postgres
+ PostGIS (the component PostgreSQL Writer), another one that stores the
data in MongoDB (the component MongoDB Writer), and another that stores
the data in Druid (the component Druid Writer).

Given that the purpose of the data stored in the system is the interactive
visualization by the user in a map viewer, and that having a fluid visualization



5

1 {
2 "worker_id"; 3,

3 "position": {
4 "x": -8.0041161,

5 "y": 43.18902,

6 "z": 517,

7 "speed": 32.48,

8 "bearing": 83.6,

9 "accuracy": 4.5509996

10 },
11 "timestamp": 1513763866,

12 "data": {...additional data in json format...}
13 }

Fig. 3: Example of an event received by the Ingestion System component

in the client side is a very important requirement, it is necessary to aggregate
the points on the server side of the application and send to the client side only
the result of the aggregation. That is, instaead of transferring large collections of
individual geographic points, we want to transfer a smaller collection of clustered
points amd the number of events that are added under that point. Furthermore,
considering that the user will be able to define specific spatial and temporal
ranges for the set of events that have to be retrieved to visualize by means
of zoom and pan operations in a map and a time range control, precomputed
clusters cannot be used because the variation among queries is too large. The
simplest alternative is to perform the query get all points in the range (xmin,
ymin, tmin) - (xmax, ymax, tmax) and apply an aggregation algorithm on the
result, but it is a costly solution in terms of computation requirements. Instead,
we propose to preprocess each event when it is inserted into the system and add
versions of the geographic point with decreasing precision. For example, if each
point is represented in a geographic coordinate system in which the coordinates
represent longitude and latitude in degrees, a value with an accuracy of 9 deci-
mals represents a maximum of 1 millimeter on the surface of the Earth. Storing 7
additional versions of the same geographical point with 7 different precisions (be-
tween 2 and 8 decimals) makes the process of aggregation as simple as grouping
the events by equal values of coordinates and counting the number of elements.
Therefore, the components implementing the Data Writer interface are also in
charge of computing and storing the additional versions of the geographic point
for each event.

Figure 4 shows a detailed view of the querying architecture components.
The components with a gray background are used without modifications. The
same design pattern that was used in the Ingestion System component is
used to manage the communication with the Storage System. A generic in-
terface was defined (DataRetriever) and components implementing this inter-
face are responsible for parsing the query and communicating with the Storage



6

System component. We implemented three alternatives: Postgres + PostGIS
(PostgreSQL Retriever), MongoDB (MongoDB Retriever), and Druid (Druid
Retriever).

The data retrieving components are used in two alternative use cases. In the
first use case, we support direct visualization of the data in the Web Map Viewer

component using Leaflet and two components that manage the communication:
a client-side component called LeafletDataLayer that implements the Layer in-
terface of Leaflet, and a server-side component called Leaflet Backend that re-
ceives queries and delegates them to the appropriate data retrieving component.
In the second use case, we implemented an extension to Geoserver, a popular
map server component. This extension (named Geoserver Backend) acts as an
adapter between Geoserver and the data retrieving components. Whereas the
first scenario avoids middleware layers and performs faster, the second scenario
provides applications with standard OGC services such as WMS, WFS and Fil-
ter Encoding. Figure 51 shows an example of a user interface using the Web
Map Viewer component. The user interface displays a map with clusters that
represent the amount of events that are stored in the database in a time range
specified by the users.

3 Evaluation Methodology

In order to validate the architecture that we have proposed in Section 2, we
have identified three key aspects that have to be evaluated and that lead to
three research questions:

– Research question 1 (RQ1). Which of the candidate storage technologies pro-
vides a faster answer to aggregation queries? The selection of a storage tech-
nologies cannot be based only on how fast is able to answer a specific type of
query because there may be many other requirements (e.g., transaction sup-
port, horizontal scaling, etc.). However, being able to answer the aggregation
queries that are the basis of the architecture is a very important requirement
with a high weight on the decision.

– Research question 2 (RQ2). Can we achieve a constant time in aggregation
queries using different versions of each geographic point? In Section 2, we
proposed a simple approach that can be used to improve aggregation queries
using multiple versions of each geographic point. It is clear that this approch
requires additional storage space, but it is not clear wether it will be possible
to achieve a constant time answering queries.

– Research question 3 (RQ3). Which query predicate performs faster, the dis-
tance based or the geometry based? All storage systems provide two alter-
natives to solve range queries: one based on a distance predicate, which
uses mathematical operations, and another one based on a bounding box
predicate, which uses geometric operations. It is important to discover wich
alternative of the queries performs faster in order to use it in queries.

1 Note to the reviewers: we are currently working on the user interface, in case the
paper is accepted we will upadte the screenshot with a better style for the clusters.



7

Storage System

<<component>>

Druid Cluster

<<component>>

Broker Service

PostgreSQL

<<component>>

SQL

PostGIS

<<component>> MongoDB

<<component>>

Query Language

em

<<component>>

DataQuerying S������� ��� S ��	
 �

<<component>>

JDBC

Mongo r

<<component>>

MongoDB Java Driver

<<component>>

REST Client

<<component>>

DataQuerying

<<component>>

<<component>>

Standard OGC Services

tension

Web Map Viewer

<<component>>

Leaflet

<<component>>

TileLayer.WMS

LeafletDataLayer

<<component>>

DataLayer

Fig. 4: Detailed querying architecture



8

Fig. 5: Example of a user interface using the Web Map Viewer component

To generate test datasets, we have run the Route Simulator component in a
desktop computer (Intel Core i7-3770, 4 cores, 3.40GHz, 8GB of RAM). The use
of Kafka asynchronously as the entry point of the Ingestion System compo-
nent makes the client very light and it can generate events for 1000 simultaneous
drivers with hardly any load for the system. The server side was run on a ma-
chine that hosted all the server-side components of the architecture (Ingestion
System, Storage System, and Query System). Only one storage technology was
running simultaneously (either Postgres+PostGIS, MongoDB or Druid) in order
to avoid resource allocation competitions. The system has behaved in a stable
manner and has allowed to generate two datasets: one with 3.2 million points
in 3 hours (small dataset), and another with 40.7 million points in 24 hours of
continuous execution (large dataset).

In order to evaluate RQ1, for each candidate storage, we generated queries
with four different spatial ranges (from small ones in the order of 0.0001 degrees
to large one in the order of 0.1 degrees) using always the same version of the
geographic point (the one with three decimals). One hundred queries were ran-
domly generated and each query was executed exactly once to avoid the efects
of any possible caching. To evaluate RQ2, the same strategy was used (one hun-
dred queries with four different spatial ranges from small to large). However,
this time the most suitable version of the geographic point was used for the ag-
gregation according to the query range (e.g., if the query range is 0.0001 degrees
the version with 4 decimals is used). Furthermore, the large dataset was used
for these test. Finally, to evaluate RQ3 the queries ranges were generated using
the strategy RQ1, but they were answered using both predicates. The queries
were written to disk and executed twice independently in order to use the same
query ranges with both predicates and to avoid any possible caching.



9

 0.1

 1

 10

 100

Smallest Small Medium Large

T
im

e 
(s

)

Distance

PostGIS
Druid

MongoDB

(a) Results for RQ1

 0.01

 0.1

 1

 10

 100

Smallest Small Medium Large

T
im

e 
(s

)

Distance

PostGIS
Druid

MongoDB

(b) Results for RQ2

Fig. 6: Experiment results for RQ1 and RQ2

4 Experiments and Results

Figure 6a shows the results of the experiment performed to evaluate RQ1. The
horizontal axis represents the different spatial ranges from small to large, and the
vertical axis represents the average time in seconds to answer 100 queries using
a logarithmic scale. It can be seen that Druid outperforms Postgres+PostGIS,
which in turn outperforms MongoDB. The results indicate that Druid is the best
option for the storage technology.

Figure 6b shows the results of the experiment performed to evaluate RQ2
using the same axis. The results are similar, even though the performance of
Postgres+PostGIS improves yielding results comparable to Druid. However, the
time required to answer queries increases with larger spatial ranges instead of
remaining constant. The result indicate that our approach cannot be used to
achieve a constant query time.

Figure 7 shows the results of the experiment performed to evaluate RQ3. The
horizontal axis represents the different spatial ranges from small to large, and
the vertical axis represents the average time in seconds to answer 100 queries
using a different linear scale in each figure. It can be seen that the performance
of both predicates (distance and bounding box) is similar. However, in Post-
gres+PostGIS the bounding box predicate outperforms the distance predicate,
whereas in MongoDB and Druid the results are the opposite. The results indi-
cate that the predicate used in the queries does not have a significative effect on
the performance.

5 Conclusions and Future Work

We have presented in this paper the architecture of a system to store, query
and visualize on the web large datasets of geographic information. We also have
started to define an evaluation methodology to benchmark and compare differ-
ent alternatives for some components of the system. We also show preliminary



10

 0

 5

 10

 15

 20

 25

 30

Smallest Small Medium Large

T
im

e 
(s

)

Distance

BoundingBox
Distance

(a) Postgres+PostGIS

 54

 56

 58

 60

 62

 64

 66

 68

Smallest Small Medium Large

T
im

e 
(s

)

Distance

BoundingBox
Distance

(b) MongoDB

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

Smallest Small Medium Large

T
im

e 
(s

)

Distance

BoundingBox
Distance

(c) Druid

Fig. 7: Experiment results for RQ3

results in which we use the proposed system to store, query and visualize 40
million locations of drivers in PostgreSQL+PostGIS, MongoDB, and Druid. We
validated the system and we can conclude that Druid is the most promising
technology. We also evaluated our approach to achieve a constant time in ag-
gregation queries and we can concluded that it is not sucessful. We believe that
the problem with the approach is that truncating a decimal means that one in a
level of aggregation represents one hundred points in the next level of aggrega-
tion. Thus, the difference between the different levels of aggregation is too high.
Finally, we evaluated wether the specific predicate used in the queries is relevant
and we found out that there is no significative difference between them.

As future work, we are currently working on evaluating which technology
scales better in a cluster, and new approaches to achieve constant query time in
aggregation queries.

References

1. car2go Iberia S.L.: car2go Madrid website (2017),
https://www.car2go.com/ES/en/madrid/, (Consulted on 29/12/2017)

2. Chodorow, K.: MongoDB: The Definitive Guide. O’Reilly Media, Inc. (2013)
3. Creelman, D.: Top Trends in Workforce Management: How Tech-

nology Provides Significant Value Managing Your People (2014),
http://www.oracle.com/us/products/applications/workforce-management-2706797.pdf,
(Consulted on 29/12/2017)

4. Crickard, P.: Leaflet.Js Essentials. Packt Publishing (2014)
5. Eldawy, A.: Spatialhadoop: Towards flexible and scalable spatial processing us-

ing mapreduce. In: Proceedings of the 2014 SIGMOD PhD Symposium. pp.
46–50. SIGMOD’14 PhD Symposium, ACM, New York, NY, USA (2014),
http://doi.acm.org/10.1145/2602622.2602625

6. Henderson, C.: Mastering GeoServer. Packt Publ., Birmingham (2014)
7. Obe, R.O., Hsu, L.S.: PostgreSQL: Up and Running A Practical Introduction to

the Advanced Open Source Database. O’Reilly Media, Inc., 2nd edn. (2014)
8. Yang, F., Tschetter, E., Léauté, X., Ray, N., Merlino, G., Ganguli, D.: Druid: A real-

time analytical data store. In: Proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data. pp. 157–168. SIGMOD ’14, ACM, New York,
NY, USA (2014), http://doi.acm.org/10.1145/2588555.2595631

https://www.car2go.com/ES/en/madrid/
http://www.oracle.com/us/products/applications/workforce-management-2706797.pdf
http://doi.acm.org/10.1145/2602622.2602625
http://doi.acm.org/10.1145/2588555.2595631

